495
Views
13
CrossRef citations to date
0
Altmetric
Review

Recent advances in slow and sustained drug release for retina drug delivery

ORCID Icon
Pages 679-686 | Received 17 Mar 2019, Accepted 10 May 2019, Published online: 10 Jun 2019

References

  • Jonas JB, Bourne RRA, White RA, et al. Visual impairment and blindness due to macular diseases globally: a systematic review and meta-analysis. Am J Ophthalmol. 2014;158:808–815.
  • Maffi P, Secchi A. The burden of diabetes: emerging data. Dev Ophthalmol. 2017;60:1–5.
  • Bakri SJ, Thorne JE, Ho AC, et al. Safety and efficacy of anti-vascular endothelial growth factor therapies for neovascular age-related macular degeneration: a report by the american academy of ophthalmology. Ophthalmology. 2018.Bakri SJ, Thorne JE, Ho AC, et al. Safety and efficacy of anti-vascular endothelial growth factor therapies for neovascular age-related macular degeneration: a report by the american academy of ophthalmology. Ophthalmology. 2019;126(1):55–63.
  • Zhu Y, Zhang T, Xu G, et al. Anti-vascular endothelial growth factor for choroidal neovascularisation in people with pathological myopia. Cochrane Database Syst Rev. 2016;12:CD011160.
  • Solomon SD, Lindsley K, Vedula SS, et al. Anti-vascular endothelial growth factor for neovascular age-related macular degeneration. Cochrane Database Syst Rev. 2014;(8):CD005139.
  • Sarwar S, Clearfield E, Soliman MK, et al. Aflibercept for neovascular age-related macular degeneration. Cochrane Database Syst Rev. 2016;2:CD011346.
  • Whitcup SM, Cidlowski JA, Csaky KG, et al. Pharmacology of corticosteroids for diabetic macular edema. Invest Ophthalmol Vis Sci. 2018;59:1–12.
  • Eter N, Mohr A, Wachtlin J, et al. Dexamethasone intravitreal implant in retinal vein occlusion: real-life data from a prospective, multicenter clinical trial. Graefes Arch Clin Exp Ophthalmol Albrecht Von Graefes Arch Klin Exp Ophthalmol. 2017;255:77–87.
  • He Y, Ren X-J, Hu B-J, et al. A meta-analysis of the effect of a dexamethasone intravitreal implant versus intravitreal anti-vascular endothelial growth factor treatment for diabetic macular edema. BMC Ophthalmol. 2018;18:121.
  • Daruich A, Matet A, Moulin A, et al. Mechanisms of macular edema: beyond the surface. Prog Retin Eye Res. 2018;63:20–68.
  • Talks J, Daien V, Finger RP, et al. Utility of real-world evidence for evaluating anti-vascular endothelial growth factor treatment of neovascular age-related macular degeneration. Surv Ophthalmol. 2019. pii: S0039-6257(17)30337-5. doi: 10.1016/j.survophthal.2019.02.008. [Epub ahead of print]
  • Boulanger-Scemama E, Sayag D, Ha Chau Tran T, et al. [Ranibizumab and exudative age-related macular degeneration: 5-year multicentric functional and anatomical results in real-life practice]. J Fr Ophtalmol. 2016;39:668–674.
  • Malclès A, Dot C, Voirin N, et al. Real-life study in diabetic macular edema treated with dexamethasone implant: the reldex study. Retina Phila Pa. 2017;37:753–760.
  • Chhablani J, Bansal P, Veritti D, et al. Dexamethasone implant in diabetic macular edema in real-life situations. Eye Lond Engl. 2016;30:426–430.
  • El Sanharawi M, Kowalczuk L, Touchard E, et al. Protein delivery for retinal diseases: from basic considerations to clinical applications. Prog Retin Eye Res. 2010;29:443–465.
  • Marmor MF. Barriers to fluorescein and protein movement. Jpn J Ophthalmol. 1985;29:131–138.
  • Marmor MF, Negi A, Maurice DM. Kinetics of macromolecules injected into the subretinal space. Exp Eye Res. 1985;40:687–696.
  • Janga KY, Tatke A, Shukla S, et al. Retina compatible interactions and effective modulation of blood ocular barrier P-gp activity by third-generation inhibitors improve the ocular penetration of loperamide. J Pharm Sci. 2018;107:2128–2135.
  • Chapy H, Saubaméa B, Tournier N, et al. Blood-brain and retinal barriers show dissimilar ABC transporter impacts and concealed effect of P-glycoprotein on a novel verapamil influx carrier. Br J Pharmacol. 2016;173:497–510.
  • Vellonen K-S, Hellinen L, Mannermaa E, et al. Expression, activity and pharmacokinetic impact of ocular transporters. Adv Drug Deliv Rev. 2018;126:3–22.
  • Del Amo EM, Urtti A. Rabbit as an animal model for intravitreal pharmacokinetics: clinical predictability and quality of the published data. Exp Eye Res. 2015;137:111–124.
  • Rimpelä A-K, Kiiski I, Deng F, et al. Pharmacokinetic simulations of intravitreal biologicals: aspects of drug delivery to the posterior and anterior segments. Pharmaceutics. 2018;11:9.
  • Hutton-Smith LA, Gaffney EA, Byrne HM, et al. Theoretical insights into the retinal dynamics of vascular endothelial growth factor in patients treated with ranibizumab, based on an ocular pharmacokinetic/pharmacodynamic model. Mol Pharm. 2018;15:2770–2784.
  • Del Amo EM, Rimpelä A-K, Heikkinen E, et al. Pharmacokinetic aspects of retinal drug delivery. Prog Retin Eye Res. 2017;57:134–185.
  • Yang J, Wang X, Fuh G, et al. Comparison of binding characteristics and in vitro activities of three inhibitors of vascular endothelial growth factor A. Mol Pharm. 2014;11:3421–3430.
  • Lanzetta P, Loewenstein A. Vision academy steering committee, Fundamental principles of an anti-VEGF treatment regimen: optimal application of intravitreal anti-vascular endothelial growth factor therapy of macular diseases. Graefes Arch Clin Exp Ophthalmol Albrecht Von Graefes Arch Klin Exp Ophthalmol. 2017;255:1259–1273.
  • Ming S, Xie K, He H, et al. Efficacy and safety of adalimumab in the treatment of non-infectious uveitis: a meta-analysis and systematic review. Drug Des Devel Ther. 2018;12:2005–2016.
  • Dugel PU, Jaffe GJ, Sallstig P, et al. Brolucizumab versus aflibercept in participants with neovascular age-related macular degeneration: a randomized trial. Ophthalmology. 2017;124:1296–1304.
  • Jonas JB, Hayler JK, Panda-Jonas S. Intravitreal injection of crystalline cortisone as adjunctive treatment of proliferative vitreoretinopathy. Br J Ophthalmol. 2000;84:1064–1067.
  • Torriglia A, Valamanesh F, Behar-Cohen F. On the retinal toxicity of intraocular glucocorticoids. Biochem Pharmacol. 2010;80:1878–1886.
  • Zacharias LC, Lin T, Migon R, et al. Assessment of the differences in pharmacokinetics and pharmacodynamics between four distinct formulations of triamcinolone acetonide. Retina. 2013;33:522–531.
  • Bisht R, Mandal A, Jaiswal JK, et al. Nanocarrier mediated retinal drug delivery: overcoming ocular barriers to treat posterior eye diseases. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2018;10(2). doi: 10.1002/wnan.1473. Epub 2017 Apr 20
  • Weng Y, Liu J, Jin S, et al. Nanotechnology-based strategies for treatment of ocular disease. Acta Pharm Sin B. 2017;7:281–291.
  • Wang Y, Xu X, Gu Y, et al. Recent advance of nanoparticle-based topical drug delivery to the posterior segment of the eye. Expert Opin Drug Deliv. 2018;15:687–701.
  • Loftsson T, Stefánsson E. Cyclodextrins and topical drug delivery to the anterior and posterior segments of the eye. Int J Pharm. 2017;531:413–423.
  • Ohira A, Hara K, Jóhannesson G, et al. Topical dexamethasone γ-cyclodextrin nanoparticle eye drops increase visual acuity and decrease macular thickness in diabetic macular oedema. Acta Ophthalmol (Copenh). 2015;93:610–615.
  • Friedman SM, Almukhtar TH, Baker CW, et al. Topical nepafenec in eyes with noncentral diabetic macular edema. Retina. 2015;35:944–956.
  • Weijtens O, van der Sluijs FA, Schoemaker RC, et al. Peribulbar corticosteroid injection: vitreal and serum concentrations after dexamethasone disodium phosphate injection. Am J Ophthalmol. 1997;123:358–363.
  • Weijtens O, Schoemaker RC, Cohen AF, et al. Dexamethasone concentration in vitreous and serum after oral administration. Am J Ophthalmol. 1998;125:673–679.
  • Weijtens O, Schoemaker RC, Lentjes EG, et al. Dexamethasone concentration in the subretinal fluid after a subconjunctival injection, a peribulbar injection, or an oral dose. Ophthalmology. 2000;107:1932–1938.
  • Errera M-H, Westcott M, Benesty J, et al. A comparison of the dexamethasone implant (Ozurdex®) and inferior fornix-based sub-tenon triamcinolone acetonide for treatment of inflammatory ocular diseases. Ocul Immunol Inflamm. 2019;27(2):319–329.
  • Thorne JE, Sugar EA, Holbrook JT, et al. Periocular triamcinolone vs. intravitreal triamcinolone vs. intravitreal dexamethasone implant for the treatment of uveitic macular edema: the periocular vs. INTravitreal corticosteroids for uveitic macular edema (POINT) trial. Ophthalmology. 2019;126:283–295.
  • Grzybowski A, Told R, Sacu S, et al. 2018 update on intravitreal injections: euretina expert consensus recommendations. Ophthalmol J Int Ophtalmol Int J Ophthalmol Z Augenheilkd. 2018;239:181–193.
  • Luaces-Rodríguez A, González-Barcia M, Blanco-Teijeiro MJ, et al. Review of intraocular pharmacokinetics of anti-infectives commonly used in the treatment of infectious endophthalmitis. Pharmaceutics. 2018;10:66.
  • Edington M, Connolly J, Chong NV. Pharmacokinetics of intravitreal anti-VEGF drugs in vitrectomized versus non-vitrectomized eyes. Expert Opin Drug Metab Toxicol. 2017;13:1217–1224.
  • Laude A, Tan LE, Wilson CG, et al. Intravitreal therapy for neovascular age-related macular degeneration and inter-individual variations in vitreous pharmacokinetics. Prog Retin Eye Res. 2010;29:466–475.
  • Pen’kov MA, Avrushchenko NM. [10 years’ experience using the suprachoroidal method of administering drugs]. Oftalmol Zh. 1980;35:281–285.
  • Einmahl S, Savoldelli M, D’Hermies F, et al. Evaluation of a novel biomaterial in the suprachoroidal space of the rabbit eye. Invest Ophthalmol Vis Sci. 2002;43:1533–1539.
  • Habot-Wilner Z, Noronha G, Wykoff CC. Suprachoroidally injected pharmacological agents for the treatment of chorio-retinal diseases: a targeted approach. Acta Ophthalmol (Copenh). 2019.  doi:10.1111/aos.14042.
  • Chiang B, Jung JH, Prausnitz MR. The suprachoroidal space as a route of administration to the posterior segment of the eye. Adv Drug Deliv Rev. 2018;126:58–66.
  • Yeh S, Kurup SK, Wang RC, et al. Suprachoroidal injection of triamcinolone acetonide, CLS-TA, for macular edema due to noninfectious uveitis: a randomized, phase 2 study (DOGWOOD). Retina Phila Pa. 2018. doi:10.1097/IAE.0000000000002279.
  • Willoughby AS, Vuong VS, Cunefare D, et al. Choroidal changes after suprachoroidal injection of triamcinolone acetonide in eyes with macular edema secondary to retinal vein occlusion. Am J Ophthalmol. 2018;186:144–151.
  • Matet A, Kostic C, Bemelmans A-P, et al. Evaluation of tolerance to lentiviral LV-RPE65 gene therapy vector after subretinal delivery in non-human primates. Transl Res J Lab Clin Med. 2017;188:40–57.e4.
  • Peng Y, Tang L, Zhou Y. Subretinal injection: a review on the novel route of therapeutic delivery for vitreoretinal diseases. Ophthalmic Res. 2017;58:217–226.
  • Boyer DS, Yoon YH, Belfort R, et al. Three-year, randomized, sham-controlled trial of dexamethasone intravitreal implant in patients with diabetic macular edema. Ophthalmology. 2014;121:1904–1914.
  • Lowder C, Belfort R, Lightman S, et al. Dexamethasone intravitreal implant for noninfectious intermediate or posterior uveitis. Arch Ophthalmol Chic Ill. 1960;129(2011):545–553.
  • Mehta H, Gillies M, Fraser-Bell S. Perspective on the role of ozurdex (dexamethasone intravitreal implant) in the management of diabetic macular oedema. Ther Adv Chronic Dis. 2015;6:234–245.
  • Einmahl S, Ponsart S, Bejjani RA, et al. Ocular biocompatibility of a poly(ortho ester) characterized by autocatalyzed degradation. J Biomed Mater Res A. 2003;67:44–53.
  • Silva-Cunha A, Fialho SL, Naud M-C, et al. Poly-epsilon-caprolactone intravitreous devices: an in vivo study. Invest Ophthalmol Vis Sci. 2009;50:2312–2318.
  • Da Silva GR, Lima TH, Oréfice RL, et al. In vitro and in vivo ocular biocompatibility of electrospun poly(ɛ-caprolactone) nanofibers. Eur J Pharm Sci Off J Eur Fed Pharm Sci. 2015;73:9–19.
  • Fialho SL, Behar-Cohen F, Silva-Cunha A. Dexamethasone-loaded poly(epsilon-caprolactone) intravitreal implants: a pilot study. Eur J Pharm Biopharm Off J Arbeitsgemeinschaft Pharm Verfahrenstechnik EV. 2008;68:637–646.
  • Gupta A, Kim BS. Shape memory polyurethane biocomposites based on toughened polycaprolactone promoted by nano-chitosan. Nanomater Basel Switz. 2019;9. In press.
  • Lascano D, Quiles-Carrillo L, Balart R, et al. Toughened poly(lactic acid)-PLA formulations by binary blends with poly(butylene succinate-co-adipate)-PBSA and their shape memory behaviour. Mater Basel Switz. 2019;12. In press.
  • Andrieu-Soler C, Bejjani R-A, de Bizemont T, et al. Ocular gene therapy: a review of nonviral strategies. Mol Vis. 2006;12:1334–1347.
  • Oliveira AV, Rosa Da Costa AM, Silva GA. Non-viral strategies for ocular gene delivery. Mater Sci Eng C Mater Biol Appl. 2017;77:1275–1289.
  • Zulliger R, Conley SM, Naash MI. Non-viral therapeutic approaches to ocular diseases: an overview and future directions. J Control Release Off J Control Release Soc. 2015;219:471–487.
  • Gomes Dos Santos AL, Bochot A, Tsapis N, et al. Oligonucleotide-polyethylenimine complexes targeting retinal cells: structural analysis and application to anti-TGFbeta-2 therapy. Pharm Res. 2006;23:770–781.
  • Gomes Dos Santos AL, Bochot A, Doyle A, et al. Sustained release of nanosized complexes of polyethylenimine and anti-TGF-beta 2 oligonucleotide improves the outcome of glaucoma surgery. J Control Release Off J Control Release Soc. 2006;112:369–381.
  • Yang J. Patisiran for the treatment of hereditary transthyretin-mediated amyloidosis. Expert Rev Clin Pharmacol. 2019;12:95–99.
  • Tsai C-H, Wang P-Y, Lin I-C, et al. Ocular drug delivery: role of degradable polymeric nanocarriers for ophthalmic application. Int J Mol Sci. 2018;19:2830.
  • Kang-Mieler JJ, Dosmar E, Liu W, et al. Extended ocular drug delivery systems for the anterior and posterior segments: biomaterial options and applications. Expert Opin Drug Deliv. 2017;14:611–620.
  • Thackaberry EA, Farman C, Zhong F, et al. Evaluation of the toxicity of intravitreally injected PLGA microspheres and rods in monkeys and rabbits: effects of depot size on inflammatory response. Invest Ophthalmol Vis Sci. 2017;58:4274–4285.
  • Soubrane G, Behar-Cohen F. [Fluocinolone acetonide (ILUVIEN®) micro-implant for chronic diabetic macular edema]. J Fr Ophtalmol. 2015;38:159–167.
  • Bourges JL, Bloquel C, Thomas A, et al. Intraocular implants for extended drug delivery: therapeutic applications. Adv Drug Deliv Rev. 2006;58:1182–1202.
  • Massa H, Nagar AM, Vergados A, et al. Intravitreal fluocinolone acetonide implant (ILUVIEN®) for diabetic macular oedema: a literature review. J Int Med Res. 2019;47:31–43.
  • Fusi-Rubiano W, Blow RR, Lane M, et al. iluvientm (fluocinolone acetonide 0.19 mg intravitreal implant) in the treatment of diabetic macular edema: a review. Ophthalmol Ther. 2018;7:293–305.
  • Habib MS. ILUVIEN® technology in the treatment of center-involving diabetic macular edema: a review of the literature. Ther Deliv. 2018;9:547–556.
  • Holbrook JT, Sugar EA, Burke AE, et al. Dissociations of the fluocinolone acetonide implant: the multicenter uveitis steroid treatment (MUST) Trial and follow-up study. Am J Ophthalmol. 2016;164:29–36.
  • Freitas-Neto CA, Maghsoudlou A, Dhanireddy S, et al. Outcome of multiple implants and dissociation of fluocinolone acetonide intravitreal implant (retisert) in a series of 187 consecutive implants. Ocul Immunol Inflamm. 2015;23:425–429.
  • Hussain RM, Ciulla TA. Emerging vascular endothelial growth factor antagonists to treat neovascular age-related macular degeneration. Expert Opin Emerg Drugs. 2017;22:235–246.
  • Liu Y, Fortmann SD, Shen J, et al. AAV8-antiVEGFfab ocular gene transfer for neovascular age-related macular degeneration. Mol Ther J Am Soc Gene Ther. 2018;26:542–549.
  • Touchard E, Benard R, Bigot K, et al. Non-viral ocular gene therapy, pEYS606, for the treatment of non-infectious uveitis: preclinical evaluation of the medicinal product. J Control Release Off J Control Release Soc. 2018;285:244–251.
  • Russell S, Bennett J, Wellman JA, et al. Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial. Lancet Lond Engl. 2017;390:849–860.
  • Lee JH, Wang J-H, Chen J, et al. Gene therapy for visual loss: opportunities and concerns. Prog Retin Eye Res. 2019;68:31–53.
  • Zimmermann M, Lubinga SJ, Banken R, et al. Cost utility of voretigene neparvovec for biallelic RPE65-mediated inherited retinal disease. Value Health J Int Soc Pharmacoeconomics Outcomes Res. 2019;22:161–167.
  • Darrow JJ. Luxturna: FDA documents reveal the value of a costly gene therapy. Drug Discov Today. 2019;24(4):949–954.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.