249
Views
14
CrossRef citations to date
0
Altmetric
Review

Recent advances in the combination delivery of drug for leukemia and other cancers

&
Pages 213-223 | Received 18 Nov 2019, Accepted 10 Jan 2020, Published online: 22 Jan 2020

References

  • Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018 Nov;68(6):394–424.
  • Rosen L, Rosen G. Chronic Myeloid Leukemia (CML): american cancer society; 2016 [cited 2016 Nov 4]. Available from: http://www.cancer.org/cancer/leukemia-chronicmyeloidcml/
  • Nikolaou M, Pavlopoulou A, Georgakilas AG, et al. The challenge of drug resistance in cancer treatment: a current overview. Clin Exp Metastasis. 2018;35(4):309–318.
  • Brigger I, Dubernet C, Couvreur P. Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev. 2012;64:24–36.
  • Bisht S, Mizuma M, Feldmann G, et al. Systemic administration of polymeric nanoparticle-encapsulated curcumin (NanoCurc) blocks tumor growth and metastases in preclinical models of pancreatic cancer. Mol Cancer Ther. 2010;9(8):2255–2264. MCT-10-0172.
  • Zhang Y, Chan HF, Leong KW. Advanced materials and processing for drug delivery: the past and the future. Adv Drug Deliv Rev. 2013;65(1):104–120.
  • Lascol M, Bourgeois S, Barratier C, et al. Development of pectin microparticles by using ionotropic gelation with chlorhexidine as cross-linking agent. Int J Pharm. 2018 May 05;542(1):205–212.
  • Ferreira C, Goel S, Yu B, et al. Vasculature-based differential tumor uptake of radiolabeled ultrasmall mesoporous silica nanoparticles in breast cancers models. J Nucl Med. 2018 May 1;59(supplement1):4.
  • Hare JI, Lammers T, Ashford MB, et al. Challenges and strategies in anti-cancer nanomedicine development: an industry perspective. Adv Drug Deliv Rev. 2017;108:25–38.
  • Valencia-Serna J, Gul-Uludağ H, Mahdipoor P, et al. Investigating siRNA delivery to chronic myeloid leukemia K562 cells with lipophilic polymers for therapeutic BCR-ABL down-regulation. J Control Release. 2013;172(2):495–503.
  • Tian H, Yu Z. Resveratrol induces apoptosis of leukemia cell line K562 by modulation of sphingosine kinase-1 pathway. Int J Clin Exp Pathol. 2015;8(3):2755.
  • O’Brien SG, Guilhot F, Larson RA, et al. Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med. 2003;348(11):994–1004.
  • Breccia M, Gentilini F, Cannella L, et al. Ocular side effects in chronic myeloid leukemia patients treated with imatinib. Leuk Res. 2008;32(7):1022–1025.
  • Pretel-Irazabal M, Tuneu-Valls A, Ormaechea-Pérez N. Adverse skin effects of imatinib, a tyrosine kinase inhibitor. Actas Dermo-Sifiliográficas. 2014;105(7):655–662.
  • Cassuto O, Dufies M, Jacquel A, et al. All tyrosine kinase inhibitor-resistant chronic myelogenous cells are highly sensitive to ponatinib. Oncotarget. 2012;3(12):1557–1565.
  • Srdic-Rajic T, Nikolic K, Cavic M, et al. Rilmenidine suppresses proliferation and promotes apoptosis via the mitochondrial pathway in human leukemic K562 cells. Eur J Pharm Sci. 2016;81:172–180.
  • Shen Q, Liu S, Chen Y, et al. Proliferation inhibition and apoptosis induction of imatinib-resistant chronic myeloid leukemia cells via PPP2R5C down-regulation. J Hematol Oncol. 2013;6(1):1.
  • DeLeve LD. Liver sinusoidal endothelial cells and liver regeneration. J Clin Invest. 2013 May;123(5):1861–1866.
  • Shanbhag VKL. Curcumin in chronic lymphocytic leukemia – A review. Asian Pac J Tropical Biomedicine. 2017;7(6):505–512.
  • Jang M, Cai L, Udeani GO, et al. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science (New York, NY). 1997 Jan 10;275(5297):218–220.
  • Tian H, Yu Z. Resveratrol induces apoptosis of leukemia cell line K562 by modulation of sphingosine kinase-1 pathway. Int J Clin Exp Pathol. 2014;8(3):2755–2762.
  • Al-Attar T, Madihally SV. Influence of controlled release of resveratrol from electrospun fibers in combination with siRNA on leukemia cells. Eur J Pharm Sci. 2018 Oct;15(123):173–183.
  • Chandramohan Reddy T, Bharat Reddy D, Aparna A, et al. Anti-leukemic effects of gallic acid on human leukemia K562 cells: downregulation of COX-2, inhibition of BCR/ABL kinase and NF-κB inactivation. Toxicol in Vitro. 2012;26(3):396–405.
  • Pan H, Hu Q, Wang J, et al. Myricetin is a novel inhibitor of human inosine 5′-monophosphate dehydrogenase with anti-leukemia activity. Biochem Biophys Res Commun. 2016 Sep 2;477(4):915–922.
  • Huang M, Ji Y, Itahana K, et al. Guanine nucleotide depletion inhibits pre-ribosomal RNA synthesis and causes nucleolar disruption. Leuk Res. 2008 Jan;32(1):131–41.
  • Yang C, Cai H, Meng X. Polyphyllin D induces apoptosis and differentiation in K562 human leukemia cells. Int Immunopharmacol. 2016;36:17–22.
  • Finotti A, Bianchi N, Fabbri E, et al. Erythroid induction of K562 cells treated with mithramycin is associated with inhibition of raptor gene transcription and mammalian target of rapamycin complex 1 (mTORC1) functions. Pharmacol Res. 2015;91:57–68.
  • Bianchi N, Osti F, Rutigliano C, et al. The DNA-binding drugs mithramycin and chromomycin are powerful inducers of erythroid differentiation of human K562 cells. Br J Haematol. 1999;104(2):258–265.
  • Widemann B Mithramycin for children and adults with solid tumors or ewing sarcoma United States: National Cancer Institute (NCI); 2012 [cited 2016 Nov 4]. Available from: https://clinicaltrials.gov/ct2/show/NCT01610570
  • Kim H-B, Kim M-J, Lee S-H, et al. Amurensin G, a novel SIRT1 inhibitor, sensitizes TRAIL-resistant human leukemic K562 cells to TRAIL-induced apoptosis. Biochem Pharmacol. 2012 Sep 1;84(3):402–410.
  • He R, Liu B, Yang C, et al. Inhibition of K562 leukemia angiogenesis and growth by expression of antisense vascular endothelial growth factor (VEGF) sequence. Cancer Gene Ther. 2003;10(12):879–886.
  • Kohane DS, Langer R. Biocompatibility and drug delivery systems. Chem Sci. 2010;1(4):441–446. .
  • De Laporte L, Shea LD. Matrices and scaffolds for DNA delivery in tissue engineering. Adv Drug Deliv Rev. 2007;59(4–5):292–307.
  • Zhao X, Kim J, Cezar CA, et al. Active scaffolds for on-demand drug and cell delivery. Proc Nat Acad Sci. 2011;108(1):67–72.
  • Wang H, Mooney DJ. Biomaterial-assisted targeted modulation of immune cells in cancer treatment. Nat Mater. 2018;17(9):761–772.
  • Weiden J, Tel J, Figdor CG. Synthetic immune niches for cancer immunotherapy. Nat Rev Immunol. 2018;18(3):212.
  • Wraith DC. the Future of immunotherapy: a 20-year perspective. Front Immunol. 2017;8:1668.
  • Sanna V, Pala N, Sechi M. Targeted therapy using nanotechnology: focus on cancer. Int J Nanomedicine. 2014;9:467.
  • Singha K, Namgung R, Kim WJ. Polymers in small-interfering RNA delivery. Nucleic Acid Ther. 2011;21(3):133–147.
  • Agrawal P. Significance of polymers in drug delivery system. J Pharmacovigil. 2014;3:e127.
  • Lee SJ, Kim MJ, Kwon IC, et al. Delivery strategies and potential targets for siRNA in major cancer types. Adv Drug Deliv Rev. 2016;104:2–15.
  • Longmire M, Choyke PL, Kobayashi H. Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine. 2008;3(5):703–717.
  • Neves AR, Queiroz JF, Costa Lima SA, et al. Cellular uptake and transcytosis of lipid-based nanoparticles across the intestinal barrier: relevance for oral drug delivery. J Colloid Interface Sci. 2016 Feb 01;463:258–265.
  • Singh S, Pandey VK, Tewari RP, et al. Nanoparticle based drug delivery system: advantages and applications. Indian J Sci Technol. 2011;4(3):177–180.
  • Nii T, Ishii F. Encapsulation efficiency of water-soluble and insoluble drugs in liposomes prepared by the microencapsulation vesicle method. Int J Pharm. 2005;298(1):198–205.
  • Ong SGM, Ming LC, Lee KS, et al. Influence of the encapsulation efficiency and size of liposome on the oral bioavailability of griseofulvin-loaded liposomes. Pharmaceutics. 2016;8(3):25.
  • Gutierrez JKT, Zanatta GC, Ortega ALM, et al. Encapsulation of curcumin in polymeric nanoparticles for antimicrobial Photodynamic Therapy. PloS One. 2017;12(11):e0187418.
  • Amini Y, Amel Jamehdar S, Sadri K, et al. Different methods to determine the encapsulation efficiency of protein in PLGA nanoparticles. Biomed Mater Eng. 2017;28(6):613–620.
  • Sharma P, Sen D, Neelakantan V, et al. Disparate effects of PEG or albumin based surface modification on the uptake of nano- and micro-particles [10.1039/C8BM01545G]. Biomater Sci. 2019;7(4):1411–1421.
  • Gounani Z, Asadollahi MA, Meyer RL, et al. Loading of polymyxin B onto anionic mesoporous silica nanoparticles retains antibacterial activity and enhances biocompatibility. Int J Pharm. 2018;537(1–2):148–161.
  • Rosenblatt KM, Bunjes H. Evaluation of the drug loading capacity of different lipid nanoparticle dispersions by passive drug loading. Eur J Pharm Biopharm. 2017;117:49–59.
  • Noble GT, Stefanick JF, Ashley JD, et al. Ligand-targeted liposome design: challenges and fundamental considerations. Trends Biotechnol. 2014;32(1):32–45.
  • Fugit KD, Xiang T-X, Choi DH, et al. Mechanistic model and analysis of doxorubicin release from liposomal formulations. J Control Release. 2015 Nov 10;217:82–91.
  • Bazak R, Houri M, El Achy S, et al. Cancer active targeting by nanoparticles: a comprehensive review of literature. J Cancer Res Clin Oncol. 2015;141(5):769–784.
  • Johnsen KB, Bak M, Melander F, et al. Modulating the antibody density changes the uptake and transport at the blood-brain barrier of both transferrin receptor-targeted gold nanoparticles and liposomal cargo. J Control Release. 2019 Feb 10;295:237–249.
  • Bates PJ, Laber DA, Miller DM, et al. Discovery and development of the G-rich oligonucleotide AS1411 as a novel treatment for cancer. Exp Mol Pathol. 2009 Jun 01;86(3):151–164.
  • Scott AM, Allison JP, Wolchok JD. Monoclonal antibodies in cancer therapy. Cancer Immun Arch. 2012;12(1):14.
  • Cheung A, Bax HJ, Josephs DH, et al. Targeting folate receptor alpha for cancer treatment. Oncotarget. 2016;7(32):52553.
  • Sader M, Courty J, Destouches D. Nanoparticles functionalized with ligands of cell surface nucleolin for cancer therapy and diagnosis. J Nanomed Nanotechnol. 2015;6:310.
  • Wang Y, Chen X, Tian B, et al. Nucleolin-targeted extracellular vesicles as a versatile platform for biologics delivery to breast cancer. Theranostics. 2017;7(5):1360.
  • Vandghanooni S, Barar J, Eskandani M, et al. Aptamer-conjugated mesoporous silica nanoparticles for simultaneous imaging and therapy of cancer. Trends Analyt Chem. 2020 Feb 01;123:115759.
  • Vandghanooni S, Eskandani M, Barar J, et al. Bispecific therapeutic aptamers for targeted therapy of cancer: a review on cellular perspective [journal article]. J Mol Med. 2018 September 01;96(9):885–902.
  • Vandghanooni S, Eskandani M, Barar J, et al. Recent advances in aptamer-armed multimodal theranostic nanosystems for imaging and targeted therapy of cancer. Eur J Pharm Sci. 2018 May 03;117:301–312.
  • Abid S, Hussain T, Raza ZA, et al. Current applications of electrospun polymeric nanofibers in cancer therapy. Mater Sci Eng C. 2019 Apr 01;97:966–977.
  • Norouzi M, Abdali Z, Liu S, et al. Salinomycin-loaded nanofibers for glioblastoma therapy. Sci Rep. 2018 Jun 20;8(1):9377.
  • Khalf A, Madihally SV. Recent advances in multiaxial electrospinning for drug delivery. Eur J Pharm Biopharm. 2017 Mar;112:1–17.
  • Goonoo N. Modulating immunological responses of electrospun fibers for tissue engineering. Adv Biosyst. 2017;1(8):1700093.
  • He X, Feng B, Huang C, et al. Electrospun gelatin/polycaprolactone nanofibrous membranes combined with a coculture of bone marrow stromal cells and chondrocytes for cartilage engineering. Int J Nanomedicine. 2015;10:2089.
  • Chen Z, Chen Z, Zhang A, et al. Electrospun nanofibers for cancer diagnosis and therapy. Biomater Sci. 2016;4(6):922–932.
  • Wang J, Kang Q-S, X-g L, et al. Simple patterned nanofiber scaffolds and its enhanced performance in immunoassay. PloS One. 2013;8(12):e82888.
  • Fan Z, Zhao Y-L, Zhu X, et al. Folic acid modified electrospun poly (vinyl alcohol)/polyethyleneimine nanofibers for cancer cell capture applications. Chin J Polym Sci. 2016;34(6):755–765.
  • Mauro N, Scialabba C, Pitarresi G, et al. Enhanced adhesion and in situ photothermal ablation of cancer cells in surface-functionalized electrospun microfiber scaffold with graphene oxide. Int J Pharm. 2017;526(1):167–177.
  • Bonadies I, Maglione L, Ambrogi V, et al. Electrospun core/shell nanofibers as designed devices for efficient Artemisinin delivery. Eur Polym J. 2017;89:211–220.
  • Han D, Sasaki M, Yoshino H, et al. In-vitro evaluation of MPA-loaded electrospun coaxial fiber membranes for local treatment of glioblastoma tumor cells. J Drug Delivery Sci Technol. 2017 Sep 01;40(Supplement C):45–50.
  • Saha S, Duan X, Wu L, et al. Electrospun fibrous scaffolds promote breast cancer cell alignment and epithelial–mesenchymal transition. Langmuir. 2011;28(4):2028–2034.
  • Sánchez-Capelo A. Dual role for TGF-β1 in apoptosis. Cytokine Growth Factor Rev. 2005;16(1):15–34.
  • Huang S, Xu L, Zhang Y, et al. Systemic and local administration of allogeneic bone marrow-derived mesenchymal stem cells promotes fracture healing in rats. Cell Transplant. 2015;24(12):2643–2655.
  • Al-Attar T, Madihally SV. Targeted cancer treatment using a combination of siRNA-liposomes and resveratrol-electrospun fibers in co-cultures. Int J Pharm. 2019 Oct;5(569):118599.
  • C-MJ H, Zhang L. Nanoparticle-based combination therapy toward overcoming drug resistance in cancer. Biochem Pharmacol. 2012;83(8):1104–1111.
  • Español L, Larrea A, Andreu V, et al. Dual encapsulation of hydrophobic and hydrophilic drugs in PLGA nanoparticles by a single-step method: drug delivery and cytotoxicity assays. RSC Adv. 2016;6(112):111060–111069.
  • Zhang Y, Cao Y, Luo S, et al. Chapter 8 - Nanoparticles as drug delivery systems of combination therapy for cancer. In: Grumezescu AM, editor. Nanobiomaterials in Cancer Therapy: William Andrew Publishing; 2016. p. 253–280
  • Hu Q, Sun W, Wang C, et al. Recent advances of cocktail chemotherapy by combination drug delivery systems. Adv Drug Deliv Rev. 2016;98:19–34.
  • Vandghanooni S, Eskandani M, Barar J, et al. Antisense LNA-loaded nanoparticles of star-shaped glucose-core PCL-PEG copolymer for enhanced inhibition of oncomiR-214 and nucleolin-mediated therapy of cisplatin-resistant ovarian cancer cells. Int J Pharm. 2020;573:118729.
  • Vandghanooni S, Eskandani M, Barar J, et al. AS1411 aptamer-decorated cisplatin-loaded poly(lactic-co-glycolic acid) nanoparticles for targeted therapy of miR-21-inhibited ovarian cancer cells. Nanomed. 2018;13(21):2729–2758.
  • Blair HA. Daunorubicin/Cytarabine liposome: a review in acute myeloid leukaemia. Drugs. 2018 Dec;78(18):1903–1910.
  • Ma L, Kohli M, Smith A. Nanoparticles for combination drug therapy. ACS Nano. 2013;7(11):9518–9525.
  • Mufamadi MS, Pillay V, Choonara YE, et al. A review on composite liposomal technologies for specialized drug delivery. J Drug Deliv. 2011;2011. Article ID:939851.
  • Yu D-G, Zhu L-M, White K, et al. Electrospun nanofiber-based drug delivery systems. Health. 2009;1(02):67.
  • Gadde S. Multi-drug delivery nanocarriers for combination therapy. MedChemComm. 2015;6(11):1916–1929.
  • Zhang M, Liu E, Cui Y, et al. Nanotechnology-based combination therapy for overcoming multidrug-resistant cancer. Cancer Biol Med. 2017;14(3):212.
  • Qin M, Lee YEK, Ray A, et al. Overcoming cancer multidrug resistance by codelivery of doxorubicin and verapamil with hydrogel nanoparticles. Macromol Biosci. 2014;14(8):1106–1115.
  • Kim C, Shores L, Guo Q, et al. Electrospun microfiber scaffolds with anti-inflammatory tributanoylated N-acetyl-d-glucosamine promote cartilage regeneration. Tissue Eng Part A. 2016;22(7–8):689–697.
  • Sangster J. Octanol-water partition coefficients: fundamentals and physical chemistry. West Sussex, England: John Wiley & Sons; 1997.
  • Welty J, Wicks CE, Rorrer GL, et al. Fundamentals of Momentum, Heat and Mass Transfer. Danvers, MA, United States: Wiley. 2007.
  • Al-Attar T, Madihally SV. Influence of controlled release of resveratrol from electrospun fibers in combination with siRNA on leukemia cells. Eur J Pharm Sci. 2018;123:173–183.
  • Khalf A, Madihally SV. Modeling the permeability of multiaxial electrospun poly(ε-caprolactone)-gelatin hybrid fibers for controlled doxycycline release. Mater Sci Eng C. 2017 Jul 01;76(Supplement C):161–170.
  • Miller B, Imel AE, Holley W, et al. The role of nanoparticle rigidity on the diffusion of linear polystyrene in a polymer nanocomposite. Macromolecules. 2015;48(22):8369–8375.
  • Malvar O, Ruz J, Kosaka P, et al. Mass and stiffness spectrometry of nanoparticles and whole intact bacteria by multimode nanomechanical resonators. Nat Commun. 2016;7:13452.
  • Xu Y, Kim C-S, Saylor DM, et al. Polymer degradation and drug delivery in PLGA-based drug–polymer applications: A review of experiments and theories. J Biomed Mater Res Part B. 2017;105(6):1692–1716.
  • Crommelin D, Van Bloois L. Preparation and characterization of doxorubicin-containing liposomes. II. Loading capacity, long-term stability and doxorubicin-bilayer interaction mechanism. Int J Pharm. 1983;17(2–3):135–144.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.