770
Views
37
CrossRef citations to date
0
Altmetric
Review

Extended release formulations using silk proteins for controlled delivery of therapeutics

, &
Pages 741-756 | Received 27 Feb 2019, Accepted 19 Jun 2019, Published online: 01 Jul 2019

References

  • Yucel T, Lovett ML, Kaplan DL. Silk-based biomaterials for sustained drug delivery. J Control Release. 2014 Sep;28(190):381–397.
  • Nair LS, Laurencin CT. Polymers as biomaterials for tissue engineering and controlled drug delivery. In: Lee K, Kaplan D, editors. Tissue engineering I advances in biochemical engineering/biotechnology. Berlin: Springer; 2005. p. 47–90.
  • Kamaly N, Yameen B, Wu J, et al. Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chem Rev. 2016 Feb 24;116(4):2602–2663.
  • Mohammadi-Samani S, Taghipour B. PLGA micro and nanoparticles in delivery of peptides and proteins; problems and approaches. Pharm Dev Technol. 2015 Jun;20(4):385–393.
  • Crotts G, Park TG. Protein delivery from poly(lactic-co-glycolic acid) biodegradable microspheres: release kinetics and stability issues. J Microencapsul. 1998 Nov-Dec;15(6):699–713.
  • Muffly TM, Tizzano AP, Walters MD. The history and evolution of sutures in pelvic surgery. J R Soc Med. 2011 Mar;104(3):107–112.
  • Holland C, Numata K, Rnjak-Kovacina J, et al. The biomedical use of silk: past, present, future. Adv Healthc Mater. 2019 10;8(1):Jan.
  • Vepari C, Kaplan DL. Silk as a biomaterial. Prog Polym Sci. 2007 Aug-Sep;32(8–9):991–1007.
  • Dutta D, Hossain CM, Biswas A. Silk proteins in drug delivery: an overview. RPHS. 2018;4(4):514–518.
  • Kundu B, Kurland NE, Bano S, et al. Silk proteins for biomedical applications: bioengineering perspectives. Prog Polym Sci. 2014 Feb;39(2):251–267.
  • Numata K, Kaplan DL. Silk-based delivery systems of bioactive molecules. Adv Drug Deliv Rev. 2010 Dec 30;62(15):1497–1508.
  • Huang WW, Rollett A, Kaplan DL. Silk-elastin-like protein biomaterials for the controlled delivery of therapeutics. Expert Opin Drug Deliv. 2015 May;12(5):779–791.
  • Koh LD, Cheng Y, Teng CP, et al. Structures, mechanical properties and applications of silk fibroin materials. Prog Polym Sci. 2015;46:86–110.
  • Wang Y, Rudym DD, Walsh A, et al. In vivo degradation of three-dimensional silk fibroin scaffolds. Biomaterials. 2008 Aug-Sep;29(24–25):3415–3428.
  • Kluge JA, Li AB, Kahn BT, et al. Silk-based blood stabilization for diagnostics. Proc Natl Acad Sci U S A. 2016 May 24;113(21):5892–5897.
  • Li AB, Kluge JA, Zhi M, et al. Enhanced stabilization in dried silk fibroin matrices. Biomacromolecules. 2017 Sep 11;18(9):2900–2905.
  • He JY, Yavuz B, Kluge JA, et al. Stabilization of RNA encapsulated in silk. ACS Biomater Sci Eng. 2018 May;4(5):1708–1715.
  • Gil ES, Park SH, Hu X, et al. Impact of sterilization on the enzymatic degradation and mechanical properties of silk biomaterials. Macromol Biosci. 2014 Feb;14(2):257–269.
  • Coburn J, Harris J, Zakharov AD, et al. Implantable chemotherapy-loaded silk protein materials for neuroblastoma treatment. Int J Cancer. 2017 Feb 1;140(3):726–735.
  • Yavuz B, Zeki J, Coburn JM, et al. In vitro and in vivo evaluation of etoposide - silk wafers for neuroblastoma treatment. J Control Release. 2018 Sep;10(285):162–171.
  • Zeki J, Taylor JS, Yavuz B, et al. Disseminated injection of vincristine-loaded silk gel improves the suppression of neuroblastoma tumor growth. Surgery. 2018 Jul 27; 164(4):909–915.
  • Yucel T, Lovett ML, Giangregorio R, et al. Silk fibroin rods for sustained delivery of breast cancer therapeutics. Biomaterials. 2014 Oct;35(30):8613–8620.
  • Srisuwan Y, Baimark Y, Srihanam P. Preparation of regenerated silk sericin/silk fibroin blend microparticles by emulsification-diffusion method for controlled release drug delivery. Part Sci Technol. 2017;35(4):387–392.
  • Seib FP, Jones GT, Rnjak-Kovacina J, et al. pH-dependent anticancer drug release from silk nanoparticles. Adv Healthc Mater. 2013 Dec;2(12):1606–1611.
  • Crivelli B, Perteghella S, Bari E, et al. Silk nanoparticles: from inert supports to bioactive natural carriers for drug delivery. Soft Matter. 2018 Jan 24;14(4):546–557.
  • Numata K, Subramanian B, Currie HA, et al. Bioengineered silk protein-based gene delivery systems. Biomaterials. 2009 Oct;30(29):5775–5784.
  • FDA. November 2018 510(k) Clearances. 2019. [cited 2019 Jan 25]. Available from: https://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/DeviceApprovalsandClearances/510kClearances/ucm627939.htm
  • Sashina ES, Bochek AM, Novoselov NP, et al. Structure and solubility of natural silk fibroin. Russ J Appl Chem. 2006 Jun;79(6):869–876.
  • Aramwit P, Kanokpanont S, De-Eknamkul W, et al. Monitoring of inflammatory mediators induced by silk sericin. J Biosci Bioeng. 2009 May;107(5):556–561.
  • Santin M, Motta A, Freddi G, et al. In vitro evaluation of the inflammatory potential of the silk fibroin. J Biomed Mater Res. 1999 Sep 5;46(3):382–389.
  • Shen Y, Redmond SL, Papadimitriou JM, et al. The biocompatibility of silk fibroin and acellular collagen scaffolds for tissue engineering in the ear. Biomed Mater. 2014;9:1.
  • Mandal BB, Priya AS, Kundu SC. Novel silk sericin/gelatin 3-D scaffolds and 2-D films: fabrication and characterization for potential tissue engineering applications. Acta Biomater. 2009 Oct;5(8):3007–3020.
  • Kunz RI, Brancalhao RM, Ribeiro LF, et al. Silkworm Sericin: properties and biomedical applications. Biomed Res Int. 2016;2016:8175701.
  • Zhou CZ, Confalonieri F, Jacquet M, et al. Silk fibroin: structural implications of a remarkable amino acid sequence. Proteins-Struct Funct Genet. 2001 Aug 1;44(2):119–122.
  • Dubey P, Murab S, Karmakar S, et al. Modulation of self-assembly process of fibroin: an insight for regulating the conformation of silk biomaterials. Biomacromolecules. 2015 Dec;16(12):3936–3944.
  • Wenk E, Merkle HP, Meinel L. Silk fibroin as a vehicle for drug delivery applications. J Control Release. 2011 Mar 10;150(2):128–141.
  • Wenk E, Murphy AR, Kaplan DL, et al. The use of sulfonated silk fibroin derivatives to control binding, delivery and potency of FGF-2 in tissue regeneration. Biomaterials. 2010 Feb;31(6):1403–1413.
  • Hines DJ, Kaplan DL. Characterization of small molecule controlled release from silk films. Macromol Chem Phys. 2013 Jan 25;214(2):280–294.
  • Nova A, Keten S, Pugno NM, et al. Molecular and nanostructural mechanisms of deformation, strength and toughness of spider silk fibrils. Nano Lett. 2010 Jul 14;10(7):2626–2634.
  • Murphy AR, Kaplan DL. Biomedical applications of chemically-modified silk fibroin. J Mater Chem. 2009;19(36):6443–6450.
  • Athanasiou KA, Niederauer GG, Agrawal CM. Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid polyglycolic acid copolymers. Biomaterials. 1996 Jan;17(2):93–102.
  • Wiegand C, Abel M, Ruth P, et al. Effect of the sterilization method on the performance of collagen Type I on chronic wound parameters in vitro. J Biomed Materials Research Part B-Applied Biomaterials 2009 Aug;90b( 2):710–719.
  • Rnjak-Kovacina J, DesRochers TM, Burke KA, et al. The effect of sterilization on silk fibroin biomaterial properties. Macromol Biosci. 2015 Jun;15(6):861–874.
  • Sleep D. Albumin and its application in drug delivery. Expert Opin Drug Deliv. 2015 May;12(5):793–812.
  • Tonnesen HH, Karlsen J. Alginate in drug delivery systems. Drug Dev Ind Pharm. 2002 Jul;28(6):621–630.
  • Elgadir MA, Uddin MS, Ferdosh S, et al. Impact of chitosan composites and chitosan nanoparticle composites on various drug delivery systems: A review. J Food Drug Anal. 2015 Dec;23(4):619–629.
  • Laza-Knoerr AL, Gref R, Couvreur P. Cyclodextrins for drug delivery. J Drug Target. 2010 Nov;18(9):645–656.
  • Coelho JF, Ferreira PC, Alves P, et al. Drug delivery systems: advanced technologies potentially applicable in personalized treatments. Epma J. 2010 Mar;1(1):164–209.
  • Foox M, Zilberman M. Drug delivery from gelatin-based systems. Expert Opin Drug Deliv. 2015;12(9):1547–1563.
  • Huang G, Huang H. Application of hyaluronic acid as carriers in drug delivery. Drug Deliv. 2018 Nov;25(1):766–772.
  • Larson N, Ghandehari H. Polymeric conjugates for drug delivery. Chem Mater. 2012 Mar 13;24(5):840–853.
  • Dash TK, Konkimalla VB. Poly-small je, Ukrainian-caprolactone based formulations for drug delivery and tissue engineering: A review. J Control Release. 2012 Feb 28;158(1):15–33.
  • Pisal DS, Kosloski MP, Balu-Iyer SV. Delivery of therapeutic proteins. J Pharm Sci. 2010 Jun;99(6):2557–2575.
  • Neuberg P, Kichler A. Recent developments in nucleic acid delivery with polyethylenimines. Adv Genet. 2014;88:263–288.
  • Rockwood DN, Preda RC, Yucel T, et al. Materials fabrication from Bombyx mori silk fibroin. Nat Protoc. 2011 Oct;6(10):1612–1631.
  • Pritchard EM, Normand V, Hu X, et al. Encapsulation of oil in silk fibroin biomaterials. J Appl Polym Sci. 2014;131:6.
  • Gobin AS, Rhea R, Newman RA, et al. Silk-fibroin-coated liposomes for long-term and targeted drug delivery. Int J Nanomedicine. 2006;1(1):81–87.
  • Seib FP, Pritchard EM, Kaplan DL. Self-assembling doxorubicin silk hydrogels for the focal treatment of primary breast cancer. Adv Funct Mater. 2013 Jan 7;23(1):58–65.
  • Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer-chemotherapy - mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986 Dec;46(12):6387–6392.
  • Kutscher HL, Chao P, Deshmukh M, et al. Threshold size for optimal passive pulmonary targeting and retention of rigid microparticles in rats. J Control Release. 2010 Apr 2;143(1):31–37.
  • Wang XQ, Yucel T, Lu Q, et al. Silk nanospheres and microspheres from silk/pva blend films for drug delivery. Biomaterials. 2010 Feb;31(6):1025–1035.
  • Zhao Z, Chen AZ, Li Y, et al. Fabrication of silk fibroin nanoparticles for controlled drug delivery. J Nanopart Res. 2012 Apr;14(4):736.
  • Subia B, Kundu SC. Drug loading and release on tumor cells using silk fibroin-albumin nanoparticles as carriers. Nanotechnology. 2013 Jan 25;24:3.
  • Qu J, Liu Y, Yu YN, et al. Silk fibroin nanoparticles prepared by electrospray as controlled release carriers of cisplatin. Mater Sci Eng C Mater Biol Appl. 2014 Nov;1(44):166–174.
  • Wongpinyochit T, Uhlmann P, Urquhart AJ, et al. PEGylated silk nanoparticles for anticancer drug delivery. Biomacromolecules. 2015 Nov;16(11):3712–3722.
  • Montalban MG, Coburn JM, Lozano-Perez AA, et al. Production of curcumin-loaded silk fibroin nanoparticles for cancer therapy. Nanomaterials (Basel). 2018 Feb 24;8(2):126.
  • Wu JB, Wang J, Zhang J, et al. Oral delivery of curcumin using silk nano- and microparticles. ACS Biomater Sci Eng. 2018 Nov;4(11):3885–3894.
  • Wu M, Yang WH, Chen S, et al. Size-controllable dual drug-loaded silk fibroin nanospheres through a facile formation process. J Mater Chem B. 2018 Feb 28;6(8):1179–1186.
  • Sun N, Lei R, Xu J, et al. Fabricated porous silk fibroin particles for pHresponsive drug delivery and targeting of tumor cells. J Mater Sci. 2019;54:3319–3330.
  • Florczak A, Mackiewicz A, Dams-Kozlowska H. Functionalized spider silk spheres as drug carriers for targeted cancer therapy. Biomacromolecules. 2014 Aug;15(8):2971–2981.
  • Mwangi TK, Bowles RD, Tainter DM, et al. Synthesis and characterization of silk fibroin microparticles for intra-articular drug delivery. Int J Pharm. 2015 May 15;485(1–2):7–14.
  • Mandal BB, Kundu SC. Self-assembled silk sericin/poloxamer nanoparticles as nanocarriers of hydrophobic and hydrophilic drugs for targeted delivery. Nanotechnology. 2009 Sep 2;20:35.
  • Gupta V, Aseh A, Rios CN, et al. Fabrication and characterization of silk fibroin-derived curcumin nanoparticles for cancer therapy. Int J Nanomedicine. 2009;4(1):115–122.
  • Wang XQ, Wenk E, Matsumoto A, et al. Silk microspheres for encapsulation and controlled release. J Control Release. 2007 Feb 26;117(3):360–370.
  • Wang X, Wenk E, Hu X, et al. Silk coatings on PLGA and alginate microspheres for protein delivery. Biomaterials. 2007 Oct;28(28):4161–4169.
  • Wongpinyochit T, Johnston BF, Seib FP. Manufacture and drug delivery applications of silk nanoparticles. J Vis Exp. 2016 Oct;(116).
  • Cao Y, Liu FQ, Chen YL, et al. Drug release from core-shell PVA/silk fibroin nanoparticles fabricated by one-step electrospraying. Sci Rep. 2017;20:7.
  • Perteghella S, Crivelli B, Catenacci L, et al. Stem cell-extracellular vesicles as drug delivery systems: new frontiers for silk/curcumin nanoparticles. Int J Pharm. 2017 Mar 30;520(1–2):86–97.
  • Crivelli B, Bari E, Perteghella S, et al. Silk fibroin nanoparticles for celecoxib and curcumin delivery: ROS-scavenging and anti-inflammatory activities in an in vitro model of osteoarthritis. Eur J Pharm Biopharm. 2019;137:37–45.
  • Yang P, Dong Y, Huang D, et al. Silk fibroin nanoparticles for enhanced bio-macromolecule delivery to the retina. Pharm Dev Technol. 2018;20:1–9.
  • Takeuchi I, Shimamura Y, Kakami Y, et al. Transdermal delivery of 40-nm silk fibroin nanoparticles. Colloids Surf B Biointerfaces. 2019 Mar 1;175:564–568.
  • Lammel AS, Hu X, Park SH, et al. Controlling silk fibroin particle features for drug delivery. Biomaterials. 2010 Jun;31(16):4583–4591.
  • Wenk E, Wandrey AJ, Merkle HP, et al. Silk fibroin spheres as a platform for controlled drug delivery. J Control Release. 2008 Nov 24;132(1):26–34.
  • Kundu J, Chung YI, Kim YH, et al. Silk fibroin nanoparticles for cellular uptake and control release. Int J Pharm. 2010 Mar 30;388(1–2):242–250.
  • Hu DD, Li T, Xu ZP, et al. Self-stabilized silk sericin-based nanoparticles: in vivo biocompatibility and reduced doxorubicin-induced toxicity. Acta Biomater. 2018 Jul;1(74):385–396.
  • Subia B, Chandra S, Talukdar S, et al. Folate conjugated silk fibroin nanocarriers for targeted drug delivery. Integr Biol (Camb). 2014 Feb;6(2):203–214.
  • Lu SZ, Wang J, Mao L, et al. Antheraea pernyi silk fibroin nanoparticles for drug delivery. J Nano Res. 2014;27:75–81.
  • Wang J, Zhang S, Xing T, et al. Ion-induced fabrication of silk fibroin nanoparticles from Chinese oak tasar Antheraea pernyi. Int J Biol Macromol. 2015;79:316–325.
  • Shuai Y, Yang S, Li C, et al. In situ protein-templated porous protein-hydroxylapatite nanocomposite microspheres for pH-dependent sustained anticancer drug release. J Mater Chem B. 2017 Jun 7;5(21):3945–3954.
  • Diab T, Pritchard EM, Uhrig BA, et al. A silk hydrogel-based delivery system of bone morphogenetic protein for the treatment of large bone defects. J Mech Behav Biomed Mater. 2012 Jul;11:123–131.
  • Tsioris K, Raja WK, Pritchard EM, et al. Fabrication of silk microneedles for controlled-release drug delivery. Adv Funct Mater. 2012;22:330–335.
  • Zhang WJ, Wang XL, Wang SY, et al. The use of injectable sonication-induced silk hydrogel for VEGF(165) and BMP-2 delivery for elevation of the maxillary sinus floor. Biomaterials. 2011 Dec;32(35):9415–9424.
  • Nogueira GM, de Moraes MA, Rodas ACD, et al. Hydrogels from silk fibroin metastable solution: formation and characterization from a biomaterial perspective. Mater Sci Eng C Mater Biol Appl. 2011 Jul 20;31(5):997–1001.
  • Yucel T, Cebe P, Kaplan DL. Vortex-Induced Injectable Silk Fibroin Hydrogels. Biophys J. 2009 Oct 7;97(7):2044–2050.
  • Wang X, Ding ZZ, Wang C, et al. Bioactive silk hydrogels with tunable mechanical properties. J Mater Chem B. 2018 May 14;6(18):2739–2746.
  • Ribeiro VP, Silva-Correia J, Goncalves C, et al. Rapidly responsive silk fibroin hydrogels as an artificial matrix for the programmed tumor cells death. PLoS One. 2018 4;13(4):Apr.
  • Wu HC, Liu SS, Xiao LY, et al. Injectable and pH-responsive silk nanofiber hydrogels for sustained anticancer drug delivery. ACS Appl Mater Interfaces. 2016 Jul 13;8(27):17118–17126.
  • Lovett ML, Wang XQ, Yucel T, et al. Silk hydrogels for sustained ocular delivery of anti-vascular endothelial growth factor (anti-VEGF) therapeutics. Eur J Pharm Biopharm. 2015;95:271–278.
  • Hosack LW, Firpo MA, Scott JA, et al. Microvascular maturity elicited in tissue treated with cytokine-loaded hyaluronan-based hydrogels. Biomaterials. 2008 May;29(15):2336–2347.
  • Elia R, Newhide DR, Pedevillano PD, et al. Silk-hyaluronan-based composite hydrogels: A novel, securable vehicle for drug delivery. J Biomater Appl. 2013 Feb;27(6):749–762.
  • Numata K, Yamazaki S, Naga N. Biocompatible and biodegradable dual-drug release system based on silk hydrogel containing silk nanoparticles. Biomacromolecules. 2012 May;13(5):1383–1389.
  • Guziewicz N, Best A, Perez-Ramirez B, et al. Lyophilized silk fibroin hydrogels for the sustained local delivery of therapeutic monoclonal antibodies. Biomaterials. 2011 Apr;32(10):2642–2650.
  • Guziewicz NA, Massetti AJ, Perez-Ramirez BJ, et al. Mechanisms of monoclonal antibody stabilization and release from silk biomaterials. Biomaterials. 2013 Oct;34(31):7766–7775.
  • Harris JC, Coburn JM, Kajdacsy-Balla A, et al. Sustained delivery of vincristine inside an orthotopic mouse sarcoma model decreases tumor growth. J Pediatr Surg. 2016 Dec;51(12):2058–2062.
  • Mandal BB, Kapoor S, Kundu SC. Silk fibroin/polyacrylamide semi-interpenetrating network hydrogels for controlled drug release. Biomaterials. 2009 May;30(14):2826–2836.
  • Mao KL, Fan ZL, Yuan JD, et al. Skin-penetrating polymeric nanoparticles incorporated in silk fibroin hydrogel for topical delivery of curcumin to improve its therapeutic effect on psoriasis mouse model. Colloids Surf B Biointerfaces. 2017 Dec;1(160):704–714.
  • Ebrahimi A, Sadrjavadi K, Hajialyani M, et al. Preparation and characterization of silk fibroin hydrogel as injectable implants for sustained release of Risperidone. Drug Dev Ind Pharm. 2018;44(2):199–205.
  • Atterberry PN, Roark TJ, Severt SY, et al. Sustained delivery of chemokine CXCL12 from chemically modified silk hydrogels. Biomacromolecules. 2015 May;16(5):1582–1589.
  • Alam AKMM, Shubhra QTH. Surface modified thin film from silk and gelatin for sustained drug release to heal wound. J Mater Chem B. 2015;3(31):6473–6479.
  • Uebersax L, Mattotti M, Papaloizos M, et al. Silk fibroin matrices for the controlled release of nerve growth factor (NGF). Biomaterials. 2007 Oct;28(30):4449–4460.
  • Dyakonov T, Yang CH, Bush D, et al. Design and characterization of a silk-fibroin-based drug delivery platform using naproxen as a model drug. J Drug Deliv. 2012;2012:490514.
  • Wang XY, Hu X, Daley A, et al. Nanolayer biomaterial coatings of silk fibroin for controlled release. J Control Release. 2007 Aug 28;121(3):190–199.
  • Wang X, Zhang X, Castellot J, et al. Controlled release from multilayer silk biomaterial coatings to modulate vascular cell responses. Biomaterials. 2008 Mar;29(7):894–903.
  • Choi M, Choi D, Hong J. Multilayered controlled drug release silk fibroin nanofilm by manipulating secondary structure. Biomacromolecules. 2018 Jul;19(7):3096–3103.
  • Gao Y, Hou M, Yang R, et al. Highly porous silk fibroin scaffold packed in PEGDA/sucrose microneedles for controllable transdermal drug delivery. Biomacromolecules. 2019 Feb 11;20(3):1334–1345.
  • Pritchard EM, Szybala C, Boison D, et al. Silk fibroin encapsulated powder reservoirs for sustained release of adenosine. J Control Release. 2010 Jun 1;144(2):159–167.
  • Yavuz B, Zeki J, Taylor J, et al. Silk reservoirs for local delivery of cisplatin for neuroblastoma treatment: in vitro and in vivo evaluations. J Pharm Sci. 2019 Mar 21. Epub ahead of print. doi: 10.1016/j.xphs.2019.03.019
  • Agostini E, Winter G, Engert J. Water-based preparation of spider silk films as drug delivery matrices. J Control Release. 2015 Sep;10(213):134–141.
  • Bayraktar O, Malay O, Ozgarip Y, et al. Silk fibroin as a novel coating material for controlled release of theophylline. Eur J Pharm Biopharm. 2005 Aug;60(3):373–381.
  • Rujiravanit R, Kruaykitanon S, Jamieson AM, et al. Preparation of crosslinked chitosan/silk fibroin blend films for drug delivery system. Macromol Biosci. 2003 Oct 15;3(10):604–611.
  • Liu XY, Zhang CC, Xu WL, et al. Controlled release of heparin from blended polyurethane and silk fibroin film. Mater Lett. 2009 Jan 31;63(2):263–265.
  • Srisuwan Y, Baimark Y. Preparation of biodegradable silk fibroin/alginate blend films for controlled release of antimicrobial drugs. Adv Mater Sci Eng. 2013;1–6.
  • Hines DJ, Kaplan DL. Mechanisms of Controlled Release from Silk Fibroin Films. Biomacromolecules. 2011 Mar;12(3):804–812.
  • Pritchard EM, Hu X, Finley V, et al. Effect of silk protein processing on drug delivery from silk films. Macromol Biosci. 2013 Mar;13(3):311–320.
  • Pritchard EM, Valentin T, Panilaitis B, et al. Antibiotic-releasing silk biomaterials for infection prevention and treatment. Adv Funct Mater. 2013 Feb 18; 23(7):854–861.
  • Reeves ARD, Spiller KL, Freytes DO, et al. Controlled release of cytokines using silk-biomaterials for macrophage polarization. Biomaterials. 2015 Dec;73:272–283.
  • Coburn JM, Na E, Kaplan DL. Modulation of vincristine and doxorubicin binding and release from silk films. J Control Release. 2015 Dec;28(220):229–238.
  • Chiu B, Coburn J, Pilichowska M, et al. Surgery combined with controlled-release doxorubicin silk films as a treatment strategy in an orthotopic neuroblastoma mouse model. Br J Cancer. 2014 Aug 12;111(4):708–715.
  • Seib FP, Coburn J, Konrad I, et al. Focal therapy of neuroblastoma using silk films to deliver kinase and chemotherapeutic agents in vivo. Acta Biomater. 2015 Jul;1(20):32–38.
  • Coburn JM, Harris J, Cunningham R, et al. Manipulation of variables in local controlled release vincristine treatment in neuroblastoma. J Pediatr Surg. 2017 Dec;52(12):2061–2065.
  • Zhang L, Herrera C, Coburn J, et al. Stabilization and sustained release of HIV inhibitors by encapsulation in silk fibroin disks. ACS Biomater Sci Eng. 2017 Aug;3(8):1654–1665.
  • Yavuz B, Morgan JL, Herrera C, et al. Sustained release silk fibroin discs: antibody and protein delivery for HIV prevention. J Control Release. 2019 Mar;12(301):1–12.
  • Somvipart S, Kanokpanont S, Rangkupan R, et al. Development of electrospun beaded fibers from Thai silk fibroin and gelatin for controlled release application. Int J Biol Macromol. 2013 Apr;55:176–184.
  • Pignatelli C, Perotto G, Nardini M, et al. Electrospun silk fibroin fibers for storage and controlled release of human platelet lysate. Acta Biomater. 2018 Jun;73:365–376.
  • Li HJ, Zhu JX, Chen S, et al. Fabrication of aqueous-based dual drug loaded silk fibroin electrospun nanofibers embedded with curcumin-loaded RSF nanospheres for drugs controlled release. RSC Adv. 2017;7(89):56550–56558.
  • Xie XS, Liu L, Zheng ZZ, et al. Silk fibroin-based fibrous anal fistula plug with drug delivery function. Macromol Biosci. 2018 Apr;18(4):e1700384.
  • Yin ZP, Kuang DJ, Wang SY, et al. Swellable silk fibroin microneedles for transdermal drug delivery. Int J Biol Macromol. 2018 Jan;106:48–56.
  • Stinson J, Raja WK, Lee S, et al. Silk fibroin micronedles for transdermal vaccine delivery. ACS Biomater Sci Eng. 2017;3:360–369.
  • DeMuth PC, Min Y, Irvine DJ, et al. Implantable silk composite microneedles for programmable vaccine release kinetics and enhanced immunogenicity in transcutaneous immunization. Adv Healthc Mater. 2014 Jan;3(1):47–58.
  • Vaxess. National science foundation awards follow-on funding for development of highly effective vaccines via sustained release microneedles. 2018 [cited 2019]. Available from: http://vaxess.com/news/national-science-foundation-awards/

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.