2,105
Views
22
CrossRef citations to date
0
Altmetric
Review

Self-assembled non-covalent protein-drug nanoparticles: an emerging delivery platform for anti-cancer drugs

ORCID Icon & ORCID Icon
Pages 1437-1458 | Received 02 Jun 2020, Accepted 19 Aug 2020, Published online: 04 Sep 2020

References

  • Elzoghby AO, Elgohary MM, Kamel NM. Chapter six - implications of protein- and peptide-based nanoparticles as potential vehicles for anticancer drugs. In: Donev R, editor. Advances in protein chemistry and structural biology. Vol. 98. San Diego (CA): Elsevier Academic Press; 2015. p. 169–221.
  • Elzoghby AO, Samy WM, Elgindy NA. Albumin-based nanoparticles as potential controlled release drug delivery systems. J Control Release. 2012 Jan 30;157(2):168–182.
  • Chen L, Remondetto GE, Subirade M. Food protein-based materials as nutraceutical delivery systems. Trends Food Sci Technol. 2006 May 01;17(5):272–283.
  • Mao SJ, Hou SX, He R, et al. Uptake of albumin nanoparticle surface modified with glycyrrhizin by primary cultured rat hepatocytes. World J Gastroenterol. 2005 May 28;11(20):3075–3079.
  • Kremer P, Wunder A, Sinn H, et al. Laser-induced fluorescence detection of malignant gliomas using fluorescein-labeled serum albumin: experimental and preliminary clinical results. Neurol Res. 2000 Jul;22(5):481–489.
  • Maeda H, Wu J, Sawa T, et al. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release. 2000 Mar 1;65(1–2):271–284.
  • Rempel SA, Ge S, Gutierrez JA. SPARC: a potential diagnostic marker of invasive meningiomas. Clin Cancer Res. 1999 Feb;5(2):237–241.
  • Langer K, Balthasar S, Vogel V, et al. Optimization of the preparation process for human serum albumin (HSA) nanoparticles. Int J Pharm. 2003 May 12;257(1):169–180.
  • Lu Z, Yeh TK, Tsai M, et al. Paclitaxel-loaded gelatin nanoparticles for intravesical bladder cancer therapy. Clin Cancer Res off J Am Assoc Cancer Res. 2004 Nov 15;10(22):7677–7684.
  • Yang L, Cui F, Cun D, et al. Preparation, characterization and biodistribution of the lactone form of 10-hydroxycamptothecin (HCPT)-loaded bovine serum albumin (BSA) nanoparticles. Int J Pharm. 2007 Aug 01;340(1):163–172.
  • Lee EJ, Khan SA, Park JK, et al. Studies on the characteristics of drug-loaded gelatin nanoparticles prepared by nanoprecipitation. Bioproc Biosyst Eng. 2012 Jan;35(1–2):297–307.
  • Elzoghby AO, Samy WM, Elgindy NA. Novel spray-dried genipin-crosslinked casein nanoparticles for prolonged release of alfuzosin hydrochloride. Pharm Res. 2013 Feb;30(2):512–522.
  • Fu Q, Sun J, Zhang W, et al. Nanoparticle albumin-bound (NAB) technology is a promising method for anti-cancer drug delivery. Recent Patents Anti-cancer Drug Disc. 2009 Nov;4(3):262–272.
  • Kundranda MN, Niu J. Albumin-bound paclitaxel in solid tumors: clinical development and future directions. Drug Des Devel Ther. 2015;9:3767–3777.
  • Gong G, Xu Y, Zhou Y, et al. Molecular switch for the assembly of lipophilic drug incorporated plasma protein nanoparticles and in vivo image. Biomacromolecules. 2012 Jan 9;13(1):23–28.
  • Karimi M, Bahrami S, Ravari SB, et al. Albumin nanostructures as advanced drug delivery systems. Expert Opin Drug Deliv. 2016;13(11):1609–1623.
  • Zhao L, Zhou Y, Gao Y, et al. Bovine serum albumin nanoparticles for delivery of tacrolimus to reduce its kidney uptake and functional nephrotoxicity. Int J Pharm. 2015 Apr 10;483(1–2):180–187.
  • Gong G, Zhi F, Wang K, et al. Fabrication of a nanocarrier system through self-assembly of plasma protein and its tumor targeting. Nanotechnology. 2011 Jul 22;22(29):295603.
  • Langer K, Anhorn MG, Steinhauser I, et al. Human serum albumin (HSA) nanoparticles: reproducibility of preparation process and kinetics of enzymatic degradation. Int J Pharm. 2008 Jan 22;347(1–2):109–117.
  • Elzoghby AO, El-Fotoh WS, Elgindy NA. Casein-based formulations as promising controlled release drug delivery systems. J Control Release. 2011 Aug 10;153(3):206–216.
  • Wang K, Yuan A, Yu J, et al. One-step self-assembling method to prepare dual-functional transferrin nanoparticles for antitumor drug delivery. J Pharmaceut Sci. 2016 Mar;105(3):1269–1276.
  • Wang L, Prozorov T, Palo PE, et al. Self-assembly and biphasic iron-binding characteristics of Mms6, a bacterial protein that promotes the formation of superparamagnetic magnetite nanoparticles of uniform size and shape. Biomacromolecules. 2012 Jan 9;13(1):98–105.
  • Xia XX, Wang M, Lin Y, et al. Hydrophobic drug-triggered self-assembly of nanoparticles from silk-elastin-like protein polymers for drug delivery. Biomacromolecules. 2014 Mar 10;15(3):908–914.
  • Fanali G, Di Masi A, Trezza V, et al. Human serum albumin: from bench to bedside. Mol Aspects Med. 2012 Jun;33(3):209–290.
  • Vlasova IM, Saletsky AM. Study of the denaturation of human serum albumin by sodium dodecyl sulfate using the intrinsic fluorescence of albumin. J Appl Spectrosc. 2009 Jul 1;76(4):536–541.
  • Ge S, Kojio K, Takahara A, et al. Bovine serum albumin adsorption onto immobilized organotrichlorosilane surface: influence of the phase separation on protein adsorption patterns. J Biomater Sci Poly Ed. 1998;9(2):131–150.
  • Topală T, Bodoki A, Oprean L, et al. Bovine serum albumin interactions with metal complexes. Clujul Med. 2014;87(4):215–219.
  • Huntington JA, Stein PE. Structure and properties of ovalbumin. J Chromatogr B. 2001 May 25;756(1):189–198.
  • Pereira MM, Cruz RAP, Almeida MR, et al. Single-step purification of ovalbumin from egg white using aqueous biphasic systems. Process Biochem. 2016;51(6):781–791.
  • O’Mahony JA, Fox PF. Chapter 2 - milk: an overview. In: Singh H, Boland M, Thompson A, editors. Milk Proteins. Second Edition ed. San Diego: Academic Press; 2014. p. 19–73.
  • Brew K. Milk Proteins | α-Lactalbumin. In: Fuquay JW, editor. Encyclopedia of dairy sciences. Second ed. San Diego: Academic Press; 2011. p. p. 780–786.
  • Bramaud C, Aimar P, Daufin G. Whey protein fractionation: isoelectric precipitation of alpha-lactalbumin under gentle heat treatment. Biotechnol Bioeng. 1997 Nov 20;56(4):391–397.
  • Edwards PJB, Jameson GB. Chapter 7 - structure and stability of whey proteins. In: Singh H, Boland M, Thompson A, editors. Milk Proteins. Second Edition ed. San Diego: Academic Press; 2014. p. 201–242.
  • Querinjean P, Masson PL, Heremans JF. Molecular weight, single-chain structure and amino acid composition of human lactoferrin. Eur J Biochem. 1971 Jun 11;20(3):420–425.
  • Kim S, Chen J, Cheng T, et al. PubChem 2019 update: improved access to chemical data. Nucleic Acids Res. 2019;47(D1):D1102–D1109.
  • He XM, Carter DC. Atomic structure and chemistry of human serum albumin. Nature. 1992 Jul 16;358(6383):209–215.
  • Gong G, Pan Q, Wang K, et al. Curcumin-incorporated albumin nanoparticles and its tumor image. Nanotechnology. 2015 Jan 30;26(4):045603.
  • John TA, Vogel SM, Tiruppathi C, et al. Quantitative analysis of albumin uptake and transport in the rat microvessel endothelial monolayer. Am J Physiol Lung Cell Mol Physiol. 2003 Jan;284(1):L187–96.
  • Desai N, Trieu V, Yao Z, et al. Increased antitumor activity, intratumor paclitaxel concentrations, and endothelial cell transport of cremophor-free, albumin-bound paclitaxel, ABI-007, compared with cremophor-based paclitaxel. Clin Cancer Res off J Am Assoc Cancer Res. 2006 Feb 15;12(4):1317–1324.
  • Poór M, Li Y, Matisz G, et al. Quantitation of species differences in albumin–ligand interactions for bovine, human and rat serum albumins using fluorescence spectroscopy: A test case with some Sudlow’s site I ligands. J Lumin. 2014 Jan 01;145:767–773.
  • Fadaeian G, Shojaosadati SA, Kouchakzadeh H, et al. Targeted delivery of 5-fluorouracil with monoclonal antibody modified bovine serum albumin nanoparticles. Iran J Pharm Res. 2015 Spring;;14(2):395–405.
  • Wen Y, Dong H, Wang K, et al. Self-templated, green-synthetic, size-controlled protein nanoassembly as a robust nanoplatform for biomedical application. ACS Appl Mater Interfaces. 2018 Apr 11;10(14):11457–11466.
  • Xie J, Cao Y, Xia M, et al. One-step photo synthesis of protein-drug nanoassemblies for drug delivery. Adv Healthcare Mater. 2013 Jun;2(6):795–799. .
  • Thomas C, Pillai LS, Krishnan L. Evaluation of albuminated curcumin as soluble drug form to control growth of cancer cells in vitroi&gt. J Cancer Ther. 2014;05(7):723–734.
  • Abdelmoneem MA, Mahmoud M, Zaky A, et al. Dual-targeted casein micelles as green nanomedicine for synergistic phytotherapy of hepatocellular carcinoma. J Controlled Release. 2018; 287:78–93.
  • Horne DS. Casein structure, self-assembly and gelation. Curr Opin Colloid Interface Sci. 2002 Nov 01;7(5):456–461.
  • Esmaili M, Ghaffari SM, Moosavi-Movahedi Z, et al. Beta casein-micelle as a nano vehicle for solubility enhancement of curcumin; food industry application. LWT - Food Sc Technol. 2011;44(10):2166–2172.
  • Shapira A, Assaraf YG, Livney YD. Beta-casein nanovehicles for oral delivery of chemotherapeutic drugs. Nanomedicine. 2010;6(1):119–126.
  • Shapira A, Markman G, Assaraf YG, et al. Beta-casein-based nanovehicles for oral delivery of chemotherapeutic drugs: drug-protein interactions and mitoxantrone loading capacity. Nanomedicine. 2010 Aug;6(4):547–555.
  • El-Far SW, Helmy MW, Khattab SN, et al. Phytosomal bilayer-enveloped casein micelles for codelivery of monascus yellow pigments and resveratrol to breast cancer. Nanomedicine. 2018 Mar;13(5):481–499.
  • Elzoghby AJ. Cpd. Editorial (thematic issue: nanocarriers based on natural polymers as platforms for drug and gene delivery applications). Curr Pharm Des. 2016;22(22):3303–3304.
  • Sabra S, Abdelmoneem M, Abdelwakil M, et al. Self-assembled nanocarriers based on amphiphilic natural polymers for anti-cancer drug delivery applications. Curr Pharm Des. 2017;23(35):5213–5229.
  • Zsila F, Bikádi Z, Simonyi M. Retinoic acid binding properties of the lipocalin member β-lactoglobulin studied by circular dichroism, electronic absorption spectroscopy and molecular modeling methods. Biochem Pharmacol. 2002 Dec 1;64(11):1651–1660.
  • Ghalandari B, Divsalar A, Saboury AA, et al. Spectroscopic and theoretical investigation of oxali-palladium interactions with beta-lactoglobulin. Spectro Acta A Mol Biomol Spectrosc. 2014 Jan;24(118):1038–1046.
  • Ghalandari B, Divsalar A, Saboury AA, et al. The new insight into oral drug delivery system based on metal drugs in colon cancer therapy through β-lactoglobulin/oxali-palladium nanocapsules. J Photochem Photobiol B Biol. 2014 Nov 1;140:255–265.
  • Hong M, Zhu S, Jiang Y, et al. Novel anti-tumor strategy: PEG-hydroxycamptothecin conjugate loaded transferrin-PEG-nanoparticles. J Controlled Release. 2010;141(1):22–29.
  • Danesh N, Navaee Sedighi Z, Beigoli S, et al. Determining the binding site and binding affinity of estradiol to human serum albumin and holo-transferrin: fluorescence spectroscopic, isothermal titration calorimetry and molecular modeling approaches. J Biomol Struct Dynamics. 2018 May;36(7):1747–1763.
  • Karimian Amroabadi M, Taheri-Kafrani A, Heidarpoor Saremi L, et al. Spectroscopic studies of the interaction between alprazolam and apo-human serum transferrin as a drug carrier protein. Int J Biol Macromol. 2018 Mar;108:263–271.
  • Kabary DM, Helmy MW, Elkhodairy KA, et al. Hyaluronate/lactoferrin layer-by-layer-coated lipid nanocarriers for targeted co-delivery of rapamycin and berberine to lung carcinoma. Colloids Surf B. 2018;169:183–194.
  • Sabra SA, Elzoghby AO, Sheweita SA, et al. Self-assembled amphiphilic zein-lactoferrin micelles for tumor-targeted co-delivery of rapamycin and wogonin to breast cancer. Eur J Pharm Biopharm. 2018;128:156–169.
  • Wang H, Tang Y, Fang Y, et al. Reprogramming tumor immune microenvironment (TIME) and metabolism via biomimetic targeting codelivery of shikonin/JQ1. Nano Lett. 2019 May 8;19(5):2935–2944.
  • Mo X, Zheng Z, He Y, et al. Antiglioma via regulating oxidative stress and remodeling tumor-associated macrophage using lactoferrin-mediated biomimetic codelivery of simvastatin/fenretinide. J Control Release. 2018 Oct 10;287:12–23.
  • Li J, Zhao C, Wei L, et al. Preservation of cichoric acid antioxidant properties loaded in heat treated lactoferrin nanoparticles. Molecules (Basel, Switzerland). 2018 Oct 18;23:10.
  • Fang B, Zhang M, Tian M, et al. Bovine lactoferrin binds oleic acid to form an anti-tumor complex similar to HAMLET. Biochim Biophys Acta. 2014 Apr 4;1841(4):535–543.
  • Li W-M, Liu D-M, Chen S-Y. Amphiphilically-modified gelatin nanoparticles: self-assembly behavior, controlled biodegradability, and rapid cellular uptake for intracellular drug delivery. J Mater Chem. 2011;21:33.
  • Won YW, Yoon SM, Sonn CH, et al. Nano self-assembly of recombinant human gelatin conjugated with alpha-tocopheryl succinate for Hsp90 inhibitor, 17-AAG, delivery. ACS Nano. 2011 May 24;5(5):3839–3848.
  • Li W-M, Liu D-M, Chen S-Y. Amphiphilically-modified gelatin nanoparticles: self-assembly behavior, controlled biodegradability, and rapid cellular uptake for intracellular drug delivery [10.1039/C1JM10188A]. J Mater Chem. 2011;21(33):12381–12388.
  • Khan SN, Khan AU. An in silico approach to map the binding site of doxorubicin on hemoglobin. Bioinformation. 2008 Jul 14;2(9):401–404.
  • Wang Y, Yan L, He S, et al. A versatile method to prepare protein nanoclusters for drug delivery. Macromol Biosci. 2018 Feb;18:2.
  • Basu A, Kumar GS. Interaction of the dietary pigment curcumin with hemoglobin: energetics of the complexation. Food Funct. 2014 Aug;5(8):1949–1955.
  • Elzoghby AO, El-Lakany SA, Helmy MW, et al. Shell-crosslinked zein nanocapsules for oral codelivery of exemestane and resveratrol in breast cancer therapy. Nanomedicine (London, England). 2017;12(24):2785–2805.
  • Elzoghby A, Freag M, Mamdouh H, et al. Zein-based nanocarriers as potential natural alternatives for drug and gene delivery: focus on cancer therapy. Curr Pharm Des. 2017;23(35):5261–5271.
  • Wang YH, Wang JM, Yang XQ, et al. Amphiphilic zein hydrolysate as a novel nano-delivery vehicle for curcumin. Food Funct. 2015 Aug;6(8):2636–2645. .
  • Gustafson JA, Ghandehari H. Silk-elastin-like protein polymers for matrix-mediated cancer gene therapy. Adv Drug Deliv Rev. 2010 Dec 30;62(15):1509–1523.
  • Zhu M, Sheng Z, Jia Y, et al. Indocyanine green-holo-transferrin nanoassemblies for tumor-targeted dual-modal imaging and photothermal therapy of glioma. ACS Appl Mater Interfaces. 2017 Nov 15;9(45):39249–39258.
  • Green MR, Manikhas GM, Orlov S, et al. Abraxane, a novel Cremophor-free, albumin-bound particle form of paclitaxel for the treatment of advanced non-small-cell lung cancer. Ann Oncol. 2006 Aug;17(8):1263–1268.
  • Miele E, Spinelli GP, Miele E, et al. Albumin-bound formulation of paclitaxel (Abraxane ABI-007) in the treatment of breast cancer. Int J Nanomed. 2009;4:99–105.
  • Hawkins MJ, Soon-Shiong P, Desai N. Protein nanoparticles as drug carriers in clinical medicine. Adv Drug Deliv Rev. 2008 May 22;60(8):876–885.
  • Paal K, Muller J, Hegedus L. High-affinity binding of paclitaxel to human serum albumin. Eur J Biochem. 2001 Apr;268(7):2187–2191.
  • Purcell M, Neault JF, Tajmir-Riahi HA. Interaction of taxol with human serum albumin. Biochim Biophys Acta. 2000 Mar 16;1478(1):61–68.
  • Chen Q, Wang X, Wang C, et al. Drug-induced self-assembly of modified albumins as nano-theranostics for tumor-targeted combination therapy. ACS Nano. 2015 May 26;9(5):5223–5233.
  • Shi L, Xu L, Wu C, et al. Celecoxib-induced self-assembly of smart albumin-doxorubicin conjugate for enhanced cancer therapy. ACS Appl Mater Interfaces. 2018 Mar 14;10(10):8555–8565.
  • Holm NK, Jespersen SK, Thomassen LV, et al. Aggregation and fibrillation of bovine serum albumin. Biochim Biophys Acta. 2007 Sep;1774(9):1128–1138. .
  • Asghar S, Salmani JM, Hassan W, et al. A facile approach for crosslinker free nano self assembly of protein for anti-tumor drug delivery: factors’ optimization, characterization and in vitro evaluation. Eur J Pharm Sci. 2014 Oct;15(63):53–62.
  • Deng W, Li J, Yao P, et al. Green preparation process, characterization and antitumor effects of doxorubicin-BSA-dextran nanoparticles. Macromol Biosci. 2010 Oct 8;10(10):1224–1234.
  • Wu J, Song C, Jiang C, et al. Nucleolin targeting AS1411 modified protein nanoparticle for antitumor drugs delivery. Mol Pharm. 2013 Oct 7;10(10):3555–3563.
  • Xu R, Fisher M, Juliano RL. Targeted albumin-based nanoparticles for delivery of amphipathic drugs. Bioconjug Chem. 2011 May 18;22(5):870–878.
  • Wang S, Gong G, Su H, et al. Self-assembly of plasma protein through disulfide bond breaking and its use as a nanocarrier for lipophilic drugs. Polym Chem. 2014;5:17.
  • Ding D, Tang X, Cao X, et al. Novel self-assembly endows human serum albumin nanoparticles with an enhanced antitumor efficacy. AAPS Pharm Sci Tech. 2014 Feb;15(1):213–222.
  • Martinez A, Benito-Miguel M, Iglesias I, et al. Tamoxifen-loaded thiolated alginate-albumin nanoparticles as antitumoral drug delivery systems. J Biomed Mater Res A. 2012 Jun;100(6):1467–1476.
  • Lian H, Wu J, Hu Y, et al. Self-assembled albumin nanoparticles for combination therapy in prostate cancer. Int J Nanomedicine. 2017;12:7777–7787.
  • Zheng J, Du -G-G, Anderson CT, et al. Analysis of the oligomeric structure of the motor protein prestin. J Biol Chem. 2006;281(29):19916–19924.
  • Wang K, Zhang Y, Wang J, et al. Self-assembled IR780-loaded transferrin nanoparticles as an imaging, targeting and PDT/PTT agent for cancer therapy. Sci Rep. 2016 Jun 6;6:27421.
  • Jiang W, Kim BY, Rutka JT, et al. Nanoparticle-mediated cellular response is size-dependent. Nat Nanotechnol. 2008 Mar;3(3):145–150.
  • van der Vliet A, O’Neill CA, Cross CE, et al. Determination of low-molecular-mass antioxidant concentrations in human respiratory tract lining fluids. Am J Physiol. 1999 Feb;276(2):L289–96.
  • Wang W, Huang Y, Zhao S, et al. Human serum albumin (HSA) nanoparticles stabilized with intermolecular disulfide bonds. Chem Commun. 2013 Mar 18;49(22):2234–2236.
  • Sheng Z, Hu D, Zheng M, et al. Smart human serum albumin-indocyanine green nanoparticles generated by programmed assembly for dual-modal imaging-guided cancer synergistic phototherapy. ACS Nano. 2014 Dec 23;8(12):12310–12322.
  • Deng G, Li S, Zhu T, et al. A self-assembling method to prepare lactoferrin nanoparticles for photosensitizer delivery. Nanomedicine. 2018 Jul 1;14(5):1882–1883.
  • Punith R, Seetharamappa J. Spectral characterization of the binding and conformational changes of serum albumins upon interaction with an anticancer drug, anastrozole. Spectrochimica acta Part A Mol biomol spectroscopy. 2012 Jun 15;92:37–41.
  • Zhao X, Liu R, Teng Y, et al. The interaction between Ag+ and bovine serum albumin: a spectroscopic investigation. Sci Total Environ. 2011 Feb 1;409(5):892–897.
  • Jiang L, Xu Y, Liu Q, et al. A nontoxic disulfide bond reducing method for lipophilic drug-loaded albumin nanoparticle preparation: formation dynamics, influencing factors and formation mechanisms investigation. Int J Pharm. 2013 Feb 25;443(1–2):80–86.
  • Safavi MS, Shojaosadati SA, Yang HG, et al. Reducing agent-free synthesis of curcumin-loaded albumin nanoparticles by self-assembly at room temperature. Int J Pharm. 2017 Aug 30;529(1–2):303–309.
  • Wang K, Wang J, Hu W, et al. Acid denaturation inducing self-assembly of curcumin-loaded hemoglobin nanoparticles. Materials. 2015 Dec 11;8(12):8701–8713.
  • Lin T, Zhao P, Jiang Y, et al. Blood-brain-barrier-penetrating albumin nanoparticles for biomimetic drug delivery via albumin-binding protein pathways for antiglioma therapy. ACS Nano. 2016 Nov 22;10(11):9999–10012.
  • Rohanizadeh R, Kokabi N. Heat denatured/aggregated albumin-based biomaterial: effects of preparation parameters on biodegradability and mechanical properties. J Mater Sci Mater Med. 2009 Dec;20(12):2413–2418.
  • Yu S, Hu J, Pan X, et al. Stable and pH-sensitive nanogels prepared by self-assembly of chitosan and ovalbumin. Langmuir. 2006 Mar 14;22(6):2754–2759.
  • Mourdikoudis S, Pallares RM, Thanh NTK. Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties. Nanoscale. 2018 Jul 13;10(27):12871–12934.
  • Jain AK, Thareja S. In vitro and in vivo characterization of pharmaceutical nanocarriers used for drug delivery. Artific Cells Nanomed Biotechnol. 2019 Dec;47(1):524–539.
  • Gomme PT, McCann KB, Bertolini J. Transferrin: structure, function and potential therapeutic actions. Drug Discov Today. 2005 Feb 15;10(4):267–273.
  • Stryer L. Fluorescence spectroscopy of proteins. Science. 1968 Nov 1;162(3853):526–533.
  • Tabassum S, Al-Asbahy WM, Afzal M, et al. Synthesis, characterization and interaction studies of copper based drug with Human Serum Albumin (HSA): spectroscopic and molecular docking investigations. J Photochem Photobiol B Biol. 2012 Sep 3;114:132–139. .
  • Yang L, Huo D, Hou C, et al. Interaction of monosulfonate tetraphenyl porphyrin (H2TPPS1) with plant-esterase: determination of the binding mechanism by spectroscopic methods. Spectrochim Acta A Mol Biomol Spectrosc. 2011 May 1;78(5):1349–1355.
  • Greenfield NJ. Using circular dichroism spectra to estimate protein secondary structure. Nat Protoc. 2006 Dec 01;1(6):2876–2890.
  • Merlot AM, Kalinowski DS, Richardson DR. Unraveling the mysteries of serum albumin-more than just a serum protein. Front Physiol. 2014;5:299.
  • Rempel SA, Golembieski WA, Fisher JL, et al. SPARC modulates cell growth, attachment and migration of U87 glioma cells on brain extracellular matrix proteins. J Neurooncol. 2001 Jun;53(2):149–160.
  • Shi Q, Bao S, Song L, et al. Targeting SPARC expression decreases glioma cellular survival and invasion associated with reduced activities of FAK and ILK kinases. Oncogene. 2007 Jun 14;26(28):4084–4094.
  • Daniels TR, Bernabeu E, Rodriguez JA, et al. The transferrin receptor and the targeted delivery of therapeutic agents against cancer. Biochim Biophys Acta. 2012 Mar;1820(3):291–317.
  • Chen Y, Zhang M, Jin H, et al. Glioma dual-targeting nanohybrid protein toxin constructed by intein-mediated site-specific ligation for multistage booster delivery. Theranostics. 2017;7(14):3489–3503.
  • Khau T, Langenbach SY, Schuliga M, et al. Annexin-1 signals mitogen-stimulated breast tumor cell proliferation by activation of the formyl peptide receptors (FPRs) 1 and 2. Faseb J. 2011 Feb;25(2):483–496.
  • Liu L, Bi Y, Zhou M, et al. Biomimetic human serum albumin nanoparticle for efficiently targeting therapy to metastatic breast cancers. ACS Appl Mater Interfaces. 2017 Mar 1;9(8):7424–7435.
  • Cappetta D, De Angelis A, Sapio L, et al. Oxidative stress and cellular response to doxorubicin: a common factor in the complex milieu of anthracycline cardiotoxicity. Oxid Med Cell Longevity. 2017;2017:1521020.
  • Yuan A, Wu J, Song C, et al. A novel self-assembly albumin nanocarrier for reducing doxorubicin-mediated cardiotoxicity. J Pharmaceut Sci. 2013 May;102(5):1626–1635.
  • Lu Y, Aimetti AA, Langer R, et al. Bioresponsive materials. Nature Rev Mater. 2016;2:1.
  • Cook JA, Gius D, Wink DA, et al. Oxidative stress, redox, and the tumor microenvironment. Sem Rad Oncol. 2004 Jul;14(3):259–266.
  • Lee R, Atsumi N, Jacobs EE Jr., et al. Ultrapure, stroma-free, polymerized bovine hemoglobin solution: evaluation of renal toxicity. J Surg Res. 1989 Nov;47(5):407–411.
  • Wang QL, Li J, Li XD, et al. An efficient direct competitive nano-ELISA for residual BSA determination in vaccines. Anal Bioanaly Chem. 2017 Jul;409(19):4607–4614.
  • Mommaerts K, Sanchez I, Betsou F, et al. Replacing beta-mercaptoethanol in RNA extractions. Anal Biochem. 2015 Jun 15;479:51–53.
  • White K, Bruckner JV, Guess WL. Toxicological studies of 2-mercaptoethanol. J Pharm Sci. 1973 Feb 1;62(2):237–241.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.