249
Views
12
CrossRef citations to date
0
Altmetric
Review

Polyaminoacid-based nanocarriers: a review of the latest candidates for oral drug delivery

, &
Pages 1081-1092 | Received 21 Mar 2020, Accepted 28 May 2020, Published online: 16 Jun 2020

References

  • Fox CB, Kim J, Le LV, et al. Micro/nanofabricated platforms for oral drug delivery. J Control Release. 2015;219:431–444.
  • Lundquist P, Artursson P. Oral absorption of peptides and nanoparticles across the human intestine: opportunities, limitations and studies in human tissues. Adv Drug Deliv Rev. 2016;106:256–276.
  • Beloqui A, Des Rieux A, Préat V. Mechanisms of transport of polymeric and lipidic nanoparticles across the intestinal barrier. Adv Drug Deliv Rev. 2016;106:242–255.
  • Alqahtani S, Mohamed LA, Kaddoumi A. Experimental models for predicting drug absorption and metabolism. Expert Opin Drug Metab Toxicol. 2013;9:1241–1254.
  • Muheem A, Shakeel F, Jahangir MA, et al. A review on the strategies for oral delivery of proteins and peptides and their clinical perspectives. Saudi Pharm J. 2016;24:413–428.
  • Maher S, Brayden DJ, Casettari L, et al. Application of permeation enhancers in oral delivery of macromolecules: an update. Pharmaceutics. 2019;11:1–23.
  • Lau JL, Dunn MK. Therapeutic peptides: historical perspectives, current development trends, and future directions. Bioorg Med Chem. 2018;26:2700–2707.
  • Anderson SL, Beutel TR, Trujillo JM. Oral semaglutide in type 2 diabetes. J Diabetes Complications. 2020;107520. DOI:10.1016/j.jdiacomp.2019.107520
  • Aguirre TAS, Teijeiro-Osorio D, Rosa M, et al. Current status of selected oral peptide technologies in advanced preclinical development and in clinical trials. Adv Drug Deliv Rev. 2016;106:223–241.
  • Malhaire H, Gimel JC, Roger E, et al. How to design the surface of peptide-loaded nanoparticles for efficient oral bioavailability? Adv. Drug Deliv Rev. 2016;106:320–336.
  • Kaspar AA, Reichert JM. Future directions for peptide therapeutics development. Drug Discov Today. 2013;18:807–817.
  • Brayden DJ, Alonso M-J. Oral delivery of peptides: opportunities and issues for translation. Adv Drug Deliv Rev. 2016;106:193–195.
  • Lakkireddy HR, Urmann M, Besenius M, et al. Oral delivery of diabetes peptides - Comparing standard formulations incorporating functional excipients and nanotechnologies in the translational context. Adv Drug Deliv Rev. 2016;106:196–222.
  • Drucker DJ. Advances in oral peptide therapeutics. Nat Rev Drug Discov. 2019.
  • Khafagy E-S, Morishita M, Onuki Y, et al. Current challenges in non-invasive insulin delivery systems: A comparative review. Adv Drug Deliv Rev. 2007;59:1521–1546.
  • Durán‐Lobato M, Niu Z, Alonso MJ. Oral Delivery of Biologics for Precision Medicine. Adv Mater. 2019;1901935:1901935.
  • Maher S, Mrsny RJ, Brayden DJ. Intestinal permeation enhancers for oral peptide delivery. Adv Drug Deliv Rev. 2016;106:277–319.
  • de la Fuente M, Csaba N, Garcia-Fuentes M, et al. Nanoparticles as protein and gene carriers to mucosal surfaces. Nanomedicine. 2008;3:845–857.
  • Herrero EP, Alonso MJ, Csaba N. Polymer-based oral peptide nanomedicines. Ther Deliv. 2012;3:657–668.
  • Nair LS, Laurencin CT. Biodegradable polymers as biomaterials. Prog Polym Sci. 2007;32:762–798.
  • González-Aramundiz JV, Lozano MV, Sousa-Herves A, et al. Polypeptides and polyaminoacids in drug delivery. Expert Opin Drug Deliv. 2012;9:183–201.
  • Copolovici DM, Lupitu AI. Peptide-based systems for drug delivery. Pept Appl Biomed Biotechnol Bioeng Elsevier. 2018; 409–429.
  • Henninot A, Collins JC, Nuss JM. The Current State of Peptide Drug Discovery: back to the Future? J. Med Chem. 2018;61:1382–1414.
  • Ausländer S, Ausländer D, Fussenegger M. Synthetic biology-the synthesis of biology. Angew Chemie Int Ed. 2017;56:6396–6419.
  • Ageitos JM, Baker PJ, Sugahara M, et al. Proteinase K-catalyzed synthesis of linear and star oligo(l-phenylalanine) conjugates. Biomacromolecules. 2013;14:3635–3642.
  • Jaradat DMM. Thirteen decades of peptide synthesis: key developments in solid phase peptide synthesis and amide bond formation utilized in peptide ligation. Amino Acids. 2018;50:39–68.
  • Conejos-Sánchez I, Duro-Castano A, Birke A, et al. A controlled and versatile NCA polymerization method for the synthesis of polypeptides. Polym Chem. 2013;4:3182.
  • Guzman F, Barberis S, Illanes A. Peptide synthesis: chemical or enzymatic. Electron J Biotechnol. 2007;10.
  • Tsuchiya K, Numata K. Chemoenzymatic synthesis of polypeptides for use as functional and structural materials. Macromol Biosci. 2017;17.
  • Zagorodko O, Arroyo-Crespo JJ, Nebot VJ, et al. Polypeptide-based conjugates as therapeutics: opportunities and challenges. Macromol Biosci. 2017;17:1600316.
  • Gentilucci L, De Marco R, Cerisoli L. Chemical modifications designed to improve peptide stability: incorporation of non-natural amino acids, pseudo-peptide bonds, and cyclization. Curr Pharm Des. 2010;16:3185–3203.
  • García-Pindado J, Royo S, Teixidó M, et al. Bike peptides: a ride through the membrane. J Pept Sci. 2017;23:294–302.
  • Barz M, Luxenhofer R, Zentel R, et al. Overcoming the PEG-addiction: well-defined alternatives to PEG, from structure-property relationships to better defined therapeutics. Polym Chem. 2011;2:1900–1918.
  • Suk JS, Xu Q, Kim N, et al. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev. 2016;99:28–51.
  • Chow D, Nunalee ML, Lim DW, et al. Peptide-based biopolymers in biomedicine and biotechnology. Mater Sci Eng R Rep. 2008;62:125–155.
  • Duro-Castano A, Conejos-Sánchez I, Vicent M. Peptide-Based Polymer Therapeutics. Polymers (Basel). 2014;6:515–551.
  • Duncan R. The dawning era of polymer therapeutics. Nat Rev Drug Discov. 2003;2:347–360.
  • Alphandéry E, Grand-Dewyse P, Lefèvre R, et al. Cancer therapy using nanoformulated substances: scientific, regulatory and financial aspects. Expert Rev Anticancer Ther. 2015;15:1233–1255.
  • Markovsky E, Baabur-Cohen H, Satchi-Fainaro R. Anticancer polymeric nanomedicine bearing synergistic drug combination is superior to a mixture of individually-conjugated drugs. J Control Release. 2014;187:145–157.
  • Drucker DJ. Advances in oral peptide therapeutics. Nat Rev Drug Discov. 2020;19:277–289.
  • Khafagy E-S MM. Oral biodrug delivery using cell-penetrating peptide. Adv Drug Deliv Rev. 2012;64:531–539.
  • Łukasiewicz S, Szczepanowicz K. In vitro interaction of polyelectrolyte nanocapsules with model cells. Langmuir. 2014;30:1100–1107.
  • Thwala LN, Delgado DP, Leone K, et al. Protamine nanocapsules as carriers for oral peptide delivery. J Control Release. 2018;291:157–168.
  • Bakhru SH, Furtado S, Morello AP, et al. Oral delivery of proteins by biodegradable nanoparticles. Adv Drug Deliv Rev. 2013;65:811–821.
  • Ciappellano SG, Tedesco E, Venturini M, et al. In vitro toxicity assessment of oral nanocarriers. Adv Drug Deliv Rev. 2016;106:381–401.
  • Sánchez-Navarro M, Garcia J, Giralt E, et al. Using peptides to increase transport across the intestinal barrier. Adv Drug Deliv Rev. 2016;106:355–366.
  • Jain A, Jain A, Gulbake A, et al. Peptide and protein delivery using new drug delivery systems. Crit Rev Ther Drug Carrier Syst. 2013;30:293–329.
  • Patra JK, Das G, Fraceto LF, et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnology. 2018;16:1–33.
  • Thwala LN, Santander-Ortega MJ, Lozano MV, et al. Functionalized polymeric nanostructures for mucosal drug delivery. 2018; Amsterdam (The Netherlands): Elsevier Inc.. Biomed. Appl. Funct. Nanomater. Concepts, Dev. Clin. Transl.
  • Tesauro D, Accardo A, Diaferia C, et al. Peptide-based drug-delivery systems in biotechnological applications: recent advances and perspectives. Molecules. 2019;24:351.
  • Oyarzun-Ampuero FA, Goycoolea FM, Torres D, et al. A new drug nanocarrier consisting of polyarginine and hyaluronic acid. Eur J Pharm Biopharm. 2011;79:54–57.
  • Guzman F, Barberis S, Illanes A. Peptide synthesis: chemical or enzymatic. Electron J Biotechnol. 2007;10:2.
  • Tsuchiya K, Numata K. Chemoenzymatic Synthesis of Polypeptides for Use as Functional and Structural Materials. Macromol Biosci. 2017;17:1700177.
  • Li C. Poly(L-glutamic acid)-anticancer drug conjugates. Adv Drug Deliv Rev. 2002;54:695–713.
  • Prego C, Torres D, Alonso MJ. The potential of chitosan for the oral administration of peptides. Expert Opin Drug Deliv. 2005;2:843–854.
  • Kim J, Ramasamy T, Choi JY, et al. PEGylated polypeptide lipid nanocapsules to enhance the anticancer efficacy of erlotinib in non-small cell lung cancer. Colloids Surf B Biointerfaces. 2017;150:393–401.
  • Lollo G, Rivera-Rodriguez GR, Bejaud J, et al. Polyglutamic acid-PEG nanocapsules as long circulating carriers for the delivery of docetaxel. Eur J Pharm Biopharm. 2014;87:47–54.
  • Shu S, Zhang X, Teng D, et al. Polyelectrolyte nanoparticles based on water-soluble chitosan-poly(l-aspartic acid)-polyethylene glycol for controlled protein release. Carbohydr Res. 2009;344:1197–1204.
  • Abellan-Pose R, Teijeiro-Valiño C, Santander-Ortega MJ, et al. Polyaminoacid nanocapsules for drug delivery to the lymphatic system: effect of the particle size. Int J Pharm. 2016;509:107–117.
  • Sonaje K, Lin KJ, Wey SP, et al. Biodistribution, pharmacodynamics and pharmacokinetics of insulin analogues in a rat model: oral delivery using pH-Responsive nanoparticles vs subcutaneous injection. Biomaterials. 2010;31:6849–6858.
  • Sonaje K, Chen YJ, Chen HL, et al. Enteric-coated capsules filled with freeze-dried chitosan/poly(γ-glutamic acid) nanoparticles for oral insulin delivery. Biomaterials. 2010;31:3384–3394.
  • Su FY, Lin KJ, Sonaje K, et al. Protease inhibition and absorption enhancement by functional nanoparticles for effective oral insulin delivery. Biomaterials. 2012;33:2801–2811.
  • Zhang P, Xu Y, Zhu X, et al. Goblet cell targeting nanoparticle containing drug-loaded micelle cores for oral delivery of insulin. Int J Pharm. 2015;496:993–1005.
  • Griffin BT, Guo J, Presas E, et al. Pharmacokinetic, pharmacodynamic and biodistribution following oral administration of nanocarriers containing peptide and protein drugs. Adv Drug Deliv Rev. 2016;106:367–380.
  • Hu W, Ying M, Zhang S, et al. Poly(amino acid)-based carrier for drug delivery systems. J Biomed Nanotechnol. 2018;14:1359–1374.
  • Ageitos JM, Chuah JA, Numata K. Chemo-enzymatic synthesis of linear and branched cationic peptides: evaluation as gene carriers. Macromol Biosci. 2015;15:990–1003.
  • Florence A, Sakthivel T, Toth I. Oral uptake and translocation of a polylysine dendrimer with a lipid surface. J Control Release. 2000;65:253–259.
  • Olive C, Toth I, Jackson D. Technological advances in antigen delivery and synthetic peptide vaccine developmental strategies. Mini-Rev Med Chem. 2001;1: 429–438.
  • Muriel Mundo JL, Liu J, Tan Y, et al. Characterization of electrostatic interactions and complex formation of ɣ-poly-glutamic acid (PGA) and ɛ-poly-L-lysine (PLL) in aqueous solutions. Food Res Int. 2020;128:108781.
  • Grigoras AG. Polymer-lipid hybrid systems used as carriers for insulin delivery Nanomedicine Nanotechnology. Biol Med. 2017;13:2425–2437.
  • Fang Y, Xue J, Ke L, et al. Polymeric lipid vesicles with pH-responsive turning on–off membrane for programed delivery of insulin in GI tract. Drug Deliv. 2016;23:3582–3593.
  • Shi K, Fang Y, Kan Q, et al. Surface functional modification of self-assembled insulin nanospheres for improving intestinal absorption. Int J Biol Macromol. 2015;74:49–60.
  • Lozano MV, Lollo G, Alonso-Nocelo M, et al. Polyarginine nanocapsules: a new platform for intracellular drug delivery. J Nanopart Res. 2013;15:1515.
  • Correia-Pinto JF, Peleteiro M, Csaba N, et al. Multi-enveloping of particulated antigens with biopolymers and immunostimulant polynucleotides. J Drug Deliv Sci Technol. 2015;30:424–434.
  • Serova M, De Gramont A, Bieche I, et al. Predictive factors of sensitivity to elisidepsin, a novel Kahalalide F-derived marine compound. Mar Drugs. 2013;11:944–959.
  • Lollo G, Gonzalez-Paredes A, Garcia-Fuentes M, et al. Polyarginine nanocapsules as a potential oral peptide delivery carrier. J Pharm Sci. 2017;106:611–618.
  • Niu Z, Tedesco E, Benetti F, et al. Rational design of polyarginine nanocapsules intended to help peptides overcoming intestinal barriers. J Control Release. 2017;263:4–17.
  • Gonzalez-Paredes A, Torres D, Alonso MJ. Polyarginine nanocapsules: A versatile nanocarrier with potential in transmucosal drug delivery. Int J Pharm. 2017;529:474–485.
  • Reimondez-Troitiño S, González-Aramundiz JV, Ruiz-Bañobre J, et al. Versatile protamine nanocapsules to restore miR-145 levels and interfere tumor growth in colorectal cancer cells. Eur J Pharm Biopharm. 2019;142:449–459.
  • Reimondez-Troitiño S, Alcalde I, Csaba N, et al. Polymeric nanocapsules: a potential new therapy for corneal wound healing. Drug Deliv Transl Res. 2016;6:708–721.
  • González-Aramundiz JV, Peleteiro Olmedo M, González-Fernández Á, et al. Protamine-based nanoparticles as new antigen delivery systems. Eur J Pharm Biopharm. 2015;97:51–59.
  • Jakubiak P, Thwala LN, Cadete A, et al. Solvent-free protamine nanocapsules as carriers for mucosal delivery of therapeutics. Eur Polym J. 2017;93:695–705.
  • Dacoba TG, Olivera A, Torres D, et al. Modulating the immune system through nanotechnology. Semin Immunol. 2017;34:78–102.
  • Thwala LN, Beloqui A, Csaba NS, et al. The interaction of protamine nanocapsules with the intestinal epithelium: A mechanistic approach. J Control Release. 2016;243:109–120.
  • Sharma S, Jyoti K, Sinha R, et al. Protamine coated proliposomes of recombinant human insulin encased in Eudragit S100 coated capsule offered improved peptide delivery and permeation across Caco-2 cells. Mater Sci Eng C. 2016;67:378–385.
  • Beloqui A, Solinís MÁ, Des RA, et al. Dextran–protamine coated nanostructured lipid carriers as mucus-penetrating nanoparticles for lipophilic drugs. Int J Pharm. 2014;468:105–111.
  • Beloqui A, Solinís MÁ, Rodríguez-Gascón A, et al. Nanostructured lipid carriers: promising drug delivery systems for future clinics Nanomedicine Nanotechnology. Biol Med. 2016;12:143–161.
  • Beloqui A, Memvanga PB, Coco R, et al. A comparative study of curcumin-loaded lipid-based nanocarriers in the treatment of inflammatory bowel disease. Colloids Surf B Biointerfaces. 2016;143:327–335.
  • Kim E-J, Shim G, Kim K, et al. Hyaluronic acid complexed to biodegradable poly L-arginine for targeted delivery of siRNAs. J Gene Med. 2009;11:791–803.
  • Umerska A, Paluch KJ, Martinez M-JS, et al. Self-assembled hyaluronate/protamine polyelectrolyte nanoplexes: synthesis, stability, biocompatibility and potential use as peptide carriers. J Biomed Nanotechnol. 2014;10:3658–3673.
  • Zhang L, Shi Y, Song Y, et al. The use of low molecular weight protamine to enhance oral absorption of exenatide. Int J Pharm. 2018;547:265–273.
  • Park YJ, Chang L-C, Liang JF, et al. Nontoxic membrane translocation peptide from protamine, low molecular weight protamine (LMWP), for enhanced intracellular protein delivery: in vitro and in vivo study. Faseb J. 2005;19:1555–1557.
  • Sheng J, He H, Han L, et al. Enhancing insulin oral absorption by using mucoadhesive nanoparticles loaded with LMWP-linked insulin conjugates. J Control Release. 2016;233:181–190.
  • Song Y, Shi Y, Zhang L, et al. Oral delivery system for low molecular weight protamine-dextran-poly(lactic-co-glycolic acid) carrying exenatide to overcome the mucus barrier and improve intestinal targeting efficiency. Nanomedicine. 2019;14:989–1009.
  • Thwala LN, Préat V, Csaba NS. Emerging delivery platforms for mucosal administration of biopharmaceuticals: a critical update on nasal, pulmonary and oral routes. Expert Opin Drug Deliv. 2017;14:23–36.
  • Morishita M, Kamei N, Ehara J, et al. A novel approach using functional peptides for efficient intestinal absorption of insulin. J Control Release. 2007;118:177–184.
  • Niu Z, Samaridou E, Jaumain E, et al. PEG-PGA enveloped octaarginine-peptide nanocomplexes: an oral peptide delivery strategy. J Control Release. 2018;276:125–139.
  • Huang A, Su Z, Li S, et al. Oral absorption enhancement of salmon calcitonin by using both N-trimethyl chitosan chloride and oligoarginines-modified liposomes as the carriers. Drug Deliv. 2014;21:388–396.
  • Liu X, Liu C, Zhang W, et al. Oligoarginine-modified biodegradable nanoparticles improve the intestinal absorption of insulin. Int J Pharm. 2013;448:159–167.
  • Niu Z, Conejos-Sánchez I, Griffin BT, et al. Lipid-based nanocarriers for oral peptide delivery. Adv Drug Deliv Rev. 2016;106:337–354.
  • Lv Hui-Xia H, Zhang Z-H, Zhang Y, et al. Solid lipid nanoparticles modified with stearic acid–octaarginine for oral administration of insulin. Int J Nanomedicine. 2012;7:3333.
  • Kristensen M, de Groot AM, Berthelsen J, et al. Conjugation of cell-penetrating peptides to parathyroid hormone affects its structure, potency, and transepithelial permeation. Bioconjug Chem. 2015;26:477–488.
  • Kristensen M, Nielsen HM. Cell-penetrating peptides as carriers for oral delivery of biopharmaceuticals. Basic Clin Pharmacol Toxicol. 2016;118:99–106.
  • Pujals S, Fernández-Carneado J, López-Iglesias C, et al. Mechanistic aspects of CPP-mediated intracellular drug delivery: relevance of CPP self-assembly. Biochim Biophys Acta - Biomembr. 2006;1758:264–279.
  • Kamei N, Morishita M, Eda Y, et al. Usefulness of cell-penetrating peptides to improve intestinal insulin absorption. J Control Release. 2008;132:21–25.
  • Jiang K, Gao X, Shen Q, et al. Discerning the composition of penetratin for safe penetration from cornea to retina. Acta Biomater. 2017;63:123–134.
  • Kristensen M, Franzyk H, Klausen MT, et al. Penetratin-Mediated Transepithelial Insulin Permeation: importance of Cationic Residues and pH for Complexation and Permeation. Aaps J. 2015;17:1200–1209.
  • Khafagy E-S, Iwamae R, Kamei N, et al. Region-dependent role of cell-penetrating peptides in insulin absorption across the rat small intestinal membrane. Aaps J. 2015;17:1427–1437.
  • Barbari GR, Dorkoosh F, Amini M, et al. Synthesis and characterization of a novel peptide-grafted cs and evaluation of its nanoparticles for the oral delivery of insulin, in vitro, and in vivo study. Int J Nanomedicine. 2018;13:5127–5138.
  • Alsulays BB, Anwer MK, Soliman GA, et al. Impact of penetratin stereochemistry on the oral bioavailability of insulin-loaded solid lipid nanoparticles. Int J Nanomedicine. 2019;14:9127–9138.
  • Garcia J, Fernández-Blanco Á, Teixidó M, et al. Polyarginine Lipopeptides as Intestinal Permeation Enhancers. ChemMedChem. 2018;13:2045–2052.
  • Morishita M, Peppas NA. Is the oral route possible for peptide and protein drug delivery? Drug Discov Today. 2006;11:905–910.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.