1,366
Views
45
CrossRef citations to date
0
Altmetric
Review

Poly(beta-amino ester)s as gene delivery vehicles: challenges and opportunities

, , ORCID Icon & ORCID Icon
Pages 1395-1410 | Received 13 May 2020, Accepted 13 Jul 2020, Published online: 31 Jul 2020

References

  • Giacca M, Zacchigna S. Virus-mediated gene delivery for human gene therapy. J Control Release. 2012 Jul 20;161(2):377–388.
  • Miliotou AN, Papadopoulou LC. CAR T-cell Therapy. A New Era in Cancer Immunotherapy. Curr Pharm Biotechnol. 2018;19(1):5–18.
  • Trapani I, Auricchio A. Seeing the Light after 25 Years of Retinal Gene Therapy. Trends Mol Med. 2018 Aug;24(8):669–681.
  • Nayerossadat N, Maedeh T, Ali PA. Viral and nonviral delivery systems for gene delivery. Adv Biomed Res. 2012;1:27.
  • Lostalé-Seijo I, Montenegro J. Synthetic materials at the forefront of gene delivery. Nat Rev Chem. 2018;2(10):258–277.
  • Zylberberg C, Gaskill K, Pasley S, et al. Engineering liposomal nanoparticles for targeted gene therapy. Gene Ther. 2017 Aug;24(8):441–452.
  • Lai WF. Cyclodextrins in non-viral gene delivery. Biomaterials. 2014 Jan;35(1):401–411.
  • Yang J, Zhang Q, Chang H, et al. Surface-engineered dendrimers in gene delivery. Chem Rev. 2015 Jun 10;115(11):5274–5300.
  • Ahmed M. Peptides, polypeptides and peptide-polymer hybrids as nucleic acid carriers. Biomater Sci. 2017 Oct 24;5(11):2188–2211.
  • Alipour M, Majidi A, Molaabasi F, et al. In vivo tumor gene delivery using novel peptideticles: pH-responsive and ligand targeted core-shell nanoassembly. Int J Cancer. 2018 Oct 15;143(8):2017–2028.
  • Sadeghian F, Hosseinkhani S, Alizadeh A, et al. Design, engineering and preparation of a multi-domain fusion vector for gene delivery. Int J Pharm. 2012 May 10;427(2):393–399.
  • Peng L, Wagner E. Polymeric Carriers for Nucleic Acid Delivery: current Designs and Future Directions. Biomacromolecules. 2019 Oct 14;20(10):3613–3626.
  • Yue YA, Jin F, Deng R, et al. Revisit complexation between DNA and polyethylenimine - Effect of length of free polycationic chains on gene transfection. J Control Release. 2011 May 30;152(1):143–151.
  • Zhang P, Wagner E. History of Polymeric Gene Delivery Systems. Top Curr Chem (Cham). 2017 Apr;375(2):26.
  • Shen W, Wang R, Fan Q, et al. Natural Polyphenol Inspired Polycatechols for Efficient siRNA Delivery. CCS Chemistry. 2020;2(3):146–157.
  • Leiro V, Garcia JP, Tomas H, et al. The present and the future of degradable dendrimers and derivatives in theranostics. Bioconjug Chem. 2015 Jul 15;26(7):1182–1197.
  • Huang D, Wu D. Biodegradable dendrimers for drug delivery. Mater Sci Eng C Mater Biol Appl. 2018 Sep;1(90):713–727.
  • Chuan D, Jin T, Fan R, et al. Chitosan for gene delivery: methods for improvement and applications. Adv Colloid Interface Sci. 2019;268:25–38.
  • Lynn DM, Langer R. Degradable poly (beta-amino esters): synthesis, characterization, and self-assembly with plasmid DNA. J Am Chem Soc. 2000;122(44):10761–10768.
  • Akinc A, Lynn DM, Anderson DG, et al. Parallel synthesis and biophysical characterization of a degradable polymer library for gene delivery. J Am Chem Soc. 2003 May 7;125(18):5316–5323.
  • JJ G, Langer R, DG A. A combinatorial polymer library approach yields insight into nonviral gene delivery. Acc Chem Res. 2008 Jun;41(6):749–759.
  • Tzeng SY, Green JJ. Polymeric Nucleic Acid Delivery for Immunoengineering. Curr Opin Biomed Eng. 2018 Sep;7:42–50.
  • Green JJ, Zugates GT, Tedford NC, et al. Combinatorial modification of degradable polymers enables transfection of human cells comparable to adenovirus. Adv Mater. 2007 Oct 5;19(19):2836–2842.
  • Anderson DG, Lynn DM, Langer R. Semi-automated synthesis and screening of a large library of degradable cationic polymers for gene delivery. Angew Chem Int Ed. 2003;42(27):3153–3158.
  • Kowalski PS, Palmiero UC, Huang YX, et al. Ionizable Amino-Polyesters Synthesized via Ring Opening Polymerization of Tertiary Amino-Alcohols for Tissue Selective mRNA Delivery. Adv Mater. 2018;30(34):e1801151.
  • Eltoukhy AA, Siegwart DJ, Alabi CA, et al. *Effect of molecular weight of amine end-modified poly(beta-amino ester)s on gene delivery efficiency and toxicity. Biomaterials. 2012 May;33(13):3594–3603.
  • Sunshine J, Green JJ, Mahon KP, et al. Small-Molecule End-Groups of Linear Polymer Determine Cell-Type Gene-Delivery Efficacy. Adv Mater. 2009 Dec 28;21(48):4947–4951.
  • Zamboni CG, Kozielski KL, Vaughan HJ, et al. Polymeric nanoparticles as cancer-specific DNA delivery vectors to human hepatocellular carcinoma. J Control Release. 2017 10;Oct(263):18–28.
  • Tzeng SY, Higgins LJ, Pomper MG, et al. Biomaterial-mediated cancer-specific DNA delivery to liver cell cultures using synthetic poly(beta-amino ester)s. J Biomed Mater Res A. 2013 Jul;101(7):1837–1845.
  • KL K, SY T, De MBAH, et al. Bioreducible Cationic Polymer-Based Nanoparticles for Efficient and Environmentally Triggered Cytoplasmic siRNA Delivery to Primary Human Brain Cancer Cells. ACS Nano. 2014 Apr;8(4):3232–3241.
  • Tzeng SY, Guerrero-Cazares H, Martinez EE, et al. Non-viral gene delivery nanoparticles based on poly(beta-amino esters) for treatment of glioblastoma. Biomaterials. 2011 Aug;32(23):5402–5410.
  • Zhang C, An T, Wang D, et al. Stepwise pH-responsive nanoparticles containing charge-reversible pullulan-based shells and poly(beta-amino ester)/poly(lactic-co-glycolic acid) cores as carriers of anticancer drugs for combination therapy on hepatocellular carcinoma. J Control Release. 2016 Mar;28(226):193–204.
  • Mastorakos P, da Silva AL, Chisholm J, et al. Highly compacted biodegradable DNA nanoparticles capable of overcoming the mucus barrier for inhaled lung gene therapy. Proc Natl Acad Sci U S A. 2015 Jul 14;112(28):8720–8725.
  • Fields RJ, Cheng CJ, Quijano E, et al. Surface modified poly(beta amino ester)-containing nanoparticles for plasmid DNA delivery. J Control Release. 2012 Nov 28;164(1):41–48.
  • Palmiero UC, Kaczmarek JC, Fenton OS, et al. Poly(beta-amino ester)-co-poly(caprolactone) Terpolymers as Nonviral Vectors for mRNA Delivery In Vitro and In Vivo. Adv Healthc Mater. 2018 Jul 25;7:14.
  • Anchordoquy TJ, Koe GS. Physical stability of nonviral plasmid-based therapeutics. J Pharm Sci. 2000 Mar;89(3):289–296.
  • Guerrero-Cazares H, Tzeng SY, Young NP, et al. Biodegradable polymeric nanoparticles show high efficacy and specificity at DNA delivery to human glioblastoma in vitro and in vivo. ACS Nano. 2014 May 27;8(5):5141–5153.
  • Fornaguera C, Castells-Sala C, Lazaro MA, et al. Development of an optimized freeze-drying protocol for OM-PBAE nucleic acid polyplexes. Int J Pharm. 2019 Oct;5(569):118612.
  • TT S, SB S, HF M, et al. In situ programming of leukaemia-specific T cells using synthetic DNA nanocarriers. Nat Nanotechnol. 2017 Aug;12(8):813–820.
  • Kozielski KL, Ruiz-Valls A, Tzeng SY, et al. Cancer-selective nanoparticles for combinatorial siRNA delivery to primary human GBM in vitro and in vivo. Biomaterials. 2019;209:79–87.
  • Wilson DR, Sen R, Sunshine JC, et al. Biodegradable STING agonist nanoparticles for enhanced cancer immunotherapy. Nanomedicine. 2018 Feb;14(2):237–246.
  • Patel AK, Kaczmarek JC, Bose S, et al. Inhaled Nanoformulated mRNA Polyplexes for Protein Production in Lung Epithelium. Adv Mater. 2019 Feb;31(8):e1805116.
  • Sunshine JC, Peng DY, Green JJ. Uptake and transfection with polymeric nanoparticles are dependent on polymer end-group structure, but largely independent of nanoparticle physical and chemical properties. Mol Pharm. 2012 Nov 5;9(11):3375–3383.
  • Zhao J, Yang L, Huang P, et al. Synthesis and characterization of low molecular weight polyethyleneimine-terminated Poly(beta-amino ester) for highly efficient gene delivery of minicircle DNA. J Colloid Interface Sci. 2016 Feb;1(463):93–98.
  • Tzeng SY, Green JJ. Subtle changes to polymer structure and degradation mechanism enable highly effective nanoparticles for siRNA and DNA delivery to human brain cancer. Adv Healthc Mater. 2013 Mar;2(3):468–480.
  • Lopez-Bertoni H, Kozielski KL, Rui Y, et al. Bioreducible Polymeric Nanoparticles Containing Multiplexed Cancer Stem Cell Regulating miRNAs Inhibit Glioblastoma Growth and Prolong Survival. Nano Lett. 2018 Jul 11;18(7):4086–4094.
  • Keeney M, Ong SG, Padilla A, et al. Development of poly(beta-amino ester)-based biodegradable nanoparticles for nonviral delivery of minicircle DNA. ACS Nano. 2013 Aug 27;7(8):7241–7250.
  • Anderson DG, Akinc A, Hossain N, et al. Structure/property studies of polymeric gene delivery using a library of poly(beta-amino esters). Mol Ther. 2005 Mar;11(3):426–434.
  • Zugates GT, Peng WD, Zumbuehl A, et al. Rapid optimization of gene delivery by parallel end-modification of poly(beta-amino ester)s. Mol Ther. 2007 Jul;15(7):1306–1312.
  • Hong CA, Eltoukhy AA, Lee H, et al. Dendrimeric siRNA for Efficient Gene Silencing. Angew Chem Int Ed. 2015;54(23):6740–6744.
  • Cutlar L, Zhou D, Gao Y, et al. Highly Branched Poly(β-Amino Esters): synthesis and Application in Gene Delivery. Biomacromolecules. 2015;16(9):2609–2617.
  • Zhou D, Cutlar L, Gao Y, et al. The transition from linear to highly branched poly(beta-amino ester)s: branching matters for gene delivery. Sci Adv. 2016 Jun;2(6):e1600102.
  • Wilson DR, Rui Y, Siddiq K, et al. Differentially Branched Ester Amine Quadpolymers with Amphiphilic and pH-Sensitive Properties for Efficient Plasmid DNA Delivery. Mol Pharm. 2019 Feb 4;16(2):655–668.
  • Tsai SJ, Andorko JI, Zeng XB, et al. Polyplex interaction strength as a driver of potency during cancer immunotherapy. Nano Res. 2018 Oct;11(10):5642–5656.
  • Bhise NS, Shmueli RB, Gonzalez J, et al. A Novel Assay for Quantifying the Number of Plasmids Encapsulated by Polymer Nanoparticles. Small. 2012 Feb 6;8(3):367–373.
  • Eltoukhy AA, Chen DL, Alabi CA, et al. Degradable Terpolymers with Alkyl Side Chains Demonstrate Enhanced Gene Delivery Potency and Nanoparticle Stability. Adv Mater. 2013 Mar 13;25(10):1487–1493.
  • Rui Y, Varanasi M, Mendes S, et al. Poly(Beta-Amino Ester) Nanoparticles Enable Nonviral Delivery of CRISPR-Cas9 Plasmids for Gene Knockout and Gene Deletion. Mol Ther Nucleic Acids. 2020 Apr 21;20:661–672.
  • Rui Y, DR W, Choi J, et al. Carboxylated branched poly(beta-amino ester) nanoparticles enable robust cytosolic protein delivery and CRISPR-Cas9 gene editing. Sci Adv. 2019 Dec;5(12):eaay3255.
  • Fields RJ, Cheng CJ, Quijano E, et al. Surface modified poly(beta amino ester)-containing nanoparticles for plasmid DNA delivery. J Control Release. 2012 Nov 28;164(1):41–48.
  • Suk JS, Kim AJ, Trehan K, et al. Lung gene therapy with highly compacted DNA nanoparticles that overcome the mucus barrier. J Control Release. 2014 Mar;28(178):8–17.
  • van den Berg JH, Oosterhuis K, Hennink WE, et al. Shielding the cationic charge of nanoparticle-formulated dermal DNA vaccines is essential for antigen expression and immunogenicity. J Control Release. 2010 Jan 25;141(2):234–240.
  • Andorko JI, Hess KL, Pineault KG, et al. Intrinsic immunogenicity of rapidly-degradable polymers evolves during degradation. Acta Biomater. 2016 Mar;1(32):24–34.
  • Dold NM, Zeng Q, Zeng X, et al. A poly(beta-amino ester) activates macrophages independent of NF-kappaB signaling. Acta Biomater. 2018 Mar;1(68):168–177.
  • Andorko JI, Pineault KG, Jewell CM. Impact of molecular weight on the intrinsic immunogenic activity of poly(beta amino esters). J Biomed Mater Res A. 2017 Apr;105(4):1219–1229.
  • Martens TF, Remaut K, Demeester J, et al. Intracellular delivery of nanomaterials: how to catch endosomal escape in the act. Nano Today. 2014;9(3):344–364.
  • Jiang Y, Lu Q, Wang Y, et al. Quantitating Endosomal Escape of a Library of Polymers for mRNA Delivery. Nano Lett. 2020 Feb 12;20(2):1117–1123.
  • Sahay G, Querbes W, Alabi C, et al. Efficiency of siRNA delivery by lipid nanoparticles is limited by endocytic recycling. Nat Biotechnol. 2013 Jul;31(7):653–658.
  • Gilleron J, Querbes W, Zeigerer A, et al. Image-based analysis of lipid nanoparticle-mediated siRNA delivery, intracellular trafficking and endosomal escape. Nat Biotechnol. 2013 Jul;31(7):638–646.
  • Su XF, Fricke J, Kavanagh DG, et al. In Vitro and in Vivo mRNA Delivery Using Lipid-Enveloped pH-Responsive Polymer Nanoparticles. Mol Pharm. 2011 May-Jun;8(3):774–787.
  • Vandenbroucke RE, De Geest BG, Bonne S, et al. Prolonged gene silencing in hepatoma cells and primary hepatocytes after small interfering RNA delivery with biodegradable poly(beta-amino esters). J Gene Med. 2008 Jul;10(7):783–794.
  • Kilchrist KV, Dimobi SC, Jackson MA, et al. Gal8 Visualization of Endosome Disruption Predicts Carrier-Mediated Biologic Drug Intracellular Bioavailability. ACS Nano. 2019 Feb;13(2):1136–1152.
  • Routkevitch D, Sudhakar D, Conge MJ, et al. Efficiency of Cytosolic Delivery with Poly(beta-amino ester) Nanoparticles is Dependent on the Effective pKa of the Polymer. ACS Biomater Sci Eng. 2020;6(6):3411–3421.
  • Karlsson J, Vaughan HJ, Green JJ. Biodegradable Polymeric Nanoparticles for Therapeutic Cancer Treatments. Annu Rev Chem Biomol Eng. 2018 Jun;7(9):105–127.
  • Sankaranarayanan J, Mahmoud EA, Kim G, et al. Multiresponse Strategies To Modulate Burst Degradation and Release from Nanoparticles. Acs Nano. 2010 Oct;4(10):5930–5936.
  • Monnery BD, Wright M, Cavill R, et al. Cytotoxicity of polycations: relationship of molecular weight and the hydrolytic theory of the mechanism of toxicity. Int J Pharm. 2017 Apr 15;521(1–2):249–258.
  • Deng X, Zheng N, Song Z, et al. Trigger-responsive, fast-degradable poly(beta-amino ester)s for enhanced DNA unpackaging and reduced toxicity. Biomaterials. 2014 Jun;35(18):5006–5015.
  • Zhang B, Ma X, Murdoch W, et al. Bioreducible poly(amido amine)s with different branching degrees as gene delivery vectors. Biotechnol Bioeng. 2013 Mar;110(3):990–998.
  • Tzeng SY, Hung BP, Grayson WL, et al. Cystamine-terminated poly(beta-amino ester)s for siRNA delivery to human mesenchymal stem cells and enhancement of osteogenic differentiation. Biomaterials. 2012 Nov;33(32):8142–8151.
  • Karlsson J, Rui Y, Kozielski KL, et al. Engineered nanoparticles for systemic siRNA delivery to malignant brain tumours. Nanoscale. 2019 Nov 14;11(42):20045–20057.
  • Mastorakos P, da Silva AL, Chisholm J, et al. Highly compacted biodegradable DNA nanoparticles capable of overcoming the mucus barrier for inhaled lung gene therapy. Proc Natl Acad Sci U S A. 2015 Jul 14;112(28):8720–8725.
  • Gale EC, Roth GA, Smith AAA, et al. A Nanoparticle Platform for Improved Potency, Stability, and Adjuvanticity of Poly(I:C). Adv Ther. 2020 Jan;3(1):1900174.
  • Kim J, Mondal SK, Tzeng SY, et al. Poly(ethylene glycol)–Poly(beta-amino ester)-Based Nanoparticles for Suicide Gene Therapy Enhance Brain Penetration and Extend Survival in a Preclinical Human Glioblastoma Orthotopic Xenograft Model. ACS Biomater Sci Eng. 2020;6(5):2943–2955.
  • Leal J, Smyth HDC, Ghosh D. Physicochemical properties of mucus and their impact on transmucosal drug delivery. Int J Pharm. 2017 Oct 30;532(1):555–572.
  • Kaczmarek JC, Patel AK, Kauffman KJ, et al. Polymer-Lipid Nanoparticles for Systemic Delivery of mRNA to the Lungs. Angew Chem Int Ed Engl. 2016 Oct 24;55(44):13808–13812.
  • Kaczmarek JC, Kauffman KJ, Fenton OS, et al. Optimization of a Degradable Polymer-Lipid Nanoparticle for Potent Systemic Delivery of mRNA to the Lung Endothelium and Immune Cells. Nano Lett. 2018 Oct;18(10):6449–6454.
  • Jones CH, Chen MF, Ravikrishnan A, et al. Mannosylated poly(beta-amino esters) for targeted antigen presenting cell immune modulation. Biomaterials. 2015;37:333–344.
  • Fornaguera C, Guerra-Rebollo M, Lazaro MA, et al. In Vivo Retargeting of Poly(beta aminoester) (OM-PBAE) Nanoparticles is Influenced by Protein Corona. Adv Healthc Mater. 2019 Oct;8(19):1900849.
  • Green JJ, Chiu E, Leshchiner ES, et al. Electrostatic ligand coatings of nanoparticles enable ligand-specific gene delivery to human primary cells. Nano Lett. 2007 Apr;7(4):874–879.
  • Moffett HF, Coon ME, Radtke S, et al. Hit-and-run programming of therapeutic cytoreagents using mRNA nanocarriers. Nat Commun. 2017;30;8:Aug.
  • Zhang F, Parayath NN, Ene CI, et al. Genetic programming of macrophages to perform anti-tumor functions using targeted mRNA nanocarriers. Nature Communications.2019;10:3974.
  • Little SR, Lynn DM, Ge Q, et al. Poly-beta amino ester-containing microparticles enhance the activity of nonviral genetic vaccines. Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9534–9539.
  • Fields RJ, Quijano E, McNeer NA, et al. Modified poly(lactic-co-glycolic acid) nanoparticles for enhanced cellular uptake and gene editing in the lung. Adv Healthc Mater. 2015 Feb 18;4(3):361–366.
  • Capasso Palmiero U, Kaczmarek JC, Fenton OS, et al. Poly(beta-amino ester)-co-poly(caprolactone) Terpolymers as Nonviral Vectors for mRNA Delivery In Vitro and In Vivo. Adv Healthc Mater. 2018 7;Jul(14):e1800249.
  • van Vlerken LE, Duan Z, Little SR, et al. Biodistribution and pharmacokinetic analysis of Paclitaxel and ceramide administered in multifunctional polymer-blend nanoparticles in drug resistant breast cancer model. Mol Pharm. 2008 Jul-Aug;5(4):516–526.
  • Wang J, De G, Yue Q, et al. pH Responsive Polymer Micelles Enhances Inhibitory Efficacy on Metastasis of Murine Breast Cancer Cells. Front Pharmacol. 2018;9:543.
  • Shenoy D, Little S, Langer R, et al. Poly(ethylene oxide)-modified poly(beta-amino ester) nanoparticles as a pH-sensitive system for tumor-targeted delivery of hydrophobic drugs1. In vitro evaluations. Mol Pharm. 2005 Sep-Oct;2(5):357–366.
  • Tian Z, Xu L, Chen Q, et al. Treatment of Surgical Brain Injury by Immune Tolerance Induced by Peripheral Intravenous Injection of Biotargeting Nanoparticles Loaded With Brain Antigens. Front Immunol. 2019;10:743.
  • Clark A, Milbrandt TA, Hilt JZ, et al. Mechanical properties and dual drug delivery application of poly(lactic-co-glycolic acid) scaffolds fabricated with a poly(beta-amino ester) porogen. Acta Biomater. 2014 May;10(5):2125–2132.
  • Fisher PD, Palomino P, Milbrandt TA, et al. Improved small molecule drug release from in situ forming poly(lactic-co-glycolic acid) scaffolds incorporating poly(beta-amino ester) and hydroxyapatite microparticles. J Biomater Sci Polym Ed. 2014;25(11):1174–1193.
  • Fisher PD, Clemens J, Zach Hilt J, et al. Multifunctional poly(beta-amino ester) hydrogel microparticles in periodontal in situ forming drug delivery systems. Biomed Mater. 2016 Mar 7;11(2):025002.
  • Persano S, Guevara ML, Li Z, et al. Lipopolyplex potentiates anti-tumor immunity of mRNA-based vaccination. Biomaterials. 2017;125:81–89.
  • Brito LA, Chandrasekhar S, Little SR, et al. In vitro and in vivo studies of local arterial gene delivery and transfection using lipopolyplexes-embedded stents. J Biomed Mater Res A. 2010 Apr;93(1):325–336.
  • Lee JS, Green JJ, Love KT, et al. Gold, poly(beta-amino ester) nanoparticles for small interfering RNA delivery. Nano Lett. 2009 Jun;9(6):2402–2406.
  • Jones CH, Ravikrishnan A, Chen M, et al. Hybrid biosynthetic gene therapy vector development and dual engineering capacity. Proc Natl Acad Sci U S A. 2014 Aug 26;111(34):12360–12365.
  • Palffy R, Gardlik R, Hodosy J, et al. Bacteria in gene therapy: bactofection versus alternative gene therapy. Gene Ther. 2006 Jan;13(2):101–105.
  • Li Y, Beitelshees M, Fang L, et al. In situ pneumococcal vaccine production and delivery through a hybrid biological-biomaterial vector. Sci Adv. 2016 Jul;2(7):e1600264.
  • Jones CH, Gollakota A, Chen M, et al. Influence of molecular weight upon mannosylated bio-synthetic hybrids for targeted antigen presenting cell gene delivery. Biomaterials. 2015;58:103–111.
  • Flessner RM, Yu Y, Lynn DM. Rapid release of plasmid DNA from polyelectrolyte multilayers: a weak poly(acid) approach. Chem Commun (Camb). 2011 Jan 7;47(1):550–552.
  • Bishop CJ, Liu AL, Lee DS, et al. Layer-by-layer inorganic/polymeric nanoparticles for kinetically controlled multigene delivery. J Biomed Mater Res A. 2016 Mar;104(3):707–713.
  • Li C, Tzeng SY, Tellier LE, et al. (3-aminopropyl)-4-methylpiperazine end-capped poly(1,4-butanediol diacrylate-co-4-amino-1-butanol)-based multilayer films for gene delivery. ACS Appl Mater Interfaces. 2013 Jul 10;5(13):5947–5953.
  • DeMuth PC, Min Y, Huang B, et al. Polymer multilayer tattooing for enhanced DNA vaccination. Nat Mater. 2013 Apr;12(4):367–376.
  • Smith RC, Riollano M, Leung A, et al. Layer-by-layer platform technology for small-molecule delivery. Angew Chem Int Ed Engl. 2009;48(47):8974–8977.
  • Shah NJ, Macdonald ML, Beben YM, et al. Tunable dual growth factor delivery from polyelectrolyte multilayer films. Biomaterials. 2011 Sep;32(26):6183–6193.
  • DeMuth PC, Moon JJ, Suh H, et al. Releasable layer-by-layer assembly of stabilized lipid nanocapsules on microneedles for enhanced transcutaneous vaccine delivery. ACS Nano. 2012 Sep 25;6(9):8041–8051.
  • Keeney M, Onyiah S, Zhang Z, et al. Modulating polymer chemistry to enhance non-viral gene delivery inside hydrogels with tunable matrix stiffness. Biomaterials. 2013 Dec;34(37):9657–9665.
  • Akinc A, Maier MA, Manoharan M, et al. The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs. Nat Nanotechnol. 2019 Dec;14(12):1084–1087.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.