486
Views
12
CrossRef citations to date
0
Altmetric
Review

Oral controlled release dosage forms: dissolution versus diffusion

, , &
Pages 791-803 | Received 07 Feb 2020, Accepted 30 Mar 2020, Published online: 20 Apr 2020

References

  • EMA - Committee for Medicinal Products for Human Use (CHMP). Guideline on the pharmacokinetic and clinical evaluation of modified release dosage forms (EMA/CPMP/EWP/280/96 Corr1) [Internet]. 2014 [cited 2020 Jan 16]. Available from: www.ema.europa.eu/contact.
  • Fda. Bioavailability studies submitted in NDAs or INDs-general considerations guidance for industry [Internet]. 2019 [cited 2020 Jan 28]. Available from: http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/default.htm.
  • Taylor K, Aulton M Aulton’s pharmaceutics - 4th edition [Internet]. 2013 [cited 2020 Jan 28]. Available from: https://www.elsevier.com/books/aultons-pharmaceutics/aulton/978-0-7020-4290-4.
  • Maderuelo C, Zarzuelo A, Lanao JM. Critical factors in the release of drugs from sustained release hydrophilic matrices. J Control Release. 2011;154:2–19.
  • Kuentz M, Holm R, Elder DP. Methodology of oral formulation selection in the pharmaceutical industry. Eur J Pharm Sci Internet]. 2016 [cited 2020 Jan 28];87:136–163. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26687443.
  • Verma RK, Krishna DM, Garg S. Formulation aspects in the development of osmotically controlled oral drug delivery systems. J Control Release. 2002;79:7–27.
  • Concheiro A. Formas de dosificación de medicamentos: concepto, funciones y clasificación. In: Martinez Pacheco R, editor. Tratado Tecnología Farmacéutica, Editorial Síntesis. 2017. p. 21–46.
  • Wen H, Park K. Oral controlled release formulation design and drug delivery: theory to practice | New Jersey (US): Wiley. Wiley; 2010.
  • Wilson CG. Controlled release in oral drug delivery [Internet]. Springer, editor. 2011 [cited 2020 Jan 28]. Available from: https://www.springer.com/gp/book/9781461410034.
  • Zhang X, Cresswell M. Inorganic controlled release technology : materials and concepts for advanced drug formulation. Oxford (UK): Elsevier; 2015.
  • Siepmann J, Siegel RA, Rathbone MJ. Fundamentals and applications of controlled release drug delivery | Juergen Siepmann | Berlin (Germany): Springer. Springer; 2012.
  • Debotton N, Dahan A. Applications of polymers as pharmaceutical excipients in solid oral dosage forms. Med Res Rev Internet]. 2017 [cited 2020 Jan 28];37:52–97. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27502146.
  • Wairkar S, Gaud R, Raghavan A. Multi-particulate systems: cutting-edge technology for controlled drug delivery. Recent Pat Drug Deliv Formul Internet]. 2016 [cited 2020 Jan 28];10:184–191. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27809755.
  • Torne SR, Sheela A, Sarada NC. A review on oral liquid as an emerging technology in controlled drug delivery system. Curr Pharm Des Internet]. 2018 [cited 2020 Jan 28];24:1349–1356. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29205111.
  • National Center for Biotechnology Information. Diffusion - MeSH - NCBI [Internet]. [cited 2020 Jan 4]. Available from: https://www.ncbi.nlm.nih.gov/mesh/68004058.
  • Kaur G, Grewal J, Jyoti K, et al. Oral controlled and sustained drug delivery systems. In: Grumezescu A, editor. Drug targeting and stimuli sensitive drug delivery system. Oxford (UK): Elsevier; 2018. p. 567–626.
  • Huynh CT, Lee DS. Controlled release. In: Kobayashi, Müllen K, editors. Encyclopedia of polymeric nanomaterials. Springer Berlin Heidelberg (Germany); 2015. p. 439–449.
  • Ma L, Deng L, Chen J. Applications of poly(ethylene oxide) in controlled release tablet systems: A review. Drug Dev Ind Pharm. 2014;40:845–851.
  • Muschert S, Siepmann F, Leclercq B, et al. Drug release mechanisms from ethylcellulose: PVA-PEG graft copolymer-coated pellets. Eur J Pharm Biopharm. 2009;72:130–137.
  • Mohapatra S, Bhusan Barik B, Kar RK, et al. Design and characterization of controlled release matrix tablets of zidovudine. Artic. Asian J. Pharm. Clin. Res. [Internet]. 2009 [cited 2020 Jan 9];2. Available from: https://www.researchgate.net/publication/286990398.
  • Jyoti K, Bhatia RK, Martis EAF, et al. Soluble curcumin amalgamated chitosan microspheres augmented drug delivery and cytotoxicity in colon cancer cells: in vitro and in vivo study. Colloids Surf B Biointerfaces. 2016;148:674–683.
  • Wang QS, Wang GF, Zhou J, et al. Colon targeted oral drug delivery system based on alginate-chitosan microspheres loaded with icariin in the treatment of ulcerative colitis. Int J Pharm. 2016;515:176–185.
  • Kim JY, Lee SH, Park CW, et al. Design and in vivo evaluation of oxycodone once-a-day controlled-release tablets. Drug Des Devel Ther. 2015;9:695–706.
  • Tsunashima D, Yamashita K, Ogawara KI, et al. Development of extended-release solid dispersion granules of tacrolimus: evaluation of release mechanism and human oral bioavailability. J Pharm Pharmacol. 2017;69:1697–1706.
  • Tiwari R, Gupta A, Joshi M, et al. Bilayer tablet formulation of metformin HCl and acarbose: A novel approach to control diabetes. PDA J Pharm Sci Technol. 2014;68:138–152.
  • Jammula S, Patra CN, Swain S, et al. Design and characterization of cefuroxime axetil biphasic floating minitablets. Drug Deliv. 2015;22:125–135.
  • Baviskar D, Sharma R, Jain D. Modulation of drug release by utilizing pH-independent matrix system comprising water soluble drug verapamil hydrochloride. Pak J Pharm Sci Internet]. 2013 [cited 2020 Feb 5];26:137–144. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23261739.
  • Camelo SRP, Franceschi S, Perez E, et al. Factors influencing the erosion rate and the drug release kinetics from organogels designed as matrices for oral controlled release of a hydrophobic drug. Drug Dev Ind Pharm. 2016;42:985–997.
  • Jeong KH, Woo HS, Kim CJ, et al. Formulation of a modified-release pregabalin tablet using hot-melt coating with glyceryl behenate. Int J Pharm. 2015;495:1–8.
  • Jeganathan B, Prakya V. Interpolyelectrolyte complexes of eudragit® EPO with hypromellose acetate succinate and eudragit® EPO with hypromellose phthalate as potential carriers for oral controlled drug delivery. AAPS PharmSciTech. 2015;16:878–888.
  • Bani-Jaber A, Al-Aani L, Alkhatib H, et al. Prolonged intragastric drug delivery mediated by eudragit® E-carrageenan polyelectrolyte matrix tablets. AAPS PharmSciTech. 2011;12:354–361.
  • Jayasree J, Sivaneswari S, Hemalatha G, et al. Role of various natural, synthetic and semi-synthetic polymers on drug release kinetics of losartan potassium oral controlled release tablets. Int J Pharm Investig. 2014;4:183.
  • Patil SH, Talele GS. Natural gum as mucoadhesive controlled release carriers: evaluation of cefpodoxime proxetil by D-optimal design technique. Drug Deliv. 2014;21:118–129.
  • Abd-Elbary A, Tadros MI, Alaa-Eldin AA. Sucrose stearate-enriched lipid matrix tablets of etodolac: modulation of drug release, diffusional modeling and structure elucidation studies. AAPS PharmSciTech. 2013;14:656–668.
  • Abdelbary A, El-Gazayerly ON, El-Gendy NA, et al. Floating tablet of trimetazidine dihydrochloride: an approach for extended release with zero-order kinetics. AAPS PharmSciTech. 2010;11:1058–1067.
  • Qazi F, Shoaib MH, Yousuf RI, et al. Lipids bearing extruded-spheronized pellets for extended release of poorly soluble antiemetic agent - Meclizine HCl. Lipids Health Dis. 2017;16(1);75–91.
  • Al-Hanbali OA, Hamed R, Arafat M, et al. Formulation and evaluation of diclofenac controlled release matrix tablets made of HPMC and Poloxamer 188 polymer: an assessment on mechanism of drug release. Pak J Pharm Sci Internet]. 2018 [cited 2020 Feb 5];31:345–351. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29386164.
  • Xtampza® ER (oxycodone): dETERx® Technology [Internet]. [cited 2020 Jan 9]. Available from: https://www.xtampzaer.com/hcp/deterxtechnology/#section-deterxtech.
  • Gudin J, Levy-Cooperman N, Kopecky EA, et al. Comparing the effect of tampering on the oral pharmacokinetic profiles of two extended-release oxycodone formulations with abuse-deterrent properties. Pain Med. (United States). 2015;16:2142–2151.
  • Orange book: approved drug products with therapeutic equivalence evaluations - Xtampza [Internet]. [cited 2020 Jan 9]. Available from: https://www.accessdata.fda.gov/scripts/cder/ob/results_product.cfm?Appl_Type=N&Appl_No=208090#31929.
  • Xtampza® ER (oxycodone): human Abuse Potential Studies [Internet]. [ cited 2020 Jan 9]. Available from: https://www.xtampzaer.com/hcp/clinicalstudies/comparativePKstudies/#default.
  • Layek B, Mandal S. Natural polysaccharides for controlled delivery of oral therapeutics: a recent update. Carbohydr Polym. 2020;230:115617.
  • Guo X, Laryea E, Wilhelm M, et al. Diffusion in polymer solutions: molecular weight distribution by PFG-NMR and relation to SEC. Macromol Chem Phys Internet]. 2017 [cited 2020 Jan 28];218:1600440.
  • Moodley K, Pillay V, Choonara YE, et al. Oral drug delivery systems comprising altered geometric configurations for controlled drug delivery. Int J Mol Sci Internet]. 2012 [cited 2020 Jan 28];13:18–43. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22312236.
  • Siepmann J, Siepmann F. Modeling of diffusion controlled drug delivery. J Control Release. 2012;161:351–362.
  • Mallapragada SK, Peppas NA, Colombo P. Crystal dissolution-controlled release systems. II. Metronidazole release from semicrystalline poly(vinyl alcohol) systems. J Biomed Mater Res Internet]. 1997 [cited 2020 Jan 9];36:125–130. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9212397.
  • Patel N, Lalwani D, Gollmer S, et al. Development and evaluation of a calcium alginate based oral ceftriaxone sodium formulation. Prog Biomater. 2016;5:117–133.
  • Kim H, Fassihi R. Application of a binary polymer system in drug release rate modulation. 1. Characterization of release mechanism. J Pharm Sci. 1997;86:316–322.
  • Rawlinson-Malone CF, Ferreira AP, Nicholls D, et al. Elucidating spray-dried dispersion dissolution mechanisms with focused beam reflectance measurement: contribution of polymer chemistry and particle properties to performance. Pharm Dev Technol. 2019;24:1055–1062.
  • Freichel OL, Lippold BC. A new oral erosion controlled drug delivery system with a late burst in the release profile. Eur J Pharm Biopharm. 2000;50:345–351.
  • Mandracchia D, Trapani A, Perteghella S, et al. pH-sensitive inulin-based nanomicelles for intestinal site-specific and controlled release of celecoxib. Carbohydr Polym Internet]. 2018 [cited 2020 Jan 28];181:570–578. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29254009.
  • Sharpe LA, Vela Ramirez JE, Haddadin OM, et al. pH-responsive microencapsulation systems for the oral delivery of polyanhydride nanoparticles. Biomacromolecules Internet]. 2018 [cited 2020 Jan 28];19:793–802. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29443509.
  • Chen K, Chang HHR, Shalviri A, et al. Investigation of a new pH-responsive nanoparticulate pore former for controlled release enteric coating with improved processability and stability. Eur J Pharm Biopharm Internet]. 2017 [cited 2020 Jan 28];120:116–125. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28887098.
  • Naeem M, Choi M, Cao J, et al. Colon-targeted delivery of budesonide using dual pH- and time-dependent polymeric nanoparticles for colitis therapy. Drug Des Devel Ther Internet]. 2015 [cited 2020 Jan 28];9:3789–3799. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26229440.
  • Cheng G, An F, Zou M-J, et al. Time- and pH-dependent colon-specific drug delivery for orally administered diclofenac sodium and 5-aminosalicylic acid. World J Gastroenterol Internet]. 2004 [cited 2020 Jan 28];10:1769–1774. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15188503.
  • Liu L, Yao W, Rao Y, et al. pH-Responsive carriers for oral drug delivery: challenges and opportunities of current platforms. Drug Deliv Internet]. 2017 [cited 2020 Jan 28];24:569–581. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28195032.
  • Song L, Liang L, Shi X, et al. Optimizing pH-sensitive and time-dependent polymer formula of colonic pH-responsive pellets to achieve precise drug release. Asian J Pharm Sci. 2019;14:413–422.
  • Rao VM, Engh K, Qiu Y. Design of pH-independent controlled release matrix tablets for acidic drugs. Int J Pharm. 2003;252:81–86.
  • Siepmann J, Siepmann F. Mathematical modeling of drug dissolution. Int J Pharm. 2013;453:12–24.
  • Costa P, Sousa Lobo JM. Modeling and comparison of dissolution profiles. Eur J Pharm Sci. 2001;13:123–133.
  • Tahara K, Yamamoto K, Nishihata T. Overall mechanism behind matrix sustained release (SR) tablets prepared with hydroxypropyl methylcellulose 2910. J Control Release. 1995;35:59–66.
  • Reynolds TD, Gehrke SH, Hussain AS, et al. Polymer erosion and drug release characterization of hydroxypropyl methylcellulose matrices. J Pharm Sci Internet]. 1998 [cited 2020 Jan 12];87:1115–1123. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9724564.
  • Orange book: approved drug products with therapeutic equivalence evaluations - Uceris [Internet]. [cited 2020 Jan 12]. Available from: https://www.accessdata.fda.gov/scripts/cder/ob/results_product.cfm?Appl_Type=N&Appl_No=203634#29151.
  • Salix Pharmaceuticals. About UCERIS - a locally acting corticosteroid | UCERIS (budesonide) extended release tablets [Internet]. [ cited 2020 Jan 12]. Available from: https://www.uceris.com/tablet/hcp/about-uceris.
  • Bhatt H, Naik B, Dharamsi A. Solubility enhancement of budesonide and statistical optimization of coating variables for targeted drug delivery. J Pharm. 2014;2014:1–13.
  • Cosmo Pharmaceuticals. UCERIS®/Cortiment® – cosmo Pharmaceuticals NV [Internet]. [ cited 2020 Jan 12]. Available from: https://www.cosmopharma.com/products/uceris-cortiment.
  • Kopcha M, Lordi NG, Tojo KJ. Evaluation of Release from Selected Thermosoftening Vehicles. J Pharm Pharmacol. 1991;43:382–387.
  • Sankalia JM, Sankalia MG, Mashru RC. Drug release and swelling kinetics of directly compressed glipizide sustained-release matrices: establishment of level A IVIVC. J Control Release. 2008;129:49–58.
  • Lozoya-Agullo I, Zur M, Beig A, et al. Segmental-dependent permeability throughout the small intestine following oral drug administration: single-pass vs. Doluisio approach to in-situ rat perfusion. Int J Pharm. 2016;515:201–208.
  • Ruiz Picazo A, Lozoya-Agullo I, Ortiz Azcarate M, et al. Comparison of segmental-dependent permeability in human and in situ perfusion model in rat. Eur J Pharm Sci. 2017;107:191–196.
  • McDermott J, Scholes P, Lin W, et al. Approaches to rapid in vivo optimization of hydrophilic matrix tablets. New York (US): Springer; 2014: p. 205–232.
  • Culen M, Rezacova A, Jampilek J, et al. Designing a dynamic dissolution method: A review of instrumental options and corresponding physiology of stomach and small intestine. J Pharm Sci. 2013;102:2995–3017.
  • Dahlgren D, Roos C, Sjögren E, et al. Direct in vivo human intestinal permeability (Peff) determined with different clinical perfusion and intubation methods. J Phar Sci. 2015;104(9):2702–2726.
  • Hens B, Corsetti M, Spiller R, et al. Exploring gastrointestinal variables affecting drug and formulation behavior: methodologies, challenges and opportunities. Int J Pharm. 2017;519:79–97.
  • Lozoya-Agullo I, Zur M, Fine-Shamir N, et al. Investigating drug absorption from the colon: single-pass vs. Doluisio approaches to in-situ rat large-intestinal perfusion. Int J Pharm. 2017;527:135–141.
  • Lozoya-Agullo I, Gonzalez-Alvarez I, Zur M, et al. Closed-loop doluisio (colon, small intestine) and single-pass intestinal perfusion (colon, jejunum) in rat—biophysical model and predictions based on caco-2. Pharm Res. 2018;35(1):2.
  • Lozoya-Agullo I, González-Álvarez I, González-Álvarez M, et al. In Situ Perfusion Model in Rat Colon for Drug Absorption Studies: comparison with Small Intestine and Caco-2 Cell Model. Journal of Pharmaceutical Sciences. 2015;104(9):3136–3145.
  • Dahlgren D, Lennernäs H. Intestinal permeability and drug absorption: predictive experimental, computational and in vivo approaches. Pharmaceutics. 2019;11(8):411.
  • Dahlgren D, Roos C, Johansson P, et al. Regional intestinal permeability in dogs: biopharmaceutical aspects for development of oral modified-release dosage forms. Mol Pharm. 2016;13:3022–3033.
  • Koziolek M, Garbacz G, Neumann M, et al. Simulating the postprandial stomach: physiological considerations for dissolution and release testing. Mol Pharm. 2013;10:1610–1622.
  • Koziolek M, Görke K, Neumann M, et al. Development of a bio-relevant dissolution test device simulating mechanical aspects present in the fed stomach. Eur J Pharm Sci. 2014;57:250–256.
  • Sjögren E, Abrahamsson B, Augustijns P, et al. In vivo methods for drug absorption - Comparative physiologies, model selection, correlations with in vitro methods (IVIVC), and applications for formulation/API/excipient characterization including food effects. Eur J Pharm Sci. 2014;57:99–151.
  • Amaral Silva D, Al-Gousous J, Davies NM, et al. Simulated, biorelevant, clinically relevant or physiologically relevant dissolution media: the hidden role of bicarbonate buffer. Eur J Pharm Biopharm. 2019;142:8–19.
  • Luiking YG, Van Der Reijden AC, Van Berge Henegouwen GP. et al. Migrating motor complex cycle duration is determined by gastric or duodenal origin of phase III. Am J Physiol Gastrointest Liver Physiol. 1998; 275.
  • Varum FJO, Merchant HA, Basit AW. Oral modified-release formulations in motion: the relationship between gastrointestinal transit and drug absorption. Int J Pharm. 2010;395:26–36.
  • Newton JM. Gastric emptying of multi-particulate dosage forms. Int J Pharm. 2010;395:2–8.
  • Abuhelwa AY, Foster DJR, Upton RN. A quantitative review and meta-models of the variability and factors affecting oral drug absorption—part I: gastrointestinal pH. Aaps J. 2016;18:1309–1321.
  • Sulaiman S, Marciani L. Mri of the colon in the pharmaceutical field: the future before us. Pharmaceutics. 2019;11(4):146–165.
  • Grimm M, Koziolek M, Kühn JP, et al. Interindividual and intraindividual variability of fasted state gastric fluid volume and gastric emptying of water. Eur J Pharm Biopharm. 2018;127:309–317.
  • Abuhelwa AY, Foster DJR, Upton RN. A quantitative review and meta-models of the variability and factors affecting oral drug absorption—part II: gastrointestinal transit time. Aaps J. 2016;18:1322–1333.
  • Hansen MB. Small intestinal manometry. Physiol Res Internet]. 2002 [cited 2020 Jan 28];51:541–556. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12613464.
  • Koziolek M, Schneider F, Grimm M, et al. Intragastric pH and pressure profiles after intake of the high-caloric, high-fat meal as used for food effect studies. J Control Release. 2015;220:71–78.
  • Nguyen MA, Flanagan T, Brewster M, et al. A survey on IVIVC/IVIVR development in the pharmaceutical industry – past experience and current perspectives. Eur J Pharm Sci. 2017;102:1–13.
  • Soto E, Haertter S, Koenen-Bergmann M, et al. Population in vitro-in vivo correlation model for pramipexole slow-release oral formulations. Pharm Res. 2010;27:340–349.
  • Mundin GE, Smith KJ, Mysicka J, et al. Validated in vitro/in vivo correlation of prolonged-release oxycodone/naloxone with differing dissolution rates in relation to gastrointestinal transit times. Expert Opin Drug Metab Toxicol. 2012;8:1495–1503.
  • Kostewicz ES, Abrahamsson B, Brewster M, et al. In vitro models for the prediction of in vivo performance of oral dosage forms. Eur J Pharm Sci Elsevier; 2014. p. 342–366. DOI:10.1016/j.ejps.2013.08.024.
  • Andreas CJ, Rosenberger J, Butler J, et al. Introduction to the OrBiTo decision tree to select the most appropriate in vitro methodology for release testing of solid oral dosage forms during development. Eur J Pharm Biopharm. 2018;130:207–213.
  • Kim TH, Shin S, Bulitta JB, et al. Development of a physiologically relevant population pharmacokinetic in vitro-in vivo correlation approach for designing extended-release oral dosage formulation. Mol Pharm. 2017;14:53–65.
  • Klein S, Rudolph MW, Skalsky B, et al. Use of the BioDis to generate a physiologically relevant IVIVC. J Control Release. 2008;130:216–219.
  • Jantratid E, De Maio V, Ronda E, et al. Application of biorelevant dissolution tests to the prediction of in vivo performance of diclofenac sodium from an oral modified-release pellet dosage form. Eur J Pharm Sci. 2009;37:434–441.
  • Andreas CJ, Tomaszewska I, Muenster U, et al. Can dosage form-dependent food effects be predicted using biorelevant dissolution tests? Case example extended release nifedipine. Eur J Pharm Biopharm. 2016;105:193–202.
  • Štefanič M, Vrečer F, Rizmal P, et al. Prediction of the in vivo performance of enteric coated pellets in the fasted state under selected biorelevant dissolution conditions. Eur J Pharm Sci. 2014;62:8–15.
  • Ruiz Picazo A, Martinez-Martinez MT, Colón-Useche S, et al. In vitro dissolution as a tool for formulation selection: telmisartan two-step IVIVC. Mol Pharm. 2018;15:2307–2315.
  • Garbacz G, Klein S. Dissolution testing of oral modified-release dosage forms. J Pharm Pharmacol. 2012;64:944–968.
  • Vardakou M, Mercuri A, Naylor TA, et al. Predicting the human in vivo performance of different oral capsule shell types using a novel in vitro dynamic gastric model. Int J Pharm. 2011;419:192–199.
  • Vardakou M, Mercuri A, Barker SA, et al. Achieving antral grinding forces in biorelevant In Vitro models: comparing the USP dissolution apparatus II and the dynamic gastric model with human In Vivo data. AAPS PharmSciTech. 2011;12:620–626.
  • Garbacz G, Rappen GM, Koziolek M, et al. Dissolution of mesalazine modified release tablets under standard and bio-relevant test conditions. J Pharm Pharmacol. 2015;67:199–208.
  • Garbacz G, Wedemeyer RS, Nagel S, et al. Irregular absorption profiles observed from diclofenac extended release tablets can be predicted using a dissolution test apparatus that mimics in vivo physical stresses. Eur J Pharm Biopharm. 2008;70:421–428.
  • Gao Z, Ngo C, Ye W, et al. Effects of dissolution medium ph and simulated gastrointestinal contraction on drug release from nifedipine extended-release tablets*. J Pharm Sci. 2019;108:1189–1194.
  • Schneider F, Koziolek M, Weitschies W. In vitro and in vivo test methods for the evaluation of gastroretentive dosage forms. Pharmaceutics. 2019;11(8):416–445.
  • Honigford CR, Aburub A, Fadda HM. A simulated stomach duodenum model predicting the effect of fluid volume and prandial gastric flow patterns on nifedipine pharmacokinetics from cosolvent-based capsules. J Pharm Sci. 2019;108:288–294.
  • Carino SR, Sperry DC, Hawley M. Relative bioavailability of three different solid forms of PNU-141659 as determined with the artificial stomach-duodenum model. J Pharm Sci. 2010;99:3923–3930.
  • Matsui K, Tsume Y, Takeuchi S, et al. Utilization of gastrointestinal simulator, an in vivo predictive dissolution methodology, coupled with computational approach to forecast oral absorption of dipyridamole. Mol Pharm. 2017;14:1181–1189.
  • Hens B, Bermejo M, Tsume Y, et al. Evaluation and optimized selection of supersaturating drug delivery systems of posaconazole (BCS class 2b) in the gastrointestinal simulator (GIS): an in vitro-in silico-in vivo approach. Eur J Pharm Sci. 2018;115:258–269.
  • Bermejo M, Kuminek G, Al-Gousous J, et al. Exploring bioequivalence of dexketoprofen trometamol drug products with the gastrointestinal simulator (GIS) and precipitation pathways analyses. Pharmaceutics. 2019;11(3):122–140.
  • Kourentas A, Vertzoni M, Barmpatsalou V, et al. The BioGIT system: a valuable in vitro tool to assess the impact of dose and formulation on early exposure to low solubility drugs after oral administration. Aaps J. 2018;20(4):71–83.
  • Patel S, Zhu W, Xia B, et al. Integration of precipitation kinetics from an in vitro, multicompartment transfer system and mechanistic oral absorption modeling for pharmacokinetic prediction of weakly basic drugs. J Pharm Sci. 2019;108:574–583.
  • Stupák I, Pavloková S, Vyslou Il J, et al. Optimization of dissolution compartments in a biorelevant dissolution apparatus golem v2, supported by multivariate analysis. Molecules. 2017;22. DOI:10.3390/molecules22122042.
  • Čulen M, Tuszyński PK, Polak S, et al. Development of in vitro - In vivo correlation/relationship modeling approaches for immediate release formulations using compartmental dynamic dissolution data from “golem”: A novel apparatus. BioMed Res Int. 2015;2015:328628–328641.
  • Koziolek M, Kostewicz E, Vertzoni M. Physiological considerations and in vitro strategies for evaluating the influence of food on drug release from extended-release formulations. AAPS PharmSciTech. New York (US): Springer; 2018. p. 2885–2897.
  • Phillips DJ, Pygall SR, Brett Cooper V, et al. Toward biorelevant dissolution: application of a biphasic dissolution model as a discriminating tool for HPMC matrices containing a model BCS class II drug. Dissolution Technol. 2012. DOI:10.14227/DT190112P25.
  • Silchenko S, Nessah N, Li J, et al. In vitro dissolution absorption system (IDAS2): use for the prediction of food viscosity effects on drug dissolution and absorption from oral solid dosage forms. Eur J Pharm Sci. 2020;143:105164–105175.
  • Miyaji Y, Fujii Y, Takeyama S, et al. Advantage of the dissolution/permeation system for estimating oral absorption of drug candidates in the drug discovery stage. Mol Pharm. 2016;13:1564–1574.
  • Takano R, Kataoka M, Yamashita S. Integrating drug permeability with dissolution profile to develop IVIVC. Biopharm Drug Dispos. 2012;33:354–365.
  • Xu H, Shi Y, Vela S, et al. Developing quantitative in vitro–in vivo correlation for fenofibrate immediate-release formulations with the biphasic dissolution-partition test method. J Pharm Sci. 2018;107:476–487.
  • Tsume Y, Igawa N, Drelich AJ, et al. The combination of GIS and biphasic to better predict in vivo dissolution of BCS class IIb drugs, ketoconazole and raloxifene. J Pharm Sci. 2018;107:307–316.
  • Tsume Y, Matsui K, Searls AL, et al. The impact of supersaturation level for oral absorption of BCS class IIb drugs, dipyridamole and ketoconazole, using in vivo predictive dissolution system: gastrointestinal Simulator (GIS). Eur J Pharm Sci. 2017;102:126–139.
  • Al-Gousous J, Tsume Y, Fu M, et al. Unpredictable performance of pH-dependent coatings accentuates the need for improved predictive in vitro test systems. Mol Pharm. 2017;14:4209–4219.
  • Merchant HA, Goyanes A, Parashar N, et al. Predicting the gastrointestinal behaviour of modified-release products: utility of a novel dynamic dissolution test apparatus involving the use of bicarbonate buffers. Int J Pharm. 2014;475:585–591.
  • Goyanes A, Hatton GB, Merchant HA, et al. Gastrointestinal release behaviour of modified-release drug products: dynamic dissolution testing of mesalazine formulations. Int J Pharm. 2015;484:103–108.
  • Garbacz G, Kołodziej B, Koziolek M, et al. An automated system for monitoring and regulating the pH of bicarbonate buffers. AAPS PharmSciTech. 2013;14:517–522.
  • Garbacz G, Kołodziej B, Koziolek M, et al. A dynamic system for the simulation of fasting luminal pH-gradients using hydrogen carbonate buffers for dissolution testing of ionisable compounds. Eur J Pharm Sci. 2014;51:224–231.
  • Guerra A, Denis S, le Goff O, et al. Development and validation of a new dynamic computer-controlled model of the human stomach and small intestine. Biotechnol Bioeng. 2016;113:1325–1335.
  • Souliman S, Beyssac E, Cardot JM, et al. Investigation of the biopharmaceutical behavior of theophylline hydrophilic matrix tablets using USP methods and an artificial digestive system. Drug Dev Ind Pharm. 2007;33:475–483.
  • Brouwers J, Anneveld B, Goudappel GJ, et al. Food-dependent disintegration of immediate release fosamprenavir tablets: in vitro evaluation using magnetic resonance imaging and a dynamic gastrointestinal system. Eur J Pharm Biopharm. 2011;77:313–319.
  • McConnell EL, Fadda HM, Basit AW. Gut instincts: explorations in intestinal physiology and drug delivery. Int J Pharm. 2008;364:213–226.
  • Awasthi R, Kulkarni GT. Decades of research in drug targeting to the upper gastrointestinal tract using gastroretention technologies: where do we stand? Drug Deliv. 2016;23:378–394.
  • McConnell EL, Liu F, Basit AW. Colonic treatments and targets: issues and opportunities. J Drug Target. 2009;17:335–363.
  • Basit AW, Short MD, McConnell EL. Microbiota-triggered colonic delivery: robustness of the polysaccharide approach in the fed state in man. J Drug Target. 2009;17:64–71.
  • Timmins P, Desai D, Chen W, et al. Advances in mechanistic understanding of release rate control mechanisms of extended-release hydrophilic matrix tablets. Ther Deliv. 2016;7:553–572.
  • Varma MVS, Kaushal AM, Garg A, et al. Factors affecting mechanism and kinetics of drug release from matrix-based oral controlled drug delivery systems. Am J Drug Deliv. 2004;2:43–57.
  • Nokhodchi A, Raja S, Patel P, et al. The role of oral controlled release matrix tablets in drug delivery systems. BioImpacts. 2012;2:175–187.
  • Varma MVS, Kaushal AM, Garg S. Influence of micro-environmental pH on the gel layer behavior and release of a basic drug from various hydrophilic matrices. J Control Release. 2005;103:499–510.
  • Tran PHL, Tran TTD, Lee KH, et al. Dissolution-modulating mechanism of pH modifiers in solid dispersion containing weakly acidic or basic drugs with poor water solubility. Expert Opin Drug Deliv. 2010;7:647–661.
  • Caccavo D, Lamberti G, Cafaro MM, et al. Mathematical modelling of the drug release from an ensemble of coated pellets. Br J Pharmacol. 2017;174:1797–1809.
  • Caccavo D, Cascone S, Lamberti G, et al. Controlled drug release from hydrogel-based matrices: experiments and modeling. Int J Pharm. 2015;486:144–152.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.