442
Views
47
CrossRef citations to date
0
Altmetric
Review

Lipid-based carriers for the delivery of local anesthetics

ORCID Icon, ORCID Icon & ORCID Icon

References

  • Leroux J. Editorial: Drug Delivery: Too Much Complexity, Not Enough Reproducibility?. Angew Chemie Int Ed. 2017;56:15170–15171.
  • Bertrand N, Leroux J. The journey of a drug-carrier in the body: An anatomo-physiological perspectiveNo Title. J Control Release. 2012;20:152–163.
  • Hock S, Ying Y, Wah C. A Review of the Current Scientific and Regulatory Statusof Nanomedicines and the Challenges Ahead. PDA J Pharm Sci Technol. 2011;65:177–195.
  • Choi Y, Han H. Nanomedicines: current status and future perspectives in aspect of drug delivery and pharmacokinetics. J Pharm Investig. 2017;48:1–6.
  • Wang G, Wang J, Wu W, et al. Advances in lipid-based drug delivery: enhancing efficiency for hydrophobic drugs. Expert Opin Drug Deliv. 2015;12:1475–1499.
  • Chakraborty S, Shukla D, Mishra B, et al. Lipid - An emerging platform for oral delivery of drugs with poor bioavailability. Eur J Pharm Biopharm. 2009;73:1–15.
  • Shrestha H, Bala R, Arora S. Lipid-Based Drug Delivery Systems. J Pharm. 2014;2014:801820.
  • Svenson S. What nanomedicine in the clinic right now really forms nanoparticles?. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2014;6:125–135.
  • Mu H, Holm R. Solid lipid nanocarriers in drug delivery: characterization and design. Expert Opin Drug Deliv. 2018;15:771–785.
  • Grewal A, Lather V, Sharma N, et al. Recent Updates on Nanomedicine Based Products: Current Scenario and Future Opportunities. Appl Clin Res Clin Trials Regul Aff. 2018;5:132–144.
  • Bulbake U, Doppalapudi S, Kommineni N, et al. Liposomal Formulations in Clinical Use: An Updated Review. Pharmaceutics. 2017;9:12.
  • Bajwa Z, Wootton R, Warfield C. Principles and Practice of Pain Medicine. Local Anesth. 3 rd ed. New York, US: McGraw-Hill; 2017.
  • Strichartz G, Covino B. Local anesthetics. In: Strichartz GR, editor. Anesthesia. Switzerland: Springer. 1990. p. 437–466.
  • Levene J, Weinstein E, Cohen M, et al. Local anesthetics and regional anesthesia versus conventional analgesia for preventing persistent postoperative pain in adults and children: A Cochrane systematic review and meta-analysis update. J Clin Anesth. 2019;55:116–127.
  • de Paula E, Cereda CMS, Fraceto LF, et al. Micro and nanosystems for delivering local anesthetics. Expert Opin Drug Deliv. 2012;9:1505–1524.
  • de Paula E, Cereda CMS, Tofoli GR, et al. Drug delivery systems for local anesthetics. Recent Pat Drug Deliv Formul. 2010;4:23–34.
  • de Araújo D, Da Silva C, Barbosa R, et al.. Strategies for delivering local anesthetics to the skin: focus on liposomes, solid lipid nanoparticles, hydrogels and patches. Expert Opin Drug Deliv. 2013;10:1551–1563.
  • Leppert W, Malec–Milewska M, Zajaczkowska R, et al.. Transdermal and Topical Drug Administration in the Treatment of Pain. Molecules. 2018;23:681–697.
  • Pinto L, Yokaichiya D, Fraceto L, et al. Interaction of benzocaine with model membranes. Biophys Chem. 2000;87:213–223.
  • Butterworth JFT, Strichartz GR. Molecular mechanisms of local anesthesia: a review. Anesthesiology. 1990;72:711–734.
  • Whiteside J, Wildsmith J. Developments in local anaesthetic drugs. Br J Anaesth. 2001;87:27–35.
  • Lagan G, McLure H. Review of local anaesthetic agents. Curr Anesthesia Crit Care. 2004;15:247–254.
  • Morgan D, Cousin M, McQuillan D, et al. Disposition and placental transfer of etidocaine in pregnancy. Eur J Clin Pharmacol. 1977;12:359–365.
  • Tainter C. An evidence-based approach to traumatic pain management in the emergency department. Emerg Med Pract. 2012;14:1–26.
  • Nishimura K, Hamai R, Kitamura E, et al. Protein binding of local anesthetics. Jap J Anesth. 1975;24:245.
  • Phillips N. Anesthesia: Techniques and Agents. Berry&Kohn’s Oper. Room Tech. Elsevier Health Scieinces; 2016.
  • Duranest-drug description website. Available from: https://www.rxlist.com/duranest-drug.htm#description
  • Pubchem website. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/butamben#section=Metabolism-Metabolites.
  • Wildsmith J, Gissen A, Takman B, et al. Differential nerve blockade: esters v. amides and the influence of pKa. Br J Anaesth. 1987;59:379–384.
  • de Lima RAF, Jesus MB, Cereda CMS, et al. Improvement of tetracaine antinociceptive effect by inclusion in cyclodextrins. J Drug Target. 2012;20:85–96.
  • Cereda CMS, Guilherme VA, Alkschbirs MI, et al. Liposomal Butamben Gel Formulations: Toxicity assays and topical anesthesia in an animal model. J Lip Res. 2016;28:1–9.
  • Mclure H, Rubin A. Review of local anaesthetic agents. Minerva Anestesiol. 2005;71:59–74.
  • Franz-Montan M, Ribeiro LNM, Volpato MC, et al. Recent advances and perspectives in topical oral anesthesia. Expert Opninion Drug Deliv. 2017;14:673–684.
  • Malamed S. Sedation - E-Book: A Guide to Patient Management. Amsterdam: Elsevier Health Sciences; 2009.
  • Hanzlicek AS, Van der Merwe D. Dibucaine toxicosis in a dog. J Med Toxicol. 2010;6:44–49.
  • Couto VM, Prieto MJ, Igartúa DE, et al. Dibucaine in Ionic-Gradient Liposomes: Biophysical, Toxicological, and Activity Characterization. J Pharm Sci. 2018;107:2411–2419.
  • Oliveira JD, Ribeiro L, Rodrigues Da Silva GH, et al.. Sustained Release from Ionic-Gradient Liposomes Significantly Decreases ETIDOCAINE Cytotoxicity. Pharm Res. 2018;35.
  • de Araújo D, Cereda C, Brunetto G, et al. Pharmacological and local toxicity studies of a liposomal formulation for the local anesthetic Ropivacaine. J Pharm Pharmacol. 2008;60:1449–1457.
  • Mather L. The acute toxicity of local anesthetics. Expert Opin Drug Metab Toxicol. 2010;6:1313–1332.
  • Rodrigues Da Silva GH, Ribeiro LNM, Mitsutake H, et al. Optimised NLC: a nanotechnological approach to improve the anaesthetic effect of bupivacaine. Int J Pharm. 2017;529:253–263.
  • Shah A, Vidoni A, McGarry S, et al. Ethyl chloride spray for musculoskeletal ultrasound‐guided injections: An alternative to subcutaneous injection of local anesthetic solution. J Clin Ultrasound. 2017;46:129–131.
  • Hollmann M, Durieux M. Local Anesthetics and the Inflammatory Response: A New Therapeutic Indication?. Anesthesiology. 2000;93:858–875.
  • Piegeler T, Votta-Velis E, Liu G, et al. Antimetastatic Potential of Amide-linked Local Anesthetics: Inhibition of Lung Adenocarcinoma Cell Migration and Inflammatory Src Signaling Independent of Sodium Channel. Anesthesiology. 2012;117:548–559.
  • Atchabahian A, Andreae M. Long-term Functional Outcomes after Regional Anesthesia: a Summary of the Published Evidence and a Recent Cochrane Review. Refresh Courses Anesth. 2015;43:15–26.
  • Barreveld A, Witte J, Chahal H, et al. Preventive Analgesia by Local Anesthetics: the Reduction of Postoperative Pain by Peripheral Nerve Blocks and Intravenous Drugs. Anesth Analg. 2013;116:1141–1161.
  • Omote K. Intravenous Lidocaine to Treat Postoperative Pain Management: Novel Strategy with a Long-established Drug. Anesthesiology. 2017;106:5–6.
  • Schwartzman R, Patel M, Grouthusen J, et al. Efficacy of 5-Day Continuous Lidocaine Infusion for the Treatment of Refractory Complex Regional Pain Syndrome. Am Acad Pain Med. 2009;10:401–412.
  • Lee K, Chung J, Lee S. The safety of a mixture of bupivacaine and lidocaine in children after urologic inguinal and scrotal surgery. Investig Clin Urol. 2018;59:141–147.
  • Franz-Montan M, de Araújo DR, Ribeiro LNM, et al. Nanostructured Systems for Transbuccal Drug Delivery. In: Andronescu E, Grumezescu A, editors. Nanostructures for drug delivery 1st. Amsterdam: Elsevier; 2017. p. 87–114.
  • Musawi A, Andersson L. Use of topical as only anesthetic for suturing a traumatic facial laceration. Dent Traumatol. 2010;26:292–293.
  • Leopold A, Wilson S, Weaver JS, et al. Pharmacokinetics of lidocaine delivered from a transmucosal patch in children. Anesth Prog. 2002;49:82–87.
  • Abu-Huwaij R, Assaf S, Salem M, et al. Mucoadhesive dosage form of lidocaine hydrochloride: I. Mucoadhesive and physicochemical characterization. Drug Dev Ind Pharm. 2007;33:855–864.
  • Stecker S, Swift J, Hodges J, et al. Should a mucoadhesive patch (DentiPatch) be used for gingival anesthesia in children?. Anesth Prog. 2002;49:3–8.
  • Grant G, Barenholz Y, Bolotin E, et al. A novel liposomal bupivacaine formulation to produce ultralong acting analgesia. Anesthesiology. 2004;101:133–137.
  • Chahar P, Cummings K. Liposomal bupivacaine: a review of a new bupivacaine formulation. J Pain Res. 2012;5:257–264.
  • Tófoli G, Cereda C, Groppo F, et al. Efficacy of liposome-encapsulated mepivacaine for infiltrative anesthesia in volunteers. J Liposome Res. 2011;21:88–94.
  • de Almeida ACP, Pinto LMA, Alves GP, et al. Liposomal-based lidocaine formulation for the improvement of infiltrative buccal anaesthesia. J Liposome Res. 2018;6:1–7.
  • Kuzma P, Kline M, Calkins M, et al. Progress in the development of ultra-long-acting local anesthetics. Reg Anesth. 1997;22:543–551.
  • Weiniger C, Golovanevski M, Sokolsky-Papkov M, et al. Review of prolonged local anesthetic action. Expert Opin Drug Deliv. 2010;7:737–752.
  • Wiles M, Nathanson M. Local anaesthetics and adjuvants – future developments. Anaesthesia. 2010;65:22–37.
  • Santamaria C, Woodruff A, Yang R, et al. Drug delivery systems for prolonged duration local anesthesia. Mater Today. 2017;20:22–31.
  • Stoicea N, Fiorda-Diaz J, Joseph M, et al. Advanced Analgesic Drug Delivery and Nanobiotechnology. Drugs. 2017;77:1069–1076.
  • Torchilin V. Liposomes in Drug-delivery. Fundamentals and Applications of Controlled Release. Adv Deliv Sci Technol. 2012;1:289–328.
  • Allen TM, Cullis PR. Liposomal drug delivery systems: From concept to clinical applications. Adv Drug Deliv Rev. 2013;65:36–48.
  • Sercombe L, Veerati T, Moheimani F, et al. Advances and Challenges of liposome assisted drug delivery. Front Pharmacol. 2015;7:1–13.
  • Bozzuto G, Molinari A. Liposomes as nanomedical devices. Int J Nanomedicine. 2015;10:975–999.
  • Zucker D, Marcus D, Barenholz Y, et al. Liposome drugs’ loading efficiency: A working model based on loading conditions and drug’s physicochemical properties. J Control Release. 2009;139:73–80.
  • Immordino M, Dosio F, Cattel L. Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomedicine. 2006;1:297–315.
  • Wagner A, Vorauer-Uhl A. Liposome Technology for Industrial Purposes. J Drug Deliv. 2011;2011:ID591325.
  • Ginosar Y, Haroutounian S, Kagan L, et al. Proliposomal Ropivacaine Oil: Pharmacokinetic and Pharmacodynamic Data After Subcutaneous Administration in Volunteers. Anesth Analg. 2016;122:1673–1680.
  • Sevankar S, Targe B, Jaybhave P, et al.. Influence of process parameters on the formation of controlled release lipospheres of ketoprofen and their characterization. Pharm and Biol Eval. 2015;2:234–242.
  • He K, Tang M. Safety of novel liposomal drugs for cancer treatment: advances and prospects. Chem Biol Interact. 2018;295:13–19.
  • de Paula E, Schreier S. Molecular and physicochemical aspects of local anesthetic-membrane interaction. Braz J Med Biol Res. 1996;29:877–894.
  • Bangham A, Standish M, Watkins J. Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol. 1965;13:238–252.
  • Gesztes A, Mezei M. Topical anesthesia of the skin by liposome-encapsulated tetracaine. Anesth Analg. 1988;67:1079–1081.
  • Rogobete AF, Dragomirescu M, Bedreag OH, et al. New aspects of controlled release systems for local anaesthetics: A review. Trend Anaesth Crit Care. 2016;9:27–34.
  • Kohane D. Microparticles and nanoparticles for drug delivery. Biotechnol Bioeng. 2007;96:203–209.
  • Lambrechts M, O’Brien M, Savoie F, et al.. Liposomal extended-release bupivacaine for postsurgical analgesia. Patient Prefer Adherence. 2013;7:885–890.
  • Uskova A, O’Connor J. Liposomal bupivacaine for regional anesthesia. Curr Opin Anaesthesiol. 2015;28:593–597.
  • Kuang M, Du Y, Ma J, et al. The Efficacy of Liposomal Bupivacaine Using Periarticular Injection in Total Knee Arthroplasty: a Systematic Review and Meta-Analysis. J Arthroplasty. 2017;32:1395–1402.
  • Pichler L, Poeran J, Zubzarreta N, et al.. Liposomal Bupivacaine Does Not Reduce Inpatient Opioid Prescription or Related Complications after Knee Arthroplasty: a Database Analysi. Anesthesiology. 2018;10:689–699.
  • Ma J, Zhang W, Yao S. Liposomal bupivacaine infiltration versus femoral nerve block for paincontrol in total knee arthroplasty: a systematic review and meta-analysis. Int J Surg. 2016;36:44–55.
  • Cereda CMS, Franz-Montan M, Silva C, et al. Transdermal delivery of butamben using elastic and conventional liposomes. J Liposome Res. 2013;23:228–234.
  • Gubernator J. Active methods of drug loading into liposomes: recent strategies for stable drug entrapment and increased in vivo activity. Expert Opin Drug Deliv. 2011;15:565–580.
  • de Paula E, Schreier S. Use of a novel method for determination of partition coefficients to compare the effect of local anesthetics on membrane structure. Biochim Biophys Acta. 1995;1240:25–33.
  • Mowat J, Mok M, MacLeod B, et al.. Liposomal bupivacaine extended duration nerve blockade using large unilamellar vesicles that exhibit a proton gradient. Anesthesiology. 1996;85:635–643.
  • Cohen R, Kanaan H, Grant G, et al. Prolonged analgesia from Bupisome and Bupigel formulations: from design and fabrication to improved stability. J Control Release. 2012;160:346–352.
  • Silva CMG, Fraceto LFF, Franz-Montan M, et al. Development of egg PC/cholesterol/α-tocopherol liposomes with ionic gradients to deliver ropivacaine. J Liposome Res. 2016;26:1–10.
  • Silva CMG, Franz-Montan M, Limia CEG, et al. Encapsulation of ropivacaine in a combined (donor-acceptor, ionic-gradient) liposomal system promotes extended anesthesia time. PLoS One. 2017;12:1–16.
  • Escribano E, Obach M, Arévalo M, et al. Rapid Human Skin Permeation and Topical Anaesthetic Activity of a New Amethocaine Microemulsion. Skin Pharmacol Physiol. 2005;18:294–300.
  • Junyaprasert V, Boonme P, Wurster D, et al. Aerosol OT Microemulsions as Carriers for Transdermal Delivery of Hydrophobic and Hydrophilic Local Anesthetics. Drug Deliv. 2008;15:323–330.
  • Negi P, Singh B, Sharma G, et al. Phospholipid microemulsion-based hydrogel for enhanced topical delivery of lidocaine and prilocaine: QbD-based development and evaluation. Drug Deliv. 2014;7544:1–17.
  • Üstündaǧ-Okur N, Çaglar E, Arpa M, et al. Preparation and evaluation of novel microemulsion-based hydrogels for dermal delivery of benzocaine. Pharm Dev Technol. 2017;22:500–510.
  • El Maghraby G, Arafa M, Osman M. Microemulsion for simultaneous transdermal delivery of benzocaine and indomethacin: in vitro and in vivo evaluation. Drug Dev Ind Pharm. 2014;40:1637–1644.
  • Yuan J, Ansari M, Samaan M, et al. Linker-based lecithin microemulsions for transdermal delivery of lidocaine. Int J Pharm. 2008;349:130–143.
  • Yuan J, Acosta E. Extended release of lidocaine from liniker-based lecithin microemulsions. Int J Pharm. 2009;368:63–71.
  • Yuan J, Yip A, Nguyen N, et al. Effect of lidocaine concentration on trasndermal lidocaine delivery with linker microemulsions. Int J Pharm. 2010;392:274–284.
  • Dogrul A, Arslan S, Tirnaksiz F. Water/oil type microemulsion systems containing lidocaine hydrochloride: in vitro and in vivo evaluation. J Microencapsul. 2014;31:448–460.
  • Zhao L, Wang Y, Zhai Y, et al. Ropivacaine loaded microemulsion and microemulsion-based gel for transdermal delivery: Preparation, optimization and evaluation. Int J Pharm. 2014;477:47–56.
  • Shukla A, Krause A, Neubert R. Microemulsions as colloidal vehicle systems for dermal drug delivery. Part IV: investigation of microemulsion systems based on a eutectic mixture of lidocaine and prilocaine as the colloidal phase by dynamic light scattering. J Pharm Pharmacol. 2002;55:741–748.
  • Rachmawati H, Arvin Y, Asyarie S, et al. Local sustained delivery of bupivacaine HCl from a new castor oil-based nanoemulsion system. Drug Deliv Transl Res. 2018;8:515–524.
  • Mei L, Xie Y, Huang Y, et al. Injectable in situ forming gel based on lyotropic liquid crystal for persistent postoperative analgesia. Acta Biomater. 2018;67:99–110.
  • Phan S, Fong W, Kirby N, et al. Evaluating the link between selfassembled mesophase structure and drug release. Int J Pharm. 2011;421:176–182.
  • Yaghmur A, Rappolt M, Ostergaard J, et al. Characterization of Bupivacaine-Loaded Formulations Based on Liquid Crystalline phases and Microemulsions: The Effect of Lipid Composition. Langmuir. 2012;28:2881–2889.
  • Welin-Berger K, Neelissen J, Engblom J. Physicochemical interaction of local anesthetics with lipid model systems—correlation with in vitro permeation and in vivo efficacy. J Control Release. 2002;81:33–43.
  • Ok S, Hong J, Lee S, et al. Lipid Emulsion for Treating Local Anesthetic Systemic Toxicity. Int J Med Sci. 2018;15:713–722.
  • Wanten G, Calder P. Immune modulation by parenteral lipid emulsions. Am J Clin Nutr. 2007;85:1171–1185.
  • Li Z, Xia Y, Dong X, et al.. Long-chain Triglyceride Emulsion Provides Benefits over Long- and Medium-chain Triglyceride Emulsion. Anesthesiology. 2011;115:1219–1228.
  • Yoshimoto M, Horiguchi T, Kimura T, et al.. Recovery From Ropivacaine-Induced or Levobupivacaine-Induced Cardiac Arrest in Rats: comparison of Lipid Emulsion Effect. Anesth Clin Pharmacol. 2017;125:1496–1502.
  • Motayagheni N, Phan S, Nozari A, et al. Lipid Emulsion, More Than Reversing Bupivacaine Cardiotoxicity: Potential Organ Protection. J Pharm Pharm Sci. 2017;20:329–331.
  • Weinberg G. Lipid Emulsion Infusion. Anesthesiology. 2012;117:180–187.
  • Lee S, Kang D, Ok S, et al. Linoleic Acid Attenuates the Toxic Dose of Bupivacaine-Mediated Reduction of Vasodilation Evoked by the Activation of Adenosine Triphosphate-Sensitive Potassium Channels. Int J Mol Sci. 2018;19:1876–1897.
  • Müller RH, Shegokar R, Keck CM. 20 years of lipid nanoparticles (SLN and NLC): present state of development and industrial applications. Curr Drug Discov Technol [Internet]. 2011;8:207–227.
  • Souto EB, Wissing SA, Barbosa CM, et al. Evaluation of the physical stability of SLN and NLC before and after incorporation into hydrogel formulations. Eur J Pharm Biopharm. 2004;58:83–90.
  • Guilherme VA, Ribeiro LNM, Tofoli GR, et al. Current Challenges and Future of Lipid Nanoparticles Formulations for Topical Drug Application to Oral Mucosa, Skin, and Eye. Curr Pharm Des. 2018;23:6659–6675.
  • Müller RH, Ulrike A, Sinambela P, et al.. Nanostructured Lipid Carriers (NLC): The Second Generation of Solid Lipid Nanoparticles. In: Dragicevic N, Maibach H, editors. Percutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement. Berlin: Springer. 2016. p. 161–185.
  • Ribeiro LNM, Franz-Montan M, Breitkreitz MC, et al. Nanostructured lipid carriers as robust systems for topical lidocaine-prilocaine release in dentistry. Eur J Pharm Sci. 2016;93:192–202.
  • Ribeiro LNM, Couto VM, Fraceto LFF, et al. Use of nanoparticle concentration as a tool to understand the structural properties of colloids. Sci Rep. 2018;8:982.
  • Radaic A, Barbosa LRS, Jaime C, et al. How lipid cores affect lipid nanoparticles as drug and gene delivery systems. Adv Biomembr Lipid Self-Assembly. 2016;24:1–42.
  • Barbosa RM, Casadei BR, Duarte EL, et al. Electron Paramagnetic Resonance and Small-Angle X-ray Scattering Characterization of Solid Lipid Nanoparticles and Nanostructured Lipid Carriers for Dibucaine Encapsulation. Langmuir. 2018;34:13296–13304.
  • Basha M, El-Alim SHA, Kassem AA, et al. Benzocaine Loaded Solid Lipid Nanoparticles : formulation Design, In vitro and In vivo Evaluation of Local Anesthetic Effect. Curr Drug Deliv. 2015;12:1–13.
  • Melo NFS, De, Campos EVR, Franz-Montan M, et al. Characterization of Articaine-Loaded Poly (ε-caprolactone) Nanocapsules and Solid Lipid Nanoparticles in Hydrogels for Topical Formulations. J Nanosci Nanotechnol. 2018;18:4428–4438.
  • Pathak P, Nagarsenker M. Formulation and evaluation of lidocaine lipid nanosystems for dermal delivery. AAPS PharmSciTech. 2009;10:985–992.
  • Puglia C, Sarpietro MG, Bonina F, et al. Development, Characterization, and In Vitro and In Vivo Evaluation of Benzocaine- and Lidocaine-Loaded. J Pharm Sci. 2011;100:1892–1899.
  • Nahak P, Karmakar G, Roy B, et al. Physicochemical studies on local anaesthetic loaded second generation nanolipid carriers. RSC Adv. 2015;5:26061–26070.
  • Zhao X, Sun Y, Li Z. Topical anesthesia therapy using lidocaine-loaded nanostructured lipid carriers : tocopheryl polyethylene glycol 1000 succinate-modified transdermal delivery system. Drug Des Devel Ther. 2018;12:4231–4240.
  • Ribeiro LNM, Breitkreitz MC, Guilherme VA, et al. Natural lipids-based NLC containing lidocaine: from pre-formulation to in vivo studies. Eur J Pharm Sci. 2017;106:102–112.
  • Ribeiro LNM, Franz-Montan M, Breitkreitz MC, et al. Nanohybrid hydrogels designed for transbuccal anesthesia. Int J Nanomedicine. 2018;13:6453–6463.
  • Ribeiro LNM, de Paula E, Franz-Montan M, et al.. Método de obtenção de filmes lipídico-biopoliméricos nanoestruturados, filmes lipídico-biopoliméricos nanoestruturados e seu uso. 2017:1–40. #BR1020170113787.
  • You P, Yuan R, Chen C. Design and evaluation of lidocaine- and prilocaine-coloaded nanoparticulate drug delivery systems for topical anesthetic analgesic therapy: A comparison between solid lipid nanoparticles and nanostructured lipid carriers. Drug Des Devel Ther. 2017;11:2743–2752.
  • Yue Y, Zhao D, Yin Q. Hyaluronic acid modified nanostructured lipid carriers for transdermal bupivacaine delivery: In vitro and in vivo anesthesia evaluation. Biomed Pharmacother. 2018;98:813–820.
  • Chen H, Wang Y, Zhai Y, et al. Development of a ropivacaine-loaded nanostructured lipid carrier formulation for transdermal delivery. Colloids Surf A Physicochem Eng Aspects. 2015;465:130–136.
  • Ribeiro LNM, Alcântara ACS, Rodrigues Da Silva GH, et al. Advances in Hybrid Polymer-Based Materials for Sustained Drug Release. Int J Polym Sci. 2017;2017:1–16.
  • Leng F, Wan J, Liu W, et al. Prolongation of epidural analgesia using solid lipid nanoparticles as drug carrier for lidocaine. Reg Anesth Pain Med. 2012;37:159–165.
  • Barbosa RM, Silva CMG, Bella TS, et al. Cytotoxicity of solid lipid nanoparticles and nanostructured lipid carriers containing the local anesthetic dibucaine designed for topical application. J Phys Conf Ser. 2013;429:12035.
  • Barbosa RM, Ribeiro LNM, Casadei B, et al. Solid Lipid Nanoparticles for Dibucaine Sustained Release. Pharmaceutics. 2018;10:231.
  • Heurtault B, Saulnier P, Pech B, et al. Lipidic nanocapsules: preparation process and use as Drug Delivery Systems. 2000. # US8057823B2.
  • Heurtault B, Saulnier P, Pech B, et al. A novel phase inversion-based process for the preparation of lipid nanocarriers. Pharm Res. 2002;19:875–880.
  • Heurtault B, Saulnier P, Benoit J, et al. Lipid nanocapsules, preparation process and use as medicine. 2010. # US20090238865A1.
  • Mouzouvi C, Umerska A, Bigot AK, et al. Surface active properties of lipid nanocapsules. PLoS One. 2017;10:1–19.
  • Morille M, Saulnier P, Benoit J, et al. Lipid Nanocapsule in Nanomedicine. In: Hunter, RJ; Preedy, VR, editors. Nanomedicine in Health and Disease. CRC Press, Taylor&Francis Group. 2011.
  • Huynh NT, Passirani C, Saulnier P, et al. Lipid nanocapsules: A new platform for nanomedicine. Int J Pharm. 2009;379:201–209.
  • Zhai Y, Yang X, Zhao L, et al. Lipid nanocapsules for transdermal delivery of ropivacaine: in vitro and in vivo evaluation. Int J Pharm. 2014;471:103–111.
  • U.S. website from National Library of Medicine. 2019. ClinicalTrials.gov.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.