266
Views
41
CrossRef citations to date
0
Altmetric
Review

Biomedical potential of clay nanotube formulations and their toxicity assessment

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1169-1182 | Received 26 Jun 2019, Accepted 04 Sep 2019, Published online: 12 Sep 2019

References

  • Santos AC, Ferreira C, Veiga F, et al. Halloysite clay nanotubes for life sciences applications: from drug encapsulation to bioscaffold. Adv Colloid Interface Sci. 2018;257:58–70.
  • Tully J, Yendluri R, Lvov Y. Halloysite clay nanotubes for enzyme immobilization. Biomacromolecules. 2016 Feb 8;17(2):615–621.
  • Price RR, Gaber BP, Lvov Y. In-vitro release characteristics of tetracycline HCl, khellin and nicotinamide adenine dineculeotide from halloysite; a cylindrical mineral. J Microencapsul. 2001 Nov-Dec;18(6):713–722.
  • Veerabadran P, Sasnur P, Subramanian S, et al. Pancreatic tuberculosis-abdominal tuberculosis presenting as pancreatic abscesses and colonic perforation. World J Gastroenterol. 2007 Jan 21;13(3):478–479.
  • Lvov YM, DeVilliers MM, Fakhrullin RF. The application of halloysite tubule nanoclay in drug delivery. Expert Opin Drug Deliv. 2016 Jul;13(7):977–986.
  • Wei WB, Minullina R, Abdullayev E, et al. Enhanced efficiency of antiseptics with sustained release from clay nanotubes. Rsc Adv. 2014;4(1):488–494.
  • Dzamukova MR, Naumenko EA, Lvov YM, et al. Enzyme-activated intracellular drug delivery with tubule clay nanoformulation. Sci Rep. 2015 May;15(5):10560.
  • Tharmavaram M, Pandey G, Rawtani D. Surface modified halloysite nanotubes: A flexible interface for biological, environmental and catalytic applications. Adv Colloid Interface Sci. 2018 Nov;261:82–101.
  • Vergaro V, Lvov YM, Leporatti S. Halloysite clay nanotubes for resveratrol delivery to cancer cells. Macromol Biosci. 2012 Sep;12(9):1265–1271.
  • Rawtani D, Pandey G, Tharmavaram M, et al. Development of a novel ‘nanocarrier’ system based on halloysite nanotubes to overcome the complexation of ciprofloxacin with iron: an in vitro approach. Appl Clay Sci. 2017 Dec 15;150:293–302.
  • Panchal A, Fakhrullina G, Fakhrullin R, et al. Self-assembly of clay nanotubes on hair surface for medical and cosmetic formulations. Nanoscale. 2018 Oct 4;10(38):18205–18216.
  • Cavallaro G, Lazzara G, Milioto S, et al. Nanohydrogel formation within the Halloysite Lumen for triggered and sustained release. ACS Appl Mater Interfaces. 2018 Mar 7;10(9):8265–8273.
  • Lazzara G, Cavallaro G, Panchal A, et al. An assembly of organic-inorganic composites using halloysite clay nanotubes. Curr Opin Colloid Interface Sci. 2018 May 01;35:42–50.
  • Kruif JK, Ledergerber G, Garofalo C, et al. On prilled nanotubes-in-microgel oral systems for protein delivery. Eur J Pharm Biopharm. 2016;101:90–102.
  • Carazo E, Sandri G, Cerezo P, et al. Halloysite nanotubes as tools to improve the actual challenge of fixed doses combinations in tuberculosis treatment. J Biomed Mater Res A. 2019 Jul;107(7):1513–1521.
  • Yendluri R, Lvov Y, de Villiers MM, et al. Paclitaxel encapsulated in halloysite clay nanotubes for intestinal and intracellular delivery. J Pharm Sci. 2017 Oct;106(10):3131–3139.
  • Wang X, Gong J, Rong R, et al. Halloysite nanotubes-induced Al accumulation and fibrotic response in lung of mice after 30-day repeated oral administration. J Agric Food Chem. 2018 Mar 21;66(11):2925–2933.
  • Lisuzzo L, Cavallaro G, Pasbakhsh P, et al. Why does vacuum drive to the loading of halloysite nanotubes? The key role of water confinement. J Colloid Interface Sci. 2019 July 01;547:361–369.
  • Garcia-Garcia D, Ferri JM, Ripoll L, et al. Characterization of selectively etched halloysite nanotubes by acid treatment. Appl Surf Sci. 2017 Nov;15(422):616–625.
  • Yah WO, Xu H, Soejima H, et al. Biomimetic dopamine derivative for selective polymer modification of halloysite nanotube lumen. J Am Chem Soc. 2012 July 25;134(29):12134–12137.
  • Lvov Y, Wang W, Zhang L, et al. Halloysite clay nanotubes for loading and sustained release of functional compounds. Adv Mater. 2016 Feb 10;28(6):1227–1250.
  • Shi YF, Tian Z, Zhang Y, et al. Functionalized halloysite nanotube-based carrier for intracellular delivery of antisense oligonucleotides. Nanoscale Res Lett. 2011 Nov 28;6(1):608.
  • Lun HL, Ouyang J, Yang HM. Natural halloysite nanotubes modified as an aspirin carrier. Rsc Adv. 2014;4(83):44197–44202.
  • Rapacz-Kmita A, Foster K, Mikołajczyk M, et al. Functionalized halloysite nanotubes as a novel efficient carrier for gentamicin. Mater Lett. 2019 May 15;243:13–16.
  • Ghaderi-Ghahfarrokhi M, Haddadi-Asl V, Zargarian SS. Fabrication and characterization of polymer-ceramic nanocomposites containing drug loaded modified halloysite nanotubes. J Biomed Mater Res A. 2018 May;106(5):1276–1287.
  • Kurczewska J, Cegłowski M, Messyasz B, et al. Dendrimer-functionalized halloysite nanotubes for effective drug delivery. Appl Clay Sci. 2018 Mar 01;153:134–143.
  • Li H, Zhu X, Zhou H, et al. Functionalization of halloysite nanotubes by enlargement and hydrophobicity for sustained release of analgesic. Colloids Surf A Physicochem Eng Asp. 2015 Dec 20;487:154–161.
  • Rouster P, Dondelinger M, Galleni M, et al. Layer-by-layer assembly of enzyme-loaded halloysite nanotubes for the fabrication of highly active coatings. Colloids Surf B Biointerfaces. 2019 Mar;21(178):508–514.
  • Veerabadran NG, Mongayt D, Torchilin V, et al. Organized shells on clay nanotubes for controlled release of macromolecules. Macromol Rapid Commun. 2009 Jan 16;30(2):99–103.
  • Jang SH, Jang SR, Lee GM, et al. Halloysite nanocapsules containing thyme essential oil: preparation, characterization, and application in packaging materials. J Food Sci. 2017 Sep;82(9):2113–2120.
  • Hu Y, Chen J, Li X, et al. Multifunctional halloysite nanotubes for targeted delivery and controlled release of doxorubicin in-vitro and in-vivo studies. Nanotechnology. 2017 Sep 15;28(37):375101.
  • Zhang J, Luo X, Wu YP, et al. Rod in tube: a novel nanoplatform for highly effective chemo-photothermal combination therapy toward breast Cancer. ACS Appl Mater Interfaces. 2019 Jan 30;11(4):3690–3703.
  • Yamina AM, Fizir M, Itatahine A, et al. Preparation of multifunctional PEG-graft-Halloysite nanotubes for controlled drug release, tumor cell targeting, and bio-imaging. Colloids Surf B Biointerfaces. 2018 Oct;1(170):322–329.
  • Massaro M, Amorati R, Cavallaro G, et al. Direct chemical grafted curcumin on halloysite nanotubes as dual-responsive prodrug for pharmacological applications. Colloids Surf B Biointerfaces. 2016 Apr 01;140:505–513.
  • Naumenko EA, Guryanov ID, Yendluri R, et al. Clay nanotube–biopolymer composite scaffolds for tissue engineering. Nanoscale. 2016;8(13):7257–7271.
  • Xue J, Niu Y, Gong M, et al. Electrospun microfiber membranes embedded with drug-loaded clay nanotubes for sustained antimicrobial protection. ACS Nano. 2015;9(2):1600–1612.
  • Patel S, Jammalamadaka U, Sun L, et al. Sustained release of antibacterial agents from doped halloysite nanotubes. Bioengineering. 2015 Dec 23;3(1):1–14.
  • Jia L, Zhou T, Xu J, et al. Visible light-induced lanthanide polymer nanocomposites based on clays for bioimaging applications. J Mater Sci. 2016;51(3):1324–1332.
  • Zhou T, Jia L, Luo Y-F, et al. Multifunctional nanocomposite based on halloysite nanotubes for efficient luminescent bioimaging and magnetic resonance imaging. Int J Nanomed. 2016;11:4765–4776.
  • Micó‐Vicent B, Martínez‐Verdú FM, Novikov A, et al. Stabilized dye–pigment formulations with platy and tubular nanoclays. Adv Funct Mater. 2018;28(27):1703553.
  • Stavitskaya AV, Novikov AA, Kotelev MS, et al. Fluorescence and cytotoxicity of cadmium sulfide quantum dots stabilized on clay nanotubes. Nanomaterials. 2018;8(6):391–402.
  • Kumar-Krishnan S, Hernandez-Rangel A, Pal U, et al. Surface functionalized halloysite nanotubes decorated with silver nanoparticles for enzyme immobilization and biosensing. J Mater Chem B. 2016;4(15):2553–2560.
  • Liu M, He R, Yang J, et al. Stripe-like clay nanotubes patterns in glass capillary tubes for capture of tumor cells. ACS Appl Mater Interfaces. 2016;8(12):7709–7719.
  • Li Y, Khan MS, Tian L, et al. An ultrasensitive electrochemical immunosensor for the detection of prostate-specific antigen based on conductivity nanocomposite with halloysite nanotubes. Anal Bioanal Chem. 2017 May 01;409(12):3245–3251.
  • Yang M, Xiong X, He R, et al. Halloysite nanotube-modified plasmonic interface for highly sensitive refractive index sensing. ACS Appl Mater Interfaces. 2018;10(6):5933–5940.
  • Jia GY, Huang ZX, Zhang YL, et al. Ultrasensitive plasmonic biosensors based on halloysite nanotubes/MoS 2/black phosphorus hybrid architectures. J Mater Chem C Mater. 2019;7(13):3843–3851.
  • Li LY, Zhou YM, Gao RY, et al. Naturally occurring nanotube with surface modification as biocompatible, target-specific nanocarrier for cancer phototherapy. Biomaterials. 2019;190-191:86–96.
  • Li K, Zhang Y, Chen M, et al. Enhanced antitumor efficacy of doxorubicin-encapsulated halloysite nanotubes. Int J Nanomedicine. 2018;13:19–30.
  • Dramou P, Fizir M, Taleb A, et al. Folic acid-conjugated chitosan oligosaccharide-magnetic halloysite nanotubes as a delivery system for camptothecin. Carbohydr Polym. 2018;197:117–127.
  • Fizir M, Dramou P, Zhang K, et al. Polymer grafted-magnetic halloysite nanotube for controlled and sustained release of cationic drug. J Colloid Interface Sci. 2017 Nov;1(505):476–488.
  • Massaro M, Campofelice A, Colletti CG, et al. Functionalized halloysite nanotubes: efficient carrier systems for antifungine drugs. Appl Clay Sci. 2018 Aug 01;160:186–192.
  • Ghebaur A, Garea SA, Iovu H. New polymer-halloysite hybrid materials–potential controlled drug release system. Int J Pharm. 2012 Oct 15;436(1–2):568–573.
  • Zargarian SS, Haddadi-Asl V, Hematpour H. Carboxylic acid functionalization of halloysite nanotubes for sustained release of diphenhydramine hydrochloride [journal article]. J Nanopart Res. 2015 May 15;17(5):218–231.
  • Ganguly S, Das TK, Mondal S, et al. Synthesis of polydopamine-coated halloysite nanotube-based hydrogel for controlled release of a calcium channel blocker. Rsc Adv. 2016;6(107):105350–105362.
  • Yendluri R, Otto DP, De Villiers MM, et al. Application of halloysite clay nanotubes as a pharmaceutical excipient. Int J Pharm. 2017 Apr 15;521(1–2):267–273.
  • Tully J, Yendluri R, Lvov Y. Enzyme stabilization by immobilization onto and into clay nanotubes. Biomacromolecules. 2016;17:615–621.
  • Kim M, Jee SC, Sung J-S, et al. Anti-proliferative applications of laccase immobilized on super-magnetic chitosan-functionalized halloysite nanotubes. Int J Biol Macromol. 2018;118:228–237.
  • Khodzhaeva V, Makeeva A, Ulyanova V, et al. Binase immobilized on halloysite nanotubes exerts enhanced cytotoxicity toward human colon adenocarcinoma cells. Front Pharmacol. 2017;8:631–641.
  • Massaro M, Cavallaro G, Colletti CG, et al. Halloysite nanotubes for efficient loading, stabilization and controlled release of insulin. J Colloid Interface Sci. 2018;524:156–164.
  • Lee Y, Jung G-E, Cho SJ, et al. Cellular interactions of doxorubicin-loaded DNA-modified halloysite nanotubes. Nanoscale. 2013;5(18):8577–8585.
  • Wu H, Shi Y, Huang C, et al. Multifunctional nanocarrier based on clay nanotubes for efficient intracellular siRNA delivery and gene silencing. J Biomater Appl. 2014;28(8):1180–1189.
  • Long Z, Zhang J, Shen Y, et al. Polyethyleneimine grafted short halloysite nanotubes for gene delivery. Mater Sci Eng C Mater Biol Appl. 2017;81:224–235.
  • Long Z, Wu Y-P, Gao H-Y, et al. Functionalization of halloysite nanotubes via grafting of dendrimer for efficient intracellular delivery of siRNA. Bioconjugate Chem. 2018;29(8):2606–2618.
  • Cavallaro G, Lazzara G, Massaro M, et al. Biocompatible poly(N-isopropylacrylamide)-halloysite nanotubes for thermoresponsive curcumin release. J Phys Chem C. 2015 Apr 23;119(16):8944–8951.
  • Rao KM, Kumar A, Suneetha M, et al. pH and near-infrared active; chitosan-coated halloysite nanotubes loaded with curcumin-Au hybrid nanoparticles for cancer drug delivery. Int J Biol Macromol. 2018;112:119–125.
  • Kerdsakundee N, Li W, Martins JP, et al. Multifunctional Nanotube-Mucoadhesive Poly(methyl vinyl ether-co-maleic acid)@hydroxypropyl methylcellulose acetate succinate composite for site-specific oral drug delivery. Adv Healthc Mater. 2017;6:20.
  • Shemesh R, Krepker M, Natan M, et al. Novel LDPE/halloysite nanotube films with sustained carvacrol release for broad-spectrum antimicrobial activity. Rsc Adv. 2015;5(106):87108–87117.
  • Amir Afshar H, Ghaee A. Preparation of aminated chitosan/alginate scaffold containing halloysite nanotubes with improved cell attachment. Carbohydr Polym. 2016 oct 20;151:1120–1131.
  • Wu F, Zheng J, Li Z, et al. Halloysite nanotubes coated 3D printed PLA pattern for guiding human mesenchymal stem cells (hMSCs) orientation. Chem Eng J. 2019;359:672–683.
  • Manoukian OS, Arul MR, Rudraiah S, et al. Aligned microchannel polymer-nanotube composites for peripheral nerve regeneration: small molecule drug delivery. J Control Release. 2019;296:54–67.
  • Shi R, Niu Y, Gong M, et al. Antimicrobial gelatin-based elastomer nanocomposite membrane loaded with ciprofloxacin and polymyxin B sulfate in halloysite nanotubes for wound dressing. Mater Sci Eng C Mater Biol Appl. 2018;87:128–138.
  • Sandri G, Aguzzi C, Rossi S, et al. Halloysite and chitosan oligosaccharide nanocomposite for wound healing. Acta Biomater. 2017;57:216–224.
  • Wei W, Abdullayev E, Hollister A, et al. Clay nanotube/poly (methyl methacrylate) bone cement composites with sustained antibiotic release. Macromol Mater Eng. 2012;297(7):645–653.
  • Pietraszek A, Karewicz A, Widnic M, et al. Halloysite-alkaline phosphatase system—A potential bioactive component of scaffold for bone tissue engineering. Colloids Surf B Biointerfaces. 2019;173:1–8.
  • Lee Y-J, Lee S-C, Jee SC, et al. Surface functionalization of halloysite nanotubes with supermagnetic iron oxide, chitosan and 2-D calcium-phosphate nanoflakes for synergistic osteoconduction enhancement of human adipose tissue-derived mesenchymal stem cells. Colloids Surf B Biointerfaces. 2019;173:18–26.
  • Zhao X, Zhou C, Lvov Y, et al. Clay nanotubes aligned with shear forces for mesenchymal stem cell patterning. Small. 2019;1900357.
  • Degrazia FW, Leitune VCB, Takimi AS, et al. Physicochemical and bioactive properties of innovative resin-based materials containing functional halloysite-nanotubes fillers. Dent Mater. 2016;32(9):1133–1143.
  • Palasuk J, Windsor LJ, Platt JA, et al. Doxycycline-loaded nanotube-modified adhesives inhibit MMP in a dose-dependent fashion. Clin Oral Investig. 2018;22(3):1243–1252.
  • Monteiro JC, Garcia IM, Leitune VCB, et al. Halloysite nanotubes loaded with alkyl trimethyl ammonium bromide as antibacterial agent for root canal sealers. Dent Mater. 2019;35(5):789–796.
  • Vergaro V, Abdullayev E, Lvov YM, et al. Cytocompatibility and uptake of halloysite clay nanotubes. Biomacromolecules. 2010 Mar 08;11(3):820–826.
  • Long Z, Wu Y-P, Gao H-Y, et al. In vitro and in vivo toxicity evaluation of halloysite nanotubes. J Mater Chem B. 2018;6(44):7204–7216.
  • Tarasova E, Naumenko E, Rozhina E, et al. Cytocompatibility and uptake of polycations-modified halloysite clay nanotubes. Appl Clay Sci. 2019 Mar 01;169:21–30.
  • Wu K, Feng R, Jiao Y, et al. Effect of halloysite nanotubes on the structure and function of important multiple blood components. Mater Sci Eng C Mater Biol Appl. 2017 June 01;75:72–78.
  • Rong R, Zhang Y, Zhang Y, et al. Inhibition of inhaled halloysite nanotube toxicity by trehalose through enhanced autophagic clearance of p62. Nanotoxicology. 2019;1:1–15.
  • Wang X, Gong J, Gui Z, et al. Halloysite nanotubes-induced Al accumulation and oxidative damage in liver of mice after 30-day repeated oral administration. Environ Toxicol. 2018;33(6):623–630.
  • Fakhrullina GI, Akhatova FS, Lvov YM, et al. Toxicity of halloysite clay nanotubes in vivo: a Caenorhabditis elegans study. Environ Sci. 2015;2(1):54–59.
  • Kryuchkova M, Danilushkina A, Lvov Y, et al. Evaluation of toxicity of nanoclays and graphene oxide in vivo: a Paramecium caudatum study. Environ Sci. 2016;3(2):442–452.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.