310
Views
21
CrossRef citations to date
0
Altmetric
Original Research

Reduced administration frequency for the treatment of fungal keratitis: a sustained natamycin release from a micellar solution

ORCID Icon, , , &
Pages 407-421 | Received 20 Dec 2019, Accepted 20 Jan 2020, Published online: 03 Feb 2020

References

  • Sahay P, Singhal D, Nagpal R, et al. Pharmacologic therapy of mycotic keratitis. Surv Ophthalmol. 2019;64(3):380–400.
  • Niu L, Liu X, Ma Z, et al. Fungal keratitis: pathogenesis, diagnosis and prevention. Microb Pathog. 2019;138:103802.
  • Maharana PK, Sharma N, Nagpal R, et al. Recent advances in diagnosis and management of Mycotic Keratitis. Indian J Ophthalmol. 2016;64(5):346–357.
  • Berger EA. Understanding the role of pro-resolving lipid mediators in infectious keratitis. Adv Exp Med Biol. 2019;1161:3–12.
  • Chhonker YS, Prasad YD, Chandasana H, et al. Amphotericin-B entrapped lecithin/chitosan nanoparticles for prolonged ocular application. Int J Biol Macromol. 2015;72:1451–1458.
  • Bhatta RS, Chandasana H, Chhonker YS, et al. Mucoadhesive nanoparticles for prolonged ocular delivery of natamycin: in vitro and pharmacokinetics studies. Int J Pharm. 2012;432(1–2):105–112.
  • Spierer O, Dugar J, Miller D, et al. Comparative antifungal susceptibility analysis of Candida albicans versus non-albicans Candida corneal isolates. Cornea. 2015;34(5):576–579.
  • Caffrey P, Aparicio JF, Malpartida F, et al. Biosynthetic engineering of polyene macrolides towards generation of improved antifungal and antiparasitic agents. Curr Top Med Chem. 2008;8(8):639–653.
  • USFDA. NDA 50-514/S-009 Page 3 NATACYN1 (natamycin ophthalmic suspension); 2008 [cited 2014 May 31]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2008/050514s009lbl.pdf
  • Anjali B, Prashant D, Vinod R, et al. Evaluation of cyclodextrins for enhancing corneal penetration of natamycin eye drops. J Pharm Bioallied Sci. 2012;4(Suppl 1):S29–S30.
  • Phan C-M, Subbaraman LN, Jones L. In vitro drug release of natamycin from β-cyclodextrin and 2-hydroxypropyl-β-cyclodextrin-functionalized contact lens materials. J Biomater Sci Polym Ed. 2014;25(17):1907–1919.
  • Aastha J, Shah SG, Archana C. Cell penetrating peptides as efficient nanocarriers for delivery of antifungal compound, natamycin for the treatment of fungal keratitis. Pharm Res. 2015;32(6):1–11.
  • Amit C, Muralikumar S, Janaki S, et al. Designing and enhancing the antifungal activity of corneal specific cell penetrating peptide using gelatin hydrogel delivery system. Int J Nanomedicine. 2019;1(14):605–622.
  • de Solorzano IO, Prieto M, Mendoza G, et al. Triggered drug release from hybrid thermoresponsive nanoparticles using near infrared light. Nanomedicine (Lond). 2019. DOI:10.2217/nnm-2019-0270
  • Garland KM, Sevimli S, Kilchrist KV, et al. Microparticle depots for controlled and sustained release of endosomolytic nanoparticles. Cell Mol Bioeng. 2019;12(5):429–442.
  • Wu Z, Duan M, Xiong D, et al. Mesoscale simulations of pH-responsive amphiphilic polymeric micelles for oral drug delivery. Pharmaceutics. 2019;11(12):E620.
  • Qu G, Hou S, Qu D, et al. Self-assembled micelles based on N-octyl-N’-phthalyl-O-phosphoryl chitosan derivative as an effective oral carrier of paclitaxel. Carbohydr Polym. 2019;207:428–439.
  • Zhou T, Zhu L, Xia H, et al. Micelle carriers based on macrogol 15 hydroxystearate for ocular delivery of terbinafine hydrochloride: in vitro characterization and in vivo permeation. Eur J Pharm Sci. 2017;109:288–296.
  • Mai Y, Eisenberg A. Self-assembly of block copolymers. Chem Soc Rev. 2012;41(18):5969–5985.
  • Lin Y, Böker A, He J, et al. Self-directed self-assembly of nanoparticle/copolymer mixtures. Nature. 2005;434(7029):55–59.
  • Figueroa-Ochoa EB, Villar-Alvarez EM, Cambón A, et al. Lengthy reverse poly(butylene oxide)-poly(ethylene oxide)-poly(butylene oxide) polymeric micelles and gels for sustained release of antifungal drugs. Int J Pharm. 2016;510(1):17–29.
  • Gauthier MA, Gibson MI, Klok H-A. Synthesis of functional polymers by post-polymerization modification. Angew Chem Int Ed Engl. 2009;48(1):48–58.
  • Benaglia M, Alberti A, Giorgini L, et al. Poly(glycidyl methacrylate): a highly versatile polymeric building block for post-polymerization modifications. Polym Chem. 2013;4:124–132.
  • Mun EA, Morrison PWJ, Williams AC, et al. On the barrier properties of the cornea: a microscopy study of the penetration of fluorescently labeled nanoparticles, polymers, and sodium fluorescein. Mol Pharm. 2014;11(10):3556–3564.
  • Li J, Zhanrong L, Tianyang Z, et al. Positively charged micelles based on a triblock copolymer demonstrate enhanced corneal penetration. Int J Nanomedicine. 2015;10:6027–6037.
  • Karimi F, Mckenzie TG, O’Connor AJ, et al. Nano-scale clustering of integrin-binding ligands regulates endothelial cell adhesion, migration, and endothelialization rate: novel materials for small diameter vascular graft applications. J Mat Chem B. 2017;5:5942–5953.
  • Karimi F, Thombare VJ, Hutton CA, et al. Beyond RGD; nanoclusters of syndecan- and integrin-binding ligands synergistically enhance cell/material interactions. Biomaterials. 2018;187:81–92.
  • Kang-Mieler JJ, Mieler WF. Thermo-responsive hydrogels for ocular drug delivery. Dev Ophthalmol. 2016;55:104–111.
  • Bongiovì F, Fiorica C, Palumbo FS, et al. Imatinib-loaded micelles of hyaluronic acid derivatives for potential treatment of neovascular ocular diseases. Molecular Pharmaceutics. 2018;15(11):5031–5035.
  • Rahmani H, Fattahi A, Sadrjavadi K, et al. Preparation and characterization of silk fibroin nanoparticles as a potential drug delivery system for 5-fluorouracil. Adv Pharm Bull. 2019;9(4):601–608.
  • Wang P, Liu W, Liu S, et al. pH-responsive nanomicelles of poly(ethylene glycol)-poly(ε-caprolactone)-poly(L-histidine) for targeted drug delivery. J Biomater Sci Polym Ed. 2019;1–16. doi: 10.1080/09205063.2019.1687132.
  • Iohara D, Okubo M, Anraku M, et al. Hydrophobically modified polymer/α-cyclodextrin thermoresponsive hydrogels for use in ocular drug delivery. Mol Pharm. 2017;14(8):2740–2748.
  • Kirkpatrick WR, Mcatee RK, Revankar SG, et al. Comparative evaluation of national committee for clinical laboratory standards broth macrodilution and agar dilution screening methods for testing fluconazole susceptibility of Cryptococcus neoformans. J Clin Microbiol. 1998;36(5):1330–1332.
  • Xiang-Chun G, Hui-Ping Q, Jian-Hai B, et al. Effects of oleic acid on the corneal permeability of compounds and evaluation of its ocular irritation of rabbit eyes. Curr Eye Res. 2014;39(12):1161–1168.
  • Chandasana H, Prasad YD, Chhonker YS, et al. Corneal targeted nanoparticles for sustained natamycin delivery and their PK/PD indices: an approach to reduce dose and dosing frequency. Int J Pharm. 2014;477(1–2):317–325.
  • Chen Y, Yang W, Gao M, et al. Experimental study on cryotherapy for fungal corneal ulcer. BMC Ophthalmol. 2015;15(1):29.
  • El-Mofty HM, Abdelhakim MA, El-Miligi MF, et al. A new combination formula for treatment of fungal keratitis: an experimental study. J Ophthalmol. 2014 Apr 29;2014(4):173298.
  • Yoon KC, Jeong IY, Im SK, et al. Therapeutic effect of intracameral amphotericin B injection in the treatment of fungal keratitis. Cornea. 2007;26(7):814.
  • Simona M, Julien N, Patrick C. Stimuli-responsive nanocarriers for drug delivery. Nat Mater. 2013;12(11):991–1003.
  • Zhang LF, Eisenberg A. Multiple morphologies and characteristics of crew-cut micelle-like aggregates of Polystyrene-B-Poly(Acrylic Acid) diblock copolymers in aqueous-solutions. J Am Chem Soc. 1996;118(13):3168–3181.
  • Gudipati CS, Tan MBH, Hussain H, et al. Synthesis of Poly(glycidyl methacrylate)‐block‐Poly(pentafluorostyrene) by RAFT: precursor to novel amphiphilic poly(glyceryl methacrylate)‐block‐Poly(pentafluorostyrene). Macromol Rapid Commun. 2010;29(23):1902–1907.
  • Gauthier MA, Gibson MI, Harm-Anton K. Synthesis of functional polymers by post-polymerization modification. Cheminform. 2010;40(13):48–58.
  • Benaglia M, Alberti A, Giorgini L, et al. Poly(glycidyl methacrylate): A highly versatile polymeric building block for post-polymerization modifications. Polym Chem. 2013;4(1):124–132.
  • Muzammil EM, Khan A, Stuparu MC. Post-polymerization modification reactions of poly(glycidyl methacrylate)s. RSC Adv. 2017;7(88):55874–55884.
  • Hathout RM, Mansour S. Exploring gelatin nanoparticles as novel nanocarriers for Timolol Maleate: augmented in-vivo efficacy and safe histological profile. Int J Pharm. 2018;545(1–2):229–239.
  • Makhmalzade BS, Chavoshy F. Polymeric micelles as cutaneous drug delivery system in normal skin and dermatological disorders. J Adv Pharm Technol Res. 2018;9(1):2–8.
  • Liang H, Ren X, Qian J, et al. Size-shifting micelle nanoclusters based on a cross-linked and pH-sensitive framework for enhanced tumor targeting and deep penetration features. ACS Appl Mater Interfaces. 2016;8(16):10136–10146.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.