283
Views
20
CrossRef citations to date
0
Altmetric
Review

Polymeric nanostructure vaccines: applications and challenges

, &
Pages 1007-1023 | Received 21 Mar 2020, Accepted 27 May 2020, Published online: 10 Jun 2020

References

  • Reed SG, Orr MT, Fox CB. Key roles of adjuvants in modern vaccines. Nat Med. 2013;19(12):1597–1608.
  • Pasquale A, Preiss S, Silva F, et al. Vaccine Adjuvants: from 1920 to 2015 and beyond. Vaccines (Basel). 2015;3(2):320–343.
  • Kedl RM, Seder R. Editorial overview: vaccines. Curr Opin Immunol. 2017;47:A1–A2.
  • González-Fernández Á, Faro J, Fernández C. Immune responses to polysaccharides: lessons from humans and mice. Vaccine. 2008;26(3):292–300.
  • Kreuter J, Mauler R, Gruschkau H, et al. The use of new polymethylmethacrylate adjuvants for split influenza vaccines. Exp Cell Biol. 1976;44(1):12–19.
  • Edelman R. Vaccine Adjuvants. Clin Infect Dis. 1980;2(3):370–383.
  • Scherr GH, Markowitz AS, Skelton LZ. A new alginate adjuvant. J Appl Bacteriol. 1965;28(1):174–180.
  • Preis I, Langer RS. A single-step immunization by sustained antigen release. J Immunol Methods. 1979;28(1–2):193–197.
  • Almeida AJ, Alpar HO, Brown MR. Immune response to nasal delivery of antigenically intact tetanus toxoid associated with poly(L-lactic acid) microspheres in rats, rabbits and guinea-pigs. J Pharm Pharmacol. 1993;45(3):198–203.
  • O’Hagan DT, Jeffery H, Roberts MJJ, et al. Controlled release microparticles for vaccine development. Vaccine. 1991;9(10):768–771.
  • Reid RH, Boedeker EC, McQueen CE, et al. Preclinical evaluation of microencapsulated CFA/II oral vaccine against enterotoxigenic. E Coli Vaccine. 1993;11(2):159–167.
  • Alonso MJ, Gupta RK, Min C, et al. Biodegradable microspheres as controlled-release tetanus toxoid delivery systems. Vaccine. 1994;12(4):299–306.
  • Lambricht L, Peres C, Florindo H, et al. Polymer-based nanoparticles as modern vaccine delivery systems. In: Skwarczynski M, Toth I, editors. Micro and nanotechnology in vaccine development. New Yok (NY): William Andrew Publishing; 2017. p. 185–203.
  • Savina A, Amigorena S. Phagocytosis and antigen presentation in dendritic cells. Immunol Rev. 2007;219(1):143–156.
  • Reddy ST, Swartz MA, Hubbell JA. Targeting dendritic cells with biomaterials: developing the next generation of vaccines. Trends Immunol. 2006;27(12):573–579.
  • O’Hagan DT, Friedland LR, Hanon E, et al. Towards an evidence based approach for the development of adjuvanted vaccines. Curr Opin Immunol. 2017;47:93–102.
  • Shi S, Zhu H, Xia X, et al. Vaccine adjuvants: understanding the structure and mechanism of adjuvanticity. Vaccine. 2019;37(24):3167–3178.
  • Sharma R, Agrawal U, Mody N, et al. Polymer nanotechnology based approaches in mucosal vaccine delivery: challenges and opportunities. Biotechnol Adv. 2015;33(1):64–79.
  • Halliday J. Commercial aspects of vaccine development. In: Skwarczynski M, Toth I, editors. Micro and nanotechnology in vaccine development. New Yor (NY): William Andrew Publishing; 2017. p. 411–421.
  • O’Hagan DT, Singh M. Microparticles as vaccine adjuvants and delivery systems. Expert Rev Vaccines. 2003;2(2):269–283.
  • Hanes J, Cleland JL, Langer R. New advances in microsphere-based single-dose vaccines. Adv Drug Deliv Rev. 1997;28(1):97–119.
  • Zhao L, Seth A, Wibowo N, et al. Nanoparticle vaccines. Vaccine. 2014;32(3):327–337.
  • Crecente-Campo J, Guerra-Varela J, Peleteiro M, et al. The size and composition of polymeric nanocapsules dictate their interaction with macrophages and biodistribution in zebrafish. J Control Release. 2019;308:98–108.
  • Mattheolabakis G, Milane L, Singh A, et al. Hyaluronic acid targeting of CD44 for cancer therapy: from receptor biology to nanomedicine. J Drug Target. 2015;23(7–8):605–618.
  • Oyewumi MO, Kumar A, Cui Z. Nano-microparticles as immune adjuvants: correlating particle sizes and the resultant immune responses. Expert Rev Vaccines. 2010;9(9):1095–1107.
  • Dacoba TG, Olivera A, Torres D, et al. Modulating the immune system through nanotechnology. Semin Immunol. 2017;34:78–102.
  • Al-Halifa S, Gauthier L, Arpin D, et al. Nanoparticle-based vaccines against respiratory viruses. Front Immunol. 2019;10(22). DOI:10.3389/fimmu.2019.00022
  • Nevagi RJ, Skwarczynski M, Toth I. Polymers for subunit vaccine delivery. Eur Polym J. 2019;114:397–410.
  • Rice-Ficht AC, Arenas-Gamboa AM, Kahl-McDonagh MM, et al. Polymeric particles in vaccine delivery. Curr Opin Microbiol. 2010;13(1):106–112.
  • Gutjahr A, Phelip C, Coolen AL, et al., Biodegradable polymeric nanoparticles-based vaccine adjuvants for lymph nodes targeting. Vaccines (Basel). 2016; 4(4):34.
  • Pombo García K, Zarschler K, Barbaro L, et al. Zwitterionic-coated “stealth” nanoparticles for biomedical applications: recent advances in countering biomolecular corona formation and uptake by the mononuclear phagocyte system. Small. 2014;10(13):2516–2529.
  • Raghuvanshi RS, Katare YK, Lalwani K, et al. Improved immune response from biodegradable polymer particles entrapping tetanus toxoid by use of different immunization protocol and adjuvants. Int J Pharm. 2002;245(1–2):109–121.
  • Moyano DF, Goldsmith M, Solfiell DJ, et al. Nanoparticle hydrophobicity dictates immune response. J Am Chem Soc. 2012;134(9):3965–3967.
  • Diaz B, Sanchez-Espinel C, Arruebo M, et al. Assessing methods for blood cell cytotoxic responses to inorganic nanoparticles and nanoparticle aggregates. Small. 2008;4(11):2025–2034.
  • Petrovsky N, Aguilar JC. Vaccine adjuvants: current state and future trends. Immunol Cell Biol. 2004;82(5):488–496.
  • Correia-Pinto JF, Peleteiro M, Csaba N, et al. Multi-enveloping of particulated antigens with biopolymers and immunostimulant polynucleotides. J Drug Deliv Sci Tec. 2015;30:424–434.
  • AbdelAllah NH, Gaber Y, Rashed ME, et al. Alginate-coated chitosan nanoparticles act as effective adjuvant for hepatitis A vaccine in mice. Int J Biol Macromol. 2020;152:904–912.
  • Miura R, Sawada S-I, Mukai S-A, et al. Antigen delivery to antigen-presenting cells for adaptive immune response by self-assembled anionic polysaccharide nanogel vaccines. Biomacromolecules. 2020;21(2):621–629.
  • Li P, Wang F. Polysaccharides:candidates of promising vaccine adjuvants. Drug Discov Ther. 2015;9(2):88–93.
  • Sunasee R, Narain R. Carbohydrate nanotechnology applied to vaccine development. In: Stine KJ, editor. Carbohydrate nanotechnology. Hoboken, NJ: John Wiley & Sons, Inc; 2015. p. 369–385.
  • Moran HBT, Turley JL, Andersson M, et al. Immunomodulatory properties of chitosan polymers. Biomaterials. 2018;184:1–9.
  • Farace C, Sánchez-Moreno P, Orecchioni M, et al. Immune cell impact of three differently coated lipid nanocapsules: pluronic, chitosan and polyethylene glycol. Sci Rep. 2016;6(1):18423.
  • Peleteiro M, Presas E, González-Aramundiz JV, et al. Polymeric nanocapsules for vaccine delivery: influence of the polymeric shell on the interaction with the immune system. Front Immunol. 2018;9:791.
  • Jayakumar R, Menon D, Manzoor K, et al. Biomedical applications of chitin and chitosan based nanomaterials—A short review. Carbohydr Polym. 2010;82(2):227–232.
  • Sadati SF, Jamali A, Abdoli A, et al. Simultaneous formulation of influenza vaccine and chitosan nanoparticles within CpG oligodesoxi nucleotides leads to dose-sparing and protects against lethal challenge in the mouse model. Pathog Dis. 2018;76(8). DOI:10.1093/femspd/fty070.
  • Bento D, Jesus S, Lebre F, et al. chitosan plus compound 48/80: formulation and preliminary evaluation as a hepatitis B vaccine adjuvant. Pharmaceutics. 2019;11(2):72..
  • Vicente S, Peleteiro M, Díaz-Freitas B, et al. Co-delivery of viral proteins and a TLR7 agonist from polysaccharide nanocapsules: A needle-free vaccination strategy. J Control Release. 2013;172(3):773–781.
  • Vasiliev YM. Chitosan-based vaccine adjuvants: incomplete characterization complicates preclinical and clinical evaluation. Expert Rev Vaccines. 2015;14(1):37–53.
  • Pereira P, Pedrosa SS, Correia A, et al. Biocompatibility of a self-assembled glycol chitosan nanogel. Toxicol Vitro. 2015;29(3):638–646.
  • Hayashi M, Aoshi T, Haseda Y, et al. Advax, a delta inulin microparticle, potentiates in-built adjuvant property of co-administered vaccines. EBioMedicine. 2017;15:127–136.
  • Petrovsky N, Cooper PD. Advax™, a novel microcrystalline polysaccharide particle engineered from delta inulin, provides robust adjuvant potency together with tolerability and safety. Vaccine. 2015;33(44):5920–5926.
  • Kerlin RL, Watson DL. Effect of dextran sulphate on IgG subclass of antibody in efferent popliteal lymph of sheep. Immunol Cell Biol. 1987;65(5):411–417.
  • McCarthy RE, Arnold LW, Babcock GF. Dextran sulphate: an adjuvant for cell-mediated immune responses. Immunology. 1977;32(6):963–974.
  • Dieleman LA, Palmen MJHJ, Akol H, et al. Chronic experimental colitis induced by dextran sulphate sodium (DSS) is characterized by Th1 and Th2 cytokines. Clin Exp Immunol. 1998;114(3):385–391.
  • Hyoung Park J, Sin Lim M, Rang Woo J, et al. The molecular weight and concentration of dextran sulfate affect cell growth and antibody production in CHO cell cultures. Biotechnol Prog. 2016;32(5):1113–1122.
  • Babcock GF, McCarthy RE. Suppression of cell-mediated immune responses by dextran sulphate. Immunology. 1977;33(6):925–929.
  • Yang F, Wang D, Li Y, et al. Th1/Th2 balance and Th17/Treg-mediated immunity in relation to murine resistance to dextran sulfate-induced colitis. J Immunol Res. 2017;2017:7047201.
  • Otterlei M, Østgaard K, Skjåk-Bræk G, et al. Induction of cytokine production from human monocytes stimulated with alginate. J Immunother. 1991;10(4):286–291.
  • Flo TH, Ryan L, Latz E, et al. Involvement of toll-like receptor (TLR) 2 and TLR4 in cell activation by mannuronic acid polymers. J Biol Chem. 2002;277(38):35489–35495.
  • Yang D, Jones KS. Effect of alginate on innate immune activation of macrophages. J Biomed Mat Res A. 2009;90A(2):411–418.
  • Dhamecha D, Movsas R, Sano U, et al. Applications of alginate microspheres in therapeutics delivery and cell culture: past, present and future. Int J Pharm. 2019;569:118627.
  • Oh EJ, Park K, Kim KS, et al. Target specific and long-acting delivery of protein, peptide, and nucleotide therapeutics using hyaluronic acid derivatives. J Control Release. 2010;141(1):2–12.
  • Termeer C, Benedix F, Sleeman J, et al. Oligosaccharides of hyaluronan activate dendritic cells via toll-like receptor 4. J Exp Med. 2002;195(1):99–111.
  • Gariboldi S, Palazzo M, Zanobbio L, et al. Low molecular weight hyaluronic acid increases the self-defense of skin epithelium by induction of beta-defensin 2 via TLR2 and TLR4. J Immunol. 2008;181(3):2103–2110.
  • Miyazaki M, Yuba E, Hayashi H, et al. Development of pH-responsive hyaluronic acid-based antigen carriers for induction of antigen-specific cellular immune responses. ACS Biomater Sci Eng. 2019;5(11):5790–5797.
  • Nochi T, Yuki Y, Takahashi H, et al. Nanogel antigenic protein-delivery system for adjuvant-free intranasal vaccines. Nat Mater. 2010;9(7):572–578.
  • DeFrates K, Markiewicz T, Gallo P, et al. Protein polymer-based nanoparticles: fabrication and medical applications. Int J Mol Sci. 2018;19(6):1717.
  • Vyas SP, Gupta PN. Implication of nanoparticles/microparticles in mucosal vaccine delivery. Expert Rev Vaccines. 2007;6(3):401–418.
  • Hoogenboezem EN, Duvall CL. Harnessing albumin as a carrier for cancer therapies. Adv Drug Deliv Rev. 2018;130:73–89.
  • Zhu G, Lynn GM, Jacobson O, et al. Albumin/vaccine nanocomplexes that assemble in vivo for combination cancer immunotherapy. Nat Commun. 2017;8(1):1954.
  • Momin N, Mehta NK, Bennett NR, et al. Anchoring of intratumorally administered cytokines to collagen safely potentiates systemic cancer immunotherapy. Sci Transl Med. 2019;11(498):eaaw2614.
  • He J, Zheng R, Zhang Z, et al. Collagen I enhances the efficiency and anti-tumor activity of dendritic-tumor fusion cells. OncoImmunology. 2017;6(12):e1361094.
  • Sahoo N, Sahoo RK, Biswas N, et al. Recent advancement of gelatin nanoparticles in drug and vaccine delivery. Int J Biol Macromol. 2015;81:317–331.
  • Coester C, Nayyar P, Samuel J. In vitro uptake of gelatin nanoparticles by murine dendritic cells and their intracellular localisation. Eur J Pharm Biopharm. 2006;62(3):306–314.
  • Sudheesh MS, Vyas SP, Kohli DV. Nanoparticle-based immunopotentiation via tetanus toxoid-loaded gelatin and aminated gelatin nanoparticles. Drug Deliv. 2011;18(5):320–330.
  • Johansen P, Men Y, Audran R, et al. Improving stability and release kinetics of microencapsulated tetanus toxoid by co-encapsulation of additives. Pharm Res. 1998;15(7):1103–1110.
  • Offit PA, Jew RK. Addressing parents’ concerns: do vaccines contain harmful preservatives, adjuvants, additives, or residuals? Pediatrics. 2003;112(6 Pt 1):1394–1397.
  • Todd CW, Pozzi LAM, Guarnaccia JR, et al. Development of an adjuvant-active nonionic block copolymer for use in oil-free subunit vaccines formulations. Vaccine. 1997;15(5):564–570.
  • Katz JM, Lu X, Todd CW, et al. A nonionic block co-polymer adjuvant (CRL1005) enhances the immunogenicity and protective efficacy of inactivated influenza vaccine in young and aged mice. Vaccine. 2000;18(21):2177–2187.
  • Mutwiri G, Benjamin P, Soita H, et al. Poly[di(sodium carboxylatoethylphenoxy)phosphazene] (PCEP) is a potent enhancer of mixed Th1/Th2 immune responses in mice immunized with influenza virus antigens. Vaccine. 2007;25(7):1204–1213.
  • Hsu WH, Csaba N, Alexander C, et al. Polyphosphazenes for the delivery of biopharmaceuticals. J Appl Polym Sci. 2020;137(25):48688.
  • Cordeiro AS, Alonso MJ. Recent advances in vaccine delivery. Pharm Pat Anal. 2016;5(1):49–73.
  • Yoo JW, Irvine DJ, Discher DE, et al. Bio-inspired, bioengineered and biomimetic drug delivery carriers. Nat Rev Drug Discov. 2011;10(7):521–535.
  • Trimaille T, Lacroix C, Verrier B. Self-assembled amphiphilic copolymers as dual delivery system for immunotherapy. Eur J Pharm Biopharm. 2019;142:232–239.
  • Ferreira SA, Gama FM, Vilanova M. Polymeric nanogels as vaccine delivery systems. Nanomed.-Nanotechnol. 2013;9(2):159–173.
  • Evelyn Roopngam P. Liposome and polymer-based nanomaterials for vaccine applications. Nanomed J. 2019;6(1):1–10.
  • Jennings GT, Bachmann MF. The coming of age of virus-like particle vaccines. Biological Chemistry. 2008;389(5):521–536.
  • Yang G, Chen S, Zhang J. Bioinspired and biomimetic nanotherapies for the treatment of infectious diseases. Front Pharmacol. 2019;10:751.
  • Pulendran B, Ahmed R. Immunological mechanisms of vaccination. Nat Immunol. 2011;12(6):509–517.
  • Larché M, Wraith DC. Peptide-based therapeutic vaccines for allergic and autoimmune diseases. Nat Med. 2005;11(4):S69–S76.
  • Thomas S, Prendergast GC. Cancer vaccines: a brief overview. In: Thomas S, editor. Vaccine design: methods and protocols: volume 1: vaccines for human diseases. New York: Springer New York; 2016. p. 755–761.
  • Bonam SR, Partidos CD, Halmuthur SKM, et al. An overview of novel adjuvants designed for improving vaccine efficacy. Trends Pharmacol Sci. 2017;38(9):771–793.
  • Deering RP, Kommareddy S, Ulmer JB, et al. Nucleic acid vaccines: prospects for non-viral delivery of mRNA vaccines. Expert Opin Drug Deliv. 2014;11(6):885–899.
  • Yang J, Li Y, Jin S, et al. Engineered biomaterials for development of nucleic acid vaccines. Biomater Res. 2015;19(1):5.
  • Iavarone C, O’hagan DT, Yu D, et al. Mechanism of action of mRNA-based vaccines. Expert Rev Vaccines. 2017;16(9):871–881.
  • Bolhassani A, Javanzad S, Saleh T, et al. Polymeric nanoparticles. Hum Vaccin Immunother. 2014;10(2):321–332.
  • Kanekiyo M, Wei C-J, Yassine HM, et al. Self-assembling influenza nanoparticle vaccines elicit broadly neutralizing H1N1 antibodies. Nature. 2013;499(7456):102-6.
  • August A, Glenn GM, Kpamegan E, et al. A Phase 2 randomized, observer-blind, placebo-controlled, dose-ranging trial of aluminum-adjuvanted respiratory syncytial virus F particle vaccine formulations in healthy women of childbearing age. Vaccine. 2017;35(30):3749-59.
  • Agnandji ST, Fernandes JF, Bache EB, et al. Clinical development of RTS, S/AS malaria vaccine: a systematic review of clinical Phase I–III trials. Future Microbiology. 2015;10(10):1553-78.
  • Cech PG, Aebi T, Abdallah MS, et al. Virosome-formulated Plasmodium falciparum AMA-1 & CSP derived peptides as malaria vaccine: randomized phase 1b trial in semi-immune adults & children. PLoS One. 2011;6(7).
  • Spearman P, Lally MA, Elizaga M, et al. A trimeric, V2-deleted HIV-1 envelope glycoprotein vaccine elicits potent neutralizing antibodies but limited breadth of neutralization in human volunteers. J. Infect. Dis. 2011;203(8):1165-73.
  • Rappuoli R, Aderem AA. 2020 vision for vaccines against HIV, tuberculosis and malaria. Nature. 2011;473(7348):463–469.
  • Netea MG, Joosten LAB, Latz E, et al., Trained immunity: A program of innate immune memory in health and disease. Science. 2016; 352(6284):aaf1098–aaf1098.
  • Foged C, Brodin B, Frokjaer S, et al. Particle size and surface charge affect particle uptake by human dendritic cells in an in vitro model. Int J Pharm. 2005;298(2):315–322.
  • Batista FD, Harwood NE. The who, how and where of antigen presentation to B cells. Nat Rev Immunol. 2009;9(1):15–27.
  • Neutra MR, Kozlowski PA. Mucosal vaccines: the promise and the challenge. Nat Rev Immunol. 2006;6(2):148–158.
  • Shakya AK, Chowdhury MYE, Tao W, et al. Mucosal vaccine delivery: current state and a pediatric perspective. J Control Release. 2016;240:394–413.
  • Siegrist C-A. 2 - Vaccine immunology. In: Offit PA, Plotkin SA, Orenstein WA, editors. Vaccines (Sixth edition). London: W.B. Saunders; 2013. p. 14–32.
  • Joffre OP, Segura E, Savina A, et al. Cross-presentation by dendritic cells. Nat Rev Immunol. 2012;12(8):557–569.
  • Arruebo M, Vilaboa N, Sáez-Gutierrez B, et al. Assessment of the evolution of cancer treatment therapies. Cancers (Basel). 2011;3(3):3279–3330..
  • Seliger B. Combinatorial approaches with checkpoint inhibitors to enhance anti-tumor immunity. Front Immunol. 2019;10:999.
  • Staats HF, Montgomery SP, Palker TJ. Intranasal immunization is superior to vaginal, gastric, or rectal immunization for the induction of systemic and mucosal anti-HIV antibody responses. AIDS Res Hum Retrov. 1997;13(11):945–952.
  • Madani F, Hsein H, Busignies V, et al. An overview on dosage forms and formulation strategies for vaccines and antibodies oral delivery. Pharm Dev Technol. 2020;25(2):133–148.
  • Mestecky J. The common mucosal immune system and current strategies for induction of immune responses in external secretions. J Clin Immunol. 1987;7(4):265–276.
  • Mousavi T, Sattari Saravi S, Valadan R, et al. Different types of adjuvants in prophylactic and therapeutic human papillomavirus vaccines in laboratory animals: a systematic review. Arch Virol. 2020;165(2):263–284..
  • Zolnik BS, González-Fernández Á, Sadrieh N, et al. Minireview: nanoparticles and the immune system. Endocrinology. 2010;151(2):458–465.
  • Sainz V, Conniot J, Matos AI, et al. Regulatory aspects on nanomedicines. Biochem Biophys Res Commun. 2015;468(3):504–510.
  • Farjadian F, Ghasemi A, Gohari O, et al. Nanopharmaceuticals and nanomedicines currently on the market: challenges and opportunities. Nanomedicine. 2019;14(1):93–126.
  • Chen Y-C, Cheng H-F, Yang Y-C, et al. Nanotechnologies applied in biomedical vaccines. In: Stanciu SG, editor. Micro and nanotechnologies for biotechnology. Croatia: InTech; 2016. p. 85–106.
  • Zhao Q, Li S, Yu H, et al. Virus-like particle-based human vaccines: quality assessment based on structural and functional properties. Trends Biotechnol. 2013;31(11):654–663.
  • López-Sagaseta J, Malito E, Rappuoli R, et al. Self-assembling protein nanoparticles in the design of vaccines. Comput Struct Biotechnol J. 2016;14:58–68.
  • Mohsen MO, Zha L, Cabral-Miranda G, et al. Major findings and recent advances in virus–like particle (VLP)-based vaccines. Semin Immunol. 2017;34:123–132.
  • Lisziewicz J, Trocio J, Whitman L, et al., DermaVir: a novel topical vaccine for HIV/AIDS. J Invest Dermatol. 2005; 124(1):160–169.
  • Pittet L, Altreuter D, Ilyinskii P, et al. Development and preclinical evaluation of SEL-068, a novel targeted synthetic vaccine particle (tSVP™) for smoking cessation and relapse prevention that generates high titers of antibodies against nicotine (75.11). J Immunol. 2012;188(1 Supplement):75. 11.
  • Jiang W, Gupta RK, Deshpande MC, et al. Biodegradable poly(lactic-co-glycolic acid) microparticles for injectable delivery of vaccine antigens. Adv Drug Deliv Rev. 2005;57(3):391–410.
  • Wischke C, Zimmermann J, Wessinger B, et al. Poly (I: C) coated PLGA microparticles induce dendritic cell maturation. Int J Pharm. 2009;365(1–2):61–68.
  • Silva AL, Soema PC, Slütter B, et al. PLGA particulate delivery systems for subunit vaccines: linking particle properties to immunogenicity. Hum Vaccin Immunother. 2016;12(4):1056–1069.
  • Malik A, Gupta M, Mani R, et al. Single-dose Ag85b-ESAT6–loaded poly(Lactic-co-glycolic acid) nanoparticles confer protective immunity against tuberculosis. Int J Nanomedicine. 2019;14:3129–3143.
  • Riitho V, Walters AA, Somavarapu S, et al. Design and evaluation of the immunogenicity and efficacy of a biomimetic particulate formulation of viral antigens. Sci Rep. 2017;7(1):1–10.
  • Moon JJ, Suh H, Polhemus ME, et al. Antigen-displaying lipid-enveloped PLGA nanoparticles as delivery agents for a plasmodium vivax malaria vaccine. PLoS ONE. 2012;7(2):e31472.
  • Vicente S, Diaz-Freitas B, Peleteiro M, et al. A polymer/oil based nanovaccine as a single-dose immunization approach. PLoS ONE. 2013;8(4):e62500.
  • Garcia-Fuentes M, Alonso MJ. Chitosan-based drug nanocarriers: where do we stand? J Control Release. 2012;161(2):496–504.
  • Hu Z, Chen J, Zhou S, et al. Mouse IP-10 gene delivered by folate-modified chitosan nanoparticles and dendritic/tumor cells fusion vaccine effectively inhibit the growth of hepatocellular carcinoma in mice. Theranostics. 2017;7(7):1942–1952..
  • Pati R, Shevtsov M, Sonawane A. Nanoparticle vaccines against infectious diseases. Front Immunol. 2018;9:2224.
  • Chahal JS, Khan OF, Cooper CL, et al. Dendrimer-RNA nanoparticles generate protective immunity against lethal ebola, H1N1 influenza, and Toxoplasma gondii challenges with a single dose. Proc Natl Acad Sci U S A. 2016;113(29):E4133–E4142.
  • Blanco E, Guerra B, De La Torre BG, et al. Full protection of swine against foot-and-mouth disease by a bivalent B-cell epitope dendrimer peptide. Antiviral Res. 2016;129:74–80.
  • Hegde N, Velingkar V, Prabhakar B. An update on design and pharmacology of dendritic poly(l-lysine). Int J Pept Res Ther. 2019;25(4):1539–1562.
  • Trimaille T, Verrier B. Micelle-based adjuvants for subunit vaccine delivery. Vaccines (Basel). 2015;3(4):803–813.
  • Luo Z, Wang C, Yi H, et al. Nanovaccine loaded with poly I: C and STAT3 siRNA robustly elicits anti-tumor immune responses through modulating tumor-associated dendritic cells in vivo. Biomaterials. 2015;38:50–60.
  • Florindo HF, Lopes J, Silva LC, et al. Regulatory development of nanotechnology-based vaccines. In: Skwarczynski M, Toth I, editors. Micro and nanotechnology in vaccine development. New York (NY): William Andrew Publishing; 2017. p. 393–410.
  • Havel H, Finch G, Strode P, et al. Nanomedicines: from bench to bedside and beyond. AAPS J. 2016;18(6):1373–1378.
  • Kelly HG, Kent SJ, Wheatley AK. Immunological basis for enhanced immunity of nanoparticle vaccines. Expert Rev Vaccines. 2019;18(3):269–280.
  • Wen R, Umeano AC, Kou Y, et al. Nanoparticle systems for cancer vaccine. Nanomedicine. 2019;14(5):627–648.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.