419
Views
17
CrossRef citations to date
0
Altmetric
Review

Delivery of genome editing tools: A promising strategy for HPV-related cervical malignancy therapy

, , , , , , , , & show all
Pages 753-766 | Received 08 Nov 2019, Accepted 23 Mar 2020, Published online: 13 Apr 2020

References

  • Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.
  • Vu M, Yu J, Awolude OA, et al. Cervical cancer worldwide. Curr Probl Cancer. 2018 Sep 01;42(5):457–465.
  • Koh WJ, Greer BE, Abu-Rustum NR, et al. Cervical cancer, Version 2.2015. J Natl Compr Canc Netw. quiz 404. 2015 Apr;13(4):395–404. .
  • Marquina G, Manzano A, Casado A. Targeted agents in cervical cancer: beyond bevacizumab. Curr Oncol Rep. 2018 Apr 2;20(5):40.
  • Angeles MA, Martinez-Gomez C, Migliorelli F, et al. Novel surgical strategies in the treatment of gynecological malignancies. Curr Treat Options Oncol. 2018 Nov 9;19(12):73.
  • Rydzewska L, Tierney J, Vale CL, et al. Neoadjuvant chemotherapy plus surgery versus surgery for cervical cancer. Cochrane Database Syst Rev. 2012(12). doi:10.1002/14651858.CD007406.pub3.
  • Almeida AM, Queiroz JA, Sousa F, et al. Cervical cancer and HPV infection: ongoing therapeutic research to counteract the action of E6 and E7 oncoproteins. Drug Discov Today. 2019 Aug 6;24(10).
  • Cohen PA, Jhingran A, Oaknin A, et al. Cervical cancer. Lancet. 2019 Jan 12;393(10167):169–182.
  • Chargari C, Deutsch E, Blanchard P, et al. Brachytherapy: an overview for clinicians. CA Cancer J Clin. 2019 Jul;30;69(5):386–401.
  • Jadon R, Pembroke CA, Hanna CL, et al. A systematic review of organ motion and image-guided strategies in external beam radiotherapy for cervical cancer. Clin Oncol. 2014 Apr 01;26(4):185–196.
  • Rogers L, Siu SSN, Luesley D, et al. Radiotherapy and chemoradiation after surgery for early cervical cancer. Cochrane Database Syst Rev. 2012(5). doi:10.1002/14651858.CD007583.pub3.
  • Liontos M, Kyriazoglou A, Dimitriadis I, et al. Systemic therapy in cervical cancer: 30 years in review. Crit Rev Oncol Hematol. 2019 May;137:9–17.
  • Landoni F, Colombo A, Milani R, et al. Randomized study between radical surgery and radiotherapy for the treatment of stage IB–IIA cervical cancer: 20-year update. J Gynecol Oncol. 2017 May;28(3). doi:10.3802/jgo.2017.28.e34.
  • Vordermark D. Radiotherapy of cervical cancer. Oncol Res Treat. 2016;39(9):516–520.
  • Duenas-Gonzalez A, Gonzalez-Fierro A. Pharmacodynamics of current and emerging treatments for cervical cancer. Expert Opin Drug Metab Toxicol. 2019 Aug;15(8):671–682.
  • Green JA, Kirwan JJ, Tierney J, et al. Concomitant chemotherapy and radiation therapy for cancer of the uterine cervix. Cochrane Database Syst Rev. 2005(3). doi:10.1002/14651858.CD002225.pub2.
  • Barbuti AM, Chen Z-S. Paclitaxel through the ages of anticancer therapy: exploring its role in chemoresistance and radiation therapy. Cancers. 2015;7(4):2360–2371.
  • Zhu H, Luo H, Zhang W, et al. Molecular mechanisms of cisplatin resistance in cervical cancer. Drug Des Devel Ther. 2016;10:1885–1895.
  • Hirte H, Kennedy EB, Elit L, et al. Systemic therapy for recurrent, persistent, or metastatic cervical cancer: a clinical practice guideline. Curr Oncol. 2015;22(3):211–219. .
  • Kumar L, Harish P, Malik PS, et al. Chemotherapy and targeted therapy in the management of cervical cancer. Curr Probl Cancer. 2018 Mar- Apr;42(2):120–128. .
  • da Costa SCS, Bonadio RC, Gabrielli FCG, et al. Neoadjuvant chemotherapy with cisplatin and gemcitabine followed by chemoradiation versus chemoradiation for locally advanced cervical cancer: a randomized phase II trial. J Clin Oncol. 2019 Aug 26;37(33):3124–3131.
  • Lukka H, Hirte H, Fyles A, et al. Concurrent cisplatin-based chemotherapy plus radiotherapy for cervical cancer–a meta-analysis. Clin Oncol. 2002 Jun 01;14(3):203–212.
  • Gupta S, Kumar P, Das BC. HPV: molecular pathways and targets. Curr Probl Cancer. 2018 Mar - Apr;42(2):161–174.
  • Gaj T, Gersbach CA, Barbas CF. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 2013 Jul 01;31(7):397–405.
  • Joung JK, Sander JD. TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol. 2013;14(1):49.
  • Komor AC, Badran AH, Liu DR. CRISPR-based technologies for the manipulation of eukaryotic genomes. Cell. 2017;168(1–2):20–36.
  • Jarrett KE, Lee CM, Yeh Y-H, et al. Somatic genome editing with CRISPR/Cas9 generates and corrects a metabolic disease. Sci Rep. 2017;7(1):44624.
  • Maresch R, Mueller S, Veltkamp C, et al. Multiplexed pancreatic genome engineering and cancer induction by transfection-based CRISPR/Cas9 delivery in mice. Nat Commun. 2016;7(1):10770.
  • Shankar S, Prasad D, Sanawar R, et al. TALEN based HPV-E7 editing triggers necrotic cell death in cervical cancer cells. Sci Rep. 2017;7(1):5500.
  • Gupta RM, Musunuru K. Expanding the genetic editing tool kit: zFNs, TALENs, and CRISPR-Cas9. J Clin Invest. 2014;124(10):4154–4161.
  • Richter C, Chang JT, Fineran PC. Function and regulation of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated (Cas) systems. Viruses. 2012;4(10):2291–2311.
  • Liang Z, Chen K, Li T, et al. Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Article. Nat Commun. 2017 Jan 18; online. 8(1):14261.
  • Turner AN, Andersen RS, Bookout IE, et al. Analysis of novel domain-specific mutations in the zebrafish ndr2/cyclops gene generated using CRISPR-Cas9 RNPs. J Genet. 2018 Dec;97(5):1315–1325.
  • Mali P, Esvelt KM, Church GM. Cas9 as a versatile tool for engineering biology [Perspective]. Nat Methods. 2013 Sep 27;10(10):957. online.
  • Liu C, Zhang L, Liu H, et al. Delivery strategies of the CRISPR-Cas9 gene-editing system for therapeutic applications. J Control Release. 2017 Nov 28;266:17–26.
  • Xue W, Chen S, Yin H, et al. CRISPR-mediated direct mutation of cancer genes in the mouse liver. Nature. 2014 Aug 06;514(7522):380. online.
  • Kouranova E, Forbes K, Zhao G, et al. CRISPRs for optimal targeting: delivery of CRISPR components as DNA, RNA, and protein into cultured cells and single-cell embryos. Hum Gene Ther. 2016 Jun 01;27(6):464–475.
  • Harms DW, Quadros RM, Seruggia D, et al. Mouse genome editing using the CRISPR/Cas system. Curr Protoc Hum Genet. 2014 Oct 01;83(1):15.7.1–15.7.27.
  • Mout R, Ray M, Lee Y-W, et al. In vivo delivery of CRISPR/Cas9 for therapeutic gene editing: progress and challenges. Bioconjug Chem. 2017 Apr 19;28(4):880–884.
  • Glass Z, Lee M, Li Y, et al. Engineering the delivery system for CRISPR-based genome editing. Trends Biotechnol. 2018 Feb 01;36(2):173–185.
  • Miller JB, Zhang S, Kos P, et al. Non-viral CRISPR/Cas gene editing in vitro and in vivo enabled by synthetic nanoparticle co-delivery of Cas9 mRNA and sgRNA. Angewandte Chemie International Edition. 2017;56(4):1059–1063.
  • Aghamiri S, Talaei S, Ghavidel AA, et al. Nanoparticles-mediated CRISPR/Cas9 delivery: recent advances in cancer treatment. J Drug Delivery Sci Technol. 2020 Apr 01;56:101533. .
  • Hashimoto M, Takemoto T. Electroporation enables the efficient mRNA delivery into the mouse zygotes and facilitates CRISPR/Cas9-based genome editing [ Article]. Sci Rep. 2015 Jun 11; online. 5(1):11315.
  • Liang P, Xu Y, Zhang X, et al. CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein & Cell. 2015 May 01;6(5):363–372.
  • Nelson CE, Gersbach CA. Engineering delivery vehicles for genome editing. Annu Rev Chem Biomol Eng. 2016;7(1):637–662.
  • Yin H, Kauffman KJ, Anderson DG. Delivery technologies for genome editing. Nat Rev Drug Discov. 2017;16(6):387.
  • Zhang H-X, Zhang Y, Yin H. Genome editing with mRNA encoding ZFN, TALEN and Cas9. Mol Ther. 2019;27(4):735–746.
  • Paschon DE, Lussier S, Wangzor T, et al. Diversifying the structure of zinc finger nucleases for high-precision genome editing [Article]. Nat Commun. 2019;10(1). doi:10.1038/s41467-019-08867-x.
  • Doudna JA, Charpentier E. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014;346(6213):1258096.
  • Carlos de Freitas A, da Conceicao Gomes Leitao M, Campos Coimbra E. Prospects of molecularly-targeted therapies for cervical cancer treatment. Curr Drug Targets. 2015;16(1):77–91.
  • Tian X, Gu T, Patel S, et al. CRISPR/Cas9 – an evolving biological tool kit for cancer biology and oncology. NPJ Precis Oncol. 2019 Mar 18;3(1):8.
  • Ding W, Hu Z, Zhu D, et al. Zinc finger nucleases targeting the human papillomavirus E7 oncogene induce E7 disruption and a transformed phenotype in HPV16/18-positive cervical cancer cells. Clin Cancer Res. 2014;20(24):6495–6503.
  • Hu Z, Ding W, Zhu D, et al. TALEN-mediated targeting of HPV oncogenes ameliorates HPV-related cervical malignancy. J Clin Invest. 2015;125(1):425–436.
  • Hu Z, Yu L, Zhu D, et al. Disruption of HPV16-E7 by CRISPR/Cas system induces apoptosis and growth inhibition in HPV16 positive human cervical cancer cells. Biomed Res Int. 2014;2014:612823.
  • Zhen S, Hua L, Takahashi Y, et al., In vitro and in vivo growth suppression of human papillomavirus 16-positive cervical cancer cells by CRISPR/Cas9. Biochem Biophys Res Commun. 450(4): 1422–1426. 2014.
  • Aghamiri S, Jafarpour A, Gomari MM, et al. siRNA nanotherapeutics: a promising strategy for anti-HBV therapy. IET Nanobiotechnol. 2019;13(5):457–463.
  • Aghamiri S, Mehrjardi KF, Shabani S, et al. Nanoparticle-siRNA: a potential strategy for ovarian cancer therapy? Nanomedicine. 2019;14(15):2083–2100.
  • Yin H, Song C-Q, Dorkin JR, et al. Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo. Nat Biotechnol. 2016 Feb 01;34(3):328. online.
  • Mikkelsen JG. Viral delivery of genome-modifying proteins for cellular reprogramming. Curr Opin Genet Dev. 2018 Oct 01;52:92–99.
  • Li L, Hu S, Chen X. Non-viral delivery systems for CRISPR/Cas9-based genome editing: challenges and opportunities. Biomaterials. 2018 Jul 01;171:207–218.
  • Aghamiri S, Jafarpour A, Malekshahi ZV, et al. Targeting siRNA in colorectal cancer therapy: nanotechnology comes into view. J Cell Physiol. 2019 Sep 01;234(9):14818–14827.
  • Karponi G, Zogas N. Gene therapy for beta-thalassemia: updated perspectives. Appl Clin Genet. 2019;12:167–180.
  • Ma -C-C, Wang Z-L, Xu T, et al. The approved gene therapy drugs worldwide: from 1998 to 2019. Biotechnol Adv. 2019 Dec 27;40:107502.
  • Shahryari A, Saghaeian Jazi M, Mohammadi S, et al. Development and clinical *-translation of approved gene therapy products for genetic disorders. Review. Front Genet. 2019 Sep 25;10(868). doi:10.3389/fgene.2019.00868
  • Biswas M, Kumar SRP, Terhorst C, et al. Gene therapy with regulatory T cells: a beneficial alliance. Review. Front Immunol. 2018 Mar 19;9(554). doi:10.3389/fimmu.2018.00554
  • Darrow JJ. Luxturna: FDA documents reveal the value of a costly gene therapy. Drug Discov Today. 2019 Apr 01;24(4):949–954.
  • Senior M. After Glybera’s withdrawal, what’s next for gene therapy? Nat Biotechnol. 2017 Jun 01;35(6):491–492.
  • Pol J, Kroemer G, Galluzzi L. First oncolytic virus approved for melanoma immunotherapy. OncoImmunology. 2016 Jan 02;5(1):e1115641.
  • Weng Y, Xiao H, Zhang J, et al. RNAi therapeutic and its innovative biotechnological evolution. Biotechnol Adv. 2019 Sep 01;37(5):801–825.
  • Klim JR, Vance C, Scotter EL. Antisense oligonucleotide therapies for Amyotrophic Lateral Sclerosis: existing and emerging targets. Int J Biochem Cell Biol. 2019 May 01;110:149–153.
  • Zhou X, Wang S, Zhu Y, et al. Overcoming the delivery barrier of oligonucleotide drugs and enhancing nucleoside drug efficiency: the use of nucleolipids. Med Res Rev. 2019 Dec 09. DOI:10.1002/med.21652.
  • Post N, Yu R, Greenlee S, et al. Metabolism and disposition of volanesorsen, a 2′-O-(2 methoxyethyl) antisense oligonucleotide, across species. Drug Metab Dispos. 2019;47(10):1164–1173.
  • Echevarría L, Aupy P, Goyenvalle A. Exon-skipping advances for Duchenne muscular dystrophy. Hum Mol Genet. 2018;27(R2):R163–R172.
  • Khvorova A, Watts JK. The chemical evolution of oligonucleotide therapies of clinical utility. Nat Biotechnol. 2017 Mar 01;35(3):238–248.
  • Chen C, Yang Z, Tang X. Chemical modifications of nucleic acid drugs and their delivery systems for gene-based therapy. Med Res Rev. 2018 May 01;38(3):829–869.
  • Hollinger K, Chamberlain JS. Viral vector-mediated gene therapies. Curr Opin Neurol. 2015;28(5):522–527.
  • Ramamoorth M, Narvekar A. Non viral vectors in gene therapy- an overview. J Clin Diagn Res. 2015;9(1):GE01–GE6.
  • Koike-Yusa H, Li Y, Tan EP, et al. Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nat Biotechnol. 2013 Dec 23;32(3):267. online.
  • Maggio I, Holkers M, Liu J, et al. Adenoviral vector delivery of RNA-guided CRISPR/Cas9 nuclease complexes induces targeted mutagenesis in a diverse array of human cells. Article. Sci Rep. 2014 May 29; online. 4(1):5105.
  • Naldini L. Gene therapy returns to centre stage. Nature. 2015 Oct 14;526(7573):351. online.
  • Fuentes CM, Schaffer DV. Adeno-associated virus-mediated delivery of CRISPR-Cas9 for genome editing in the central nervous system. Curr Opin Biomed Eng. 2018 Sep 01;7:33–41.
  • Jarrett KE, Lee C, Giorgi MD, et al. Somatic editing of LDLR with adeno-associated viral-CRISPR is an efficient tool for atherosclerosis research. Arteriosclerosis, Thrombosis, and Vascular Biology. 2018;38(9):1997–2006.
  • Dunbar CE, High KA, Joung JK, et al. Gene therapy comes of age. Science. 2018;359(6372):eaan4672.
  • Sonntag F, Schmidt K, Kleinschmidt JA. A viral assembly factor promotes AAV2 capsid formation in the nucleolus. Proceedings of the National Academy of Sciences. 2010;107(22):10220–10225.
  • Keeler AM, Flotte TR. Recombinant adeno-associated virus gene therapy in light of luxturna (and zolgensma and glybera): where are we, and how did we get here?. Annual Review of Virology. 2019;6(1).
  • Yla-Herttuala S. Endgame: glybera finally recommended for approval as the first gene therapy drug in the European union. Mol Ther. 2012 Oct;20(10):1831–1832.
  • Keeler AM, Flotte TR. Recombinant adeno-associated virus gene therapy in light of luxturna (and zolgensma and glybera): where are we, and how did we get here? Annu Rev Virol. 2019 Jul 5;6(1):601–621.
  • Yoshiba T, Saga Y, Urabe M, et al. CRISPR/Cas9-mediated cervical cancer treatment targeting human papillomavirus E6. Oncol Lett. 2019 Feb;17(2):2197–2206.
  • Hsu DS, Kornepati AV, Glover W, et al. Targeting HPV16 DNA using CRISPR/Cas inhibits anal cancer growth in vivo. Future Virol. 2018;13:475–482.
  • Colella P, Ronzitti G, Mingozzi F. Emerging issues in AAV-mediated in vivo gene therapy. Mol Ther Methods Clin Dev. 2018 Mar 16;8:87–104.
  • Faust SM, Bell P, Cutler BJ, et al. CpG-depleted adeno-associated virus vectors evade immune detection. J Clin Invest. 2013 Jul 01;123(7):2994–3001.
  • Cai Y, Mikkelsen JG. Lentiviral delivery of proteins for genome engineering. Curr Gene Ther. 2016;16(3):194–206.
  • Miao CH. Hemophilia A gene therapy via intraosseous delivery of factor VIII-lentiviral vectors. Thromb J. 2016 Oct 04;14(1):41.
  • Xu CL, Ruan MZC, Mahajan VB, et al. Viral delivery systems for CRISPR. Viruses. 2019;11(1):28.
  • Gori JL, Hsu PD, Maeder ML, et al. Delivery and specificity of CRISPR/Cas9 genome editing technologies for human gene therapy. Hum Gene Ther. 2015 Jul 01;26(7):443–451.
  • Jensen TI, Axelgaard E, Bak RO. Therapeutic gene editing in haematological disorders with CRISPR/Cas9. British Journal of Haematology. 2019;185(5):821–835.
  • Marquez Loza LI, Yuen EC, McCray PB. Lentiviral vectors for the treatment and prevention of cystic fibrosis lung disease. Genes. 2019;10(3):218.
  • Trono D. Lentiviral vectors: turning a deadly foe into a therapeutic agent. Gene Ther. 2000 Jan 01;7(1):20–23.
  • Merten O-W, Hebben M, Bovolenta C. Production of lentiviral vectors. Mol Ther Methods Clin Dev. 2016 Jan 01;3:16017. .
  • Kotterman MA, Chalberg TW, Schaffer DV. Viral vectors for gene therapy: translational and clinical outlook. Annual Review of Biomedical Engineering. 2015;17(1):63–89.
  • Kennedy EM, Kornepati AV, Goldstein M, et al. Inactivation of the human papillomavirus E6 or E7 gene in cervical carcinoma cells by using a bacterial CRISPR/Cas RNA-guided endonuclease. J Virol. 2014;88(20):11965–11972. .
  • Ginn SL, Amaya AK, Alexander IE, et al. Gene therapy clinical trials worldwide to 2017: an update. The Journal of Gene Medicine. 2018;20(5):e3015.
  • Johannesson G, Stefansson E, Loftsson T. Microspheres and nanotechnology for drug delivery. Dev Ophthalmol. 2016;55:93–103.
  • Chen X, Mangala LS, Rodriguez-Aguayo C, et al. RNA interference-based therapy and its delivery systems. Cancer Metast Rev. 2018 Mar 01;37(1):107–124.
  • Gao S, Dagnaes-Hansen F, Nielsen EJB, et al. The effect of chemical modification and nanoparticle formulation on stability and biodistribution of siRNA in mice. Mol Ther. 2009 Jul 01;17(7):1225–1233.
  • Soo Choi H, Liu W, Misra P, et al. Renal clearance of quantum dots. Nat Biotechnol. 2007 Oct 01;25(10):1165–1170.
  • Perrault SD, Walkey C, Jennings T, et al. Mediating tumor targeting efficiency of nanoparticles through design. Nano Lett. 2009 May 13;9(5):1909–1915.
  • Trono JD, Mizuno K, Yusa N, et al. Size, concentration and incubation time dependence of gold nanoparticle uptake into pancreas cancer cells and its future application to X-ray drug delivery system. J Radiat Res. 2010;52(1):103–109.
  • Chithrani DB. Intracellular uptake, transport, and processing of gold nanostructures. Mol Membr Biol. 2010 Oct 01;27(7):299–311.
  • Gao H, Shi W, Freund LB. Mechanics of receptor-mediated endocytosis. Proc Natl Acad Sci U S A. 2005;102(27):9469.
  • Akinc A, Thomas M, Klibanov AM, et al. Exploring polyethylenimine-mediated DNA transfection and the proton sponge hypothesis. J Gene Med. 2005 May 01;7(5):657–663.
  • Miyata K, Oba M, Nakanishi M, et al. Polyplexes from poly(aspartamide) bearing 1,2-diaminoethane side chains induce pH-selective, endosomal membrane destabilization with amplified transfection and negligible cytotoxicity. J Am Chem Soc. 2008 Dec 03;130(48):16287–16294.
  • Judge AD, Bola G, Lee ACH, et al. Design of noninflammatory synthetic siRNA mediating potent gene silencing in vivo. Mol Ther. 2006 Mar 01;13(3):494–505.
  • Finn JD, Smith AR, Patel MC, et al. A single administration of CRISPR/Cas9 lipid nanoparticles achieves robust and persistent in vivo genome editing. Cell Rep. 2018 Feb 27;22(9):2227–2235.
  • Lin Y, Wu J, Gu W, et al. Exosome–Liposome Hybrid Nanoparticles Deliver CRISPR/Cas9 System in MSCs. Advanced Science. 2018;5(4):1700611.
  • Shankar S, Sreekumar A, Prasad D, et al. Genome editing of oncogenes with ZFNs and TALENs: caveats in nuclease design. Cancer Cell Int. 2018;18(1):169. .
  • Liu Y-C, Cai Z-M, Zhang X-J. Reprogrammed CRISPR-Cas9 targeting the conserved regions of HPV6/11 E7 genes inhibits proliferation and induces apoptosis in E7-transformed keratinocytes. Asian J Androl. 2016;18(3):475.
  • Boyle WS, Twaroski K, Woska EC, et al. Molecular additives significantly enhance glycopolymer-mediated transfection of large plasmids and functional CRISPR-Cas9 transcription activation ex vivo in primary human fibroblasts and induced pluripotent stem cells. Bioconjug Chem. 2019 Feb 20;30(2):418–431.
  • Timin AS, Muslimov AR, Lepik KV, et al. Efficient gene editing via non-viral delivery of CRISPR–Cas9 system using polymeric and hybrid microcarriers. Nanomedicine. 2018 Jan 01;14(1):97–108.
  • Akash MSH, Rehman K, Chen S. Polymeric-based particulate systems for delivery of therapeutic proteins. Pharm Dev Technol. 2016 Apr 02;21(3):367–378.
  • Ahmad N, Alam MA, Ahmad R, et al. Preparation and characterization of surface-modified PLGA-polymeric nanoparticles used to target treatment of intestinal cancer. Artif Cells Nanomed Biotechnol. 2018 Feb 17;46(2):432–446.
  • Siepmann J, Faham A, Clas S-D, et al. Lipids and polymers in pharmaceutical technology: lifelong companions. Int J Pharm. 2019 Mar 10;558:128–142.
  • Yousefpour Marzbali M, Yari Khosroushahi AJCC. Pharmacology. Polymeric micelles as mighty nanocarriers for cancer gene therapy: a review. Cancer Chemotherapy and Pharmacology. 2017 April 01;79(4):637–649.
  • Lao Y-H, Li M, Gao MA, et al. HPV oncogene manipulation using nonvirally delivered CRISPR/Cas9 or natronobacterium gregoryi argonaute. Adv Sci. 2018 Jul 01;5(7):1700540.
  • Perni S, Prokopovich P. Poly-beta-amino-esters nano-vehicles based drug delivery system for cartilage. Nanomedicine. 2017 Feb 01;13(2):539–548.
  • Wilson DR, Mosenia A, Suprenant MP, et al. Continuous microfluidic assembly of biodegradable poly(beta-amino ester)/DNA nanoparticles for enhanced gene delivery. Journal of Biomedical Materials Research Part A. 2017;105(6):1813–1825.
  • Kozielski KL, Green JJ. Bioreducible poly(beta-amino ester)s for intracellular delivery of siRNA. In: Shum K, Rossi J, editors. siRNA delivery methods: methods and protocols. New York: Springer New York; 2016. p. 79–87.
  • Zhu D, Shen H, Tan S, et al. Nanoparticles based on poly (β-amino ester) and HPV16-targeting CRISPR/shRNA as potential drugs for HPV16-related cervical malignancy. Mol Ther. 2018 Oct 03;26(10):2443–2455.
  • Wang Z, Liu G, Zheng H, et al. Rigid nanoparticle-based delivery of anti-cancer siRNA: challenges and opportunities. Biotechnol Adv. 2014 Jul 01;32(4):831–843.
  • Sharifi M, Attar F, Saboury AA, et al. Plasmonic gold nanoparticles: optical manipulation, imaging, drug delivery and therapy. J Control Release. 2019 Aug 28;311-312:170–189.
  • Ju E, Li T, da Silva SR, et al. Gold nanoclusters-mediated efficient delivery of Cas9 protein through pH-induced assembly-disassembly for inactivation of virus oncogenes. ACS Appl Mater Interfaces. 2019 Aug 30;11(38):34717–34724.
  • Chen -C-C, Lee K-D, Pai M-Y, et al. Changes in DNA methylation are associated with the development of drug resistance in cervical cancer cells. Cancer Cell Int. 2015 Oct 13;15(1):98.
  • Wu Q, Yang Z, Nie Y, et al. Multi-drug resistance in cancer chemotherapeutics: mechanisms and lab approaches. Cancer Lett. 2014 Jun 01;347(2):159–166.
  • Wang X, Sheu JJ-C, Lai M-T, et al. RSF-1 overexpression determines cancer progression and drug resistance in cervical cancer. Biomedicine (Taipei). 2018;8(1):4.
  • Xin Y, Huang M, Guo WW, et al. Nano-based delivery of RNAi in cancer therapy. Mol Cancer. 2017 Jul 28;16(1):134.
  • Guo W, Chen W, Yu W, et al. Small interfering RNA-based molecular therapy of cancers. Chin J Cancer. 2013;32(9):488–493.
  • Zhen S, Lu -J-J, Wang L-J, et al. In vitro and in vivo synergistic therapeutic effect of cisplatin with human papillomavirus16 E6/E7 CRISPR/Cas9 on cervical cancer cell line. Transl Oncol. 2016 Dec 01;9(6):498–504.
  • Menderes G, Black J, Schwab CL, et al. Immunotherapy and targeted therapy for cervical cancer: an update. Expert Rev Anticancer Ther. 2016 Jan 02;16(1):83–98.
  • Yang W, Song Y, Lu Y-L, et al. Increased expression of programmed death (PD)-1 and its ligand PD-L1 correlates with impaired cell-mediated immunity in high-risk human papillomavirus-related cervical intraepithelial neoplasia. Immunology. 2013 Aug 01;139(4):513–522.
  • Iwai Y, Hamanishi J, Chamoto K, et al. Cancer immunotherapies targeting the PD-1 signaling pathway. J Biomed Sci. 2017 Apr 04;24(1):26.
  • Zhen S, Lu J, Liu YH, et al. Synergistic antitumor effect on cervical cancer by rational combination of PD1 blockade and CRISPR-Cas9-mediated HPV knockout. Cancer Gene Ther. 2019 Aug 27. DOI:10.1038/s41417-019-0131-9.
  • Pérez-Herrero E, Fernández-Medarde A. Advanced targeted therapies in cancer: drug nanocarriers, the future of chemotherapy. Eur J Pharm Biopharm. 2015 Jun 01;93:52–79. .
  • Yi Y, Kim HJ, Mi P, et al. Targeted systemic delivery of siRNA to cervical cancer model using cyclic RGD-installed unimer polyion complex-assembled gold nanoparticles. J Control Release. 2016 Dec 28;244:247–256.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.