5,160
Views
2
CrossRef citations to date
0
Altmetric
Review

Inhaled cytotoxic chemotherapy: clinical challenges, recent developments, and future prospects

, &
Pages 333-354 | Received 14 May 2020, Accepted 24 Sep 2020, Published online: 14 Oct 2020

References

  • Duma N, Santana-Davila R, Molina JR. Non-small cell lung cancer: epidemiology, screening, diagnosis, and treatment. Mayo Clin Proc. 2019 Aug;94(8):1623–1640.
  • Wang S, Zimmermann S, Parikh K, et al. Current diagnosis and management of small-cell lung cancer. Mayo Clin Proc. 2019 Aug;94(8):1599–1622.
  • Arenberg D, Murray Nadel’s AP. Textbook/metastatic malignant tumors. Respir Med. 2016;55:981–990.
  • Stella GM, Kolling S, Benvenuti S, et al. Lung-seeking metastases. Cancers (Basel). 2019 Jul 19;11(7):1010.
  • Mohammed TL, Chowdhry A, Reddy GP, et al. ACR appropriateness criteria(R) screening for pulmonary metastases. J Thorac Imaging. 2011 Feb;26(1):W1–3.
  • Sturm R. Radioactivity and lung cancer-mathematical models of radionuclide deposition in the human lungs. J Thorac Dis. 2011 Dec;3(4):231–243.
  • Popper HH. Progression and metastasis of lung cancer. Cancer Metastasis Rev. 2016 Mar;35(1):75–91.
  • Malhotra J, Malvezzi M, Negri E, et al. Risk factors for lung cancer worldwide. Eur Respir J. 2016 Sep;48(3):889–902.
  • Sturm R. Deposition and cellular interaction of cancer-inducing particles in the human respiratory tract: theoretical approaches and experimental data. Thorac Cancer. 2010 Nov;1(4):141–152.
  • Zhang Z, Kleinstreuer C, Kim CS, et al. Aerosol transport and deposition in a triple bifurcation bronchial airway model with local tumors. Inhal Toxicol. 2002;14:1111–1133.
  • Farkas A, Balashazy I. Simulation of the effect of local obstructions and blocakge on airflow and aerosol deposition in central human airways. J Aerosol Sci. 2007;38:865–884.
  • Brambilla E, Travis WD, Colby TV, et al. The new World Health Organization classification of lung tumours. Eur Respir J. 2001 Dec;18(6):1059–1068.
  • Lavorini F, Buttini F, Usmani OS. 100 years of drug delivery to the lungs. Handb Exp Pharmacol. 2019;260:143–159.
  • Newman SP. Drug delivery to the lungs: challenges and opportunities. Ther Deliv. 2017 Jul;8(8):647–661.
  • Gagnadoux F, Hureaux J, Vecellio L, et al. Aerosolized chemotherapy. J Aerosol Med Pulm Drug Deliv. 2008 Mar;21(1):61–70.
  • Graham K, Unger E. Overcoming tumor hypoxia as a barrier to radiotherapy, chemotherapy and immunotherapy in cancer treatment. Int J Nanomedicine. 2018;13:6049–6058.
  • Kim JJ, Tannock IF. Repopulation of cancer cells during therapy: an important cause of treatment failure. Nat Rev Cancer. 2005 Jul;5(7):516–525.
  • Minchinton AI, Tannock IF. Drug penetration in solid tumours. Nat Rev Cancer. 2006 Aug;6(8):583–592.
  • Dewhirst MW, Secomb TW. Transport of drugs from blood vessels to tumour tissue. Nat Rev Cancer. 2017 Dec;17(12):738–750.
  • Xie Y, Bagby TR, Cohen MS, et al. Drug delivery to the lymphatic system: importance in future cancer diagnosis and therapies. Expert Opin Drug Deliv. 2009 Aug;6(8):785–792.
  • Kosmidis C, Sapalidis K, Zarogoulidis P, et al. Inhaled cisplatin for NSCLC: facts and results. Int J Mol Sci. 2019 Apr 24;20(8):2005.
  • Zarogoulidis P, Darwiche K, Krauss L, et al. Inhaled cisplatin deposition and distribution in lymph nodes in stage II lung cancer patients. Future Oncol. 2013 Sep;9(9):1307–1313.
  • Sharma S, White D, Imondi AR, et al. Development of inhalational agents for oncologic use. J Clin Oncol. 2001 Mar 15;19(6):1839–1847.
  • Rosiere R, Hureaux J, Levet V, et al. Inhaled chemotherapy - Part 2: clinical practice and potential applications. Rev Mal Respir. 2018 Apr;35(4):378–389.
  • Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011Mar4;144(5):646–674.
  • Khan M, Spicer J. The evolving landscape of cancer therapeutics. Handb Exp Pharmacol. 2019;260:43–79.
  • Massague J, Obenauf AC. Metastatic colonization by circulating tumour cells. Nature. 2016 Jan 21;529(7586):298–306.
  • Livshits Z, Rao RB, Smith SW. An approach to chemotherapy-associated toxicity. Emerg Med Clin North Am. 2014 Feb;32(1):167–203.
  • Schiller JH, Harrington D, Belani CP, et al. Comparison of four chemotherapy regimens for advanced non-small-cell lung cancer. N Engl J Med. 2002 Jan 10;346(2):92–98.
  • Riviere MK, Le Tourneau C, Paoletti X, et al. Designs of drug-combination phase I trials in oncology: a systematic review of the literature. Ann Oncol. 2015 Apr;26(4):669–674.
  • Kim ES, Lee JJ, He G, et al. Tissue platinum concentration and tumor response in non-small-cell lung cancer. J Clin Oncol. 2012 Sep 20;30(27):3345–3352.
  • Shevchenko IT, Resnik GE. Inhalation of chemical substances and oxygen in radiotherapy of bronchial cancer. Neoplasma. 1968;15(4):419–426.
  • Tatsumura T, Koyama S, Tsujimoto M, et al. Further study of nebulisation chemotherapy, a new chemotherapeutic method in the treatment of lung carcinomas: fundamental and clinical. Br J Cancer. 1993 Dec;68(6):1146–1149.
  • Verschraegen CF, Gilbert BE, Loyer E, et al. Clinical evaluation of the delivery and safety of aerosolized liposomal 9-nitro-20(s)-camptothecin in patients with advanced pulmonary malignancies. Clin Cancer Res off J Am Assoc Cancer Res. 2004 Apr 1;10(7):2319–2326.
  • Wittgen BP, Kunst PW, van der Born K, et al. Phase I study of aerosolized SLIT cisplatin in the treatment of patients with carcinoma of the lung. Clin Cancer Res off J Am Assoc Cancer Res. 2007 Apr 15;13(8):2414–2421.
  • Chou AJ, Gupta R, Bell MD, et al. Inhaled lipid cisplatin (ILC) in the treatment of patients with relapsed/progressive osteosarcoma metastatic to the lung. Pediatr Blood Cancer. 2013 Apr;60(4):580–586.
  • Otterson GA, Villalona-Calero MA, Sharma S, et al. Phase I study of inhaled Doxorubicin for patients with metastatic tumors to the lungs. Clin Cancer Res off J Am Assoc Cancer Res. 2007 Feb 15;13(4):1246–1252.
  • Otterson GA, Villalona-Calero MA, Hicks W, et al. Phase I/II study of inhaled doxorubicin combined with platinum-based therapy for advanced non-small cell lung cancer. Clin Cancer Res off J Am Assoc Cancer Res. 2010 Apr 15;16(8):2466–2473.
  • Lemarie E, Vecellio L, Hureaux J, et al. Aerosolized gemcitabine in patients with carcinoma of the lung: feasibility and safety study. J Aerosol Med Pulm Drug Deliv. 2011 Dec;24(6):261–270.
  • Zarogoulidis P, Eleftheriadou E, Sapardanis I, et al. Feasibility and effectiveness of inhaled carboplatin in NSCLC patients. Invest New Drugs. 2012 Aug;30(4):1628–1640.
  • Darwiche K, Zarogoulidis P, Karamanos NK, et al. Efficacy versus safety concerns for aerosol chemotherapy in non-small-cell lung cancer: a future dilemma for micro-oncology. Future Oncol. 2013 Apr;9(4):505–525.
  • Verschraegen CF, Natelson EA, Giovanella BC, et al. A Phase I clinical and pharmcological study of oral 9-NC, a novel water-soluble topoisomerase I inhibitor. Anticancer Drugs. 1998;9:36–44.
  • Zamboni WC, Jung LL, Egorin MJ, et al. Phase I studies of intermittently administered 9-nitrocamptothecin (9NC): relationship between daily dose and toxicity. Proc Am Soc Clin Oncol. 2002;21:A390.
  • Jaffe N, Knapp J, Chuang VP, et al. Osteosarcoma: inta-arterial treatment of the primary tumor with cis-diammine-dichloroplatinum II (CDP). Angiographic, pathologic, and pharmacologic studies. Cancer. 1983;51:402–407.
  • Kelsen DP, Alcock N, Young CW. Cisplatin nephrotoxicity. Correlation with plasma platinum concentrations. Am J Clin Oncol. 1985;8:77–80.
  • Greene RF, Collins JM, Jenkins JF, et al. Plasma pharmacokinetics of Adriamycin and adriamycinol: implications for the design of in vitro experiments and treatment protocols. Cancer Res. 1983;43:3417–3421.
  • Bernabeu-Martinez MA, Ramos Merino M, Santos Gago JM, et al. Guidelines for safe handling of hazardous drugs: A systematic review. PloS One. 2018;13(5):e0197172.
  • Charpidou AG, Gkiozos I, Tsimpoukis S, et al. Therapy-induced toxicity of the lungs: an overview. Anticancer Res. 2009 Feb;29(2):631–639.
  • Sardeli C, Zarogoulidis P, Kosmidis C, et al. Inhaled chemotherapy adverse effects: mechanisms and protection methods. Lung Cancer Manage. 2020 Jan 16;8(4):LMT19.
  • Carvalho TC, Carvalho SR, McConville JT. Formulations for pulmonary administration of anticancer agents to treat lung malignancies. J Aerosol Med Pulm Drug Deliv. 2011 Apr;24(2):61–80.
  • Verschraegen CF, Gilbert BE, Huaringa AJ, et al. Feasibility, phase I, and pharmacological study of aerosolized liposomal 9-nitro-20(S)-camptothecin in patients with advanced malignancies in the lungs. Ann N Y Acad Sci. 2000;922:352–354.
  • Pilcer G, Amighi K. Formulation strategy and use of excipients in pulmonary drug delivery. Int J Pharm. 2010 Jun 15;392(1–2):1–19.
  • Corcoran TE. Inhaled delivery of aerosolized cyclosporine. Adv Drug Deliv Rev. 2006 Oct 31;58(9–10):1119–1127.
  • Wauthoz N, Amighi K. Formulation strategies for pulmonary delivery of poorly soluble drugs. In: Nokhodchi A, Martin GP, editors. Pulmonary drug delivery: advances and challenges. Chichester: John Wiley & Sons, Limited; 2015. p. 87–114.
  • Wauthoz N, Amighi K. Phospholipids in pulmonary drug delivery. Eur J Lipid Sci Technol. 2014;116(9):1114–1128.
  • Cheng H, Fan N, Zou Y, et al. P1.01-05 Phase I study of inhaled 5-Azacytidine (5-Aza) in Patients (Pts) with advanced Non-Small Cell Lung Cancer (NSCLC). IASLC 2019 World Conference on Lung Cancer; 2019; Barcelona, Spain. J Thorac Oncol. 2019;14:S356.
  • Healy AM, Amaro MI, Paluch KJ, et al. Dry powders for oral inhalation free of lactose carrier particles. Adv Drug Deliv Rev. 2014 Aug;75:32–52.
  • Telko MJ, Hickey AJ. Dry powder inhaler formulation. Respir Care. 2005 Sep;50(9):1209–1227.
  • O’Riordan TG. Formulations and nebulizer performance. Respir Care. 2002 Nov;47(11):1305–1312. discussion 12-3.
  • Williams HD, Trevaskis NL, Charman SA, et al. Strategies to address low drug solubility in discovery and development. Pharmacol Rev. 2013 Jan;65(1):315–499.
  • Brunaugh AD, Smyth HDC. Formulation techniques for high dose dry powders. Int J Pharm. 2018 Aug 25;547(1–2):489–498.
  • Newhouse MT, Hirst PH, Duddu SP, et al. Inhalation of a dry powder tobramycin PulmoSphere formulation in healthy volunteers. Chest. 2003 Jul;124(1):360–366.
  • Bielack SS, Erttmann R, Looft G, et al. Platinum disposition after intraarterial and intravenous infusion of cisplatin for osteosarcoma. Cooperative Osteosarcoma Study Group COSS. Cancer Chemother Pharmacol. 1989;24:376–380.
  • Pilcer G, Goole J, Van Gansbeke B, et al. Pharmacoscintigraphic and pharmacokinetic evaluation of tobramycin DPI formulations in cystic fibrosis patients. Eur J Pharm Biopharm. 2008 Feb;68(2):413–421.
  • Roche N, Scheuch G, Pritchard JN, et al. Patient focus and regulatory considerations for inhalation device design: report from the 2015 IPAC-RS/ISAM workshop. J Aerosol Med Pulm Drug Deliv. 2017 Feb;30(1):1–13.
  • Wauthoz N, Hennia I, Dejaeger B, et al. Proposed algorithm for healthcare professionals based on product characteristics and in vitro performances in different use conditions using formoterol-based marketed products for inhalation. Int J Pharm. 2017 Sep 15;530(1–2):415–429.
  • Weers J, Clark A. The impact of inspiratory flow rate on drug delivery to the lungs with dry powder inhalers. Pharm Res. 2017 Mar;34(3):507–528.
  • Newman S. Improving inhaler technique, adherence to therapy and the precision of dosing: major challenges for pulmonary drug delivery. Expert Opin Drug Deliv. 2014 Mar;11(3):365–378.
  • Lavorini F, Magnan A, Dubus JC, et al. Effect of incorrect use of dry powder inhalers on management of patients with asthma and COPD. Respir Med. 2008 Apr;102(4):593–604.
  • Verma RK, Ibrahim M, Garcia-Contreras L. Lung anatomy and physiology and their implications for pulmonary drug delivery. In: Nokhodchi AMGP, editor. Pulmonary drug delivery - advances and challenges. 1st ed. United Kingdom: Wiley; 2015. p. 1–18.
  • Sbirlea-Apiou G, Katz I, Caillibotte G, et al. Deposition mechanics of pharmaceutical particles in human airways. In: Hickey AJ, editor. Inhalation aerosols- Physical and biological basis for therapy. New York: Informa Healthcare; 2007. p. 1–30.
  • Pilcer G, Wauthoz N, Amighi K. Lactose characteristics and the generation of the aerosol. Adv Drug Deliv Rev. 2012 Mar 15;64(3):233–256.
  • Hajian B, De Backer J, Vos W, et al. Functional respiratory imaging (FRI) for optimizing therapy development and patient care. Expert Rev Respir Med. 2016 Feb;10(2):193–206.
  • Van Holsbeke C, De Backer J, Vos W, et al. Use of functional respiratory imaging to characterize the effect of inhalation profile and particle size on lung deposition of inhaled corticosteroid/long-acting beta2-agonists delivered via a pressurized metered-dose inhaler. Ther Adv Respir Dis. 2018 Jan-Dec;12:1753466618760948.
  • Kleinstreuer C, Zhang Z. Targeted drug aerosol deposition analysis for a four-generation lung airway model with hemispherical tumors. J Biomech Eng. 2003 Apr;125(2):197–206.
  • Ostrovski Y, Dorfman S, Mezhericher M, et al. Targeted drug delivery to upper airways using a pulsed aerosol bolus and inhaled volume tracking method. Flow Turbul Combust. 2019 Jan;102(1):73–87.
  • Rosiere R, Berghmans T, De Vuyst P, et al. The position of inhaled chemotherapy in the care of patients with lung tumors: clinical feasibility and indications according to recent pharmaceutical progresses. Cancers (Basel). 2019 Mar 7;11 :329-341.
  • Kaialy W, Nokhodchi A. Particle engineering for improved pulmonary drug delivery through dry powder inhalers. In: Nokhodchi A, Martin GP, editors. Pulmonary drug delivery - advances and challenges. Chichester: John Wiley & Sons, Limited; 2015. p. 171–189.
  • Loira-Pastoriza C, Todoroff J, Vanbever R. Delivery strategies for sustained drug release in the lungs. Adv Drug Deliv Rev. 2014 Aug;75:81–91.
  • Hickey AJ. Controlled delivery of inhaled therapeutic agents. J Control Release. 2014 Sep 28;190:182–188.
  • El-Sherbiny IM, Villanueva DG, Herrera D, et al. Overcoming lung clearance mechanisms for controlled release drug delivery. In: Smyth HDC, Hickey AJ, editors. Controlled pulmonary drug delivery. New York: Springer; 2011. p. 101–126.
  • Sheth P, Myrdal PB. Excipients utilized for modifying pulmonary drug release. In: Smyth HDC, Hickey AJ, editors. Controlled pulmonary drug delivery. New York: Springer; 2011. p. 237–264.
  • Ramazani F, van Nostrum CF, Storm G, et al. Locoregional cancer therapy using polymer-based drug depots. Drug Discov Today. 2016 Apr;21(4):640–647.
  • Ryan GM, Kaminskas LM, Kelly BD, et al. Pulmonary administration of PEGylated polylysine dendrimers: absorption from the lung versus retention within the lung is highly size-dependent. Mol Pharm. 2013 Aug 5;10(8):2986–2995.
  • Luo T, Loira-Pastoriza C, Patil HP, et al. PEGylation of paclitaxel largely improves its safety and anti-tumor efficacy following pulmonary delivery in a mouse model of lung carcinoma. J Control Release. 2016 Oct 10;239:62–71.
  • Karra N, Nassar T, Laenger F, et al. Safety and proof-of-concept efficacy of inhaled drug loaded nano- and immunonanoparticles in a c-Raf transgenic lung cancer model. Curr Cancer Drug Targets. 2013 Jan;13(1):11–29.
  • Kaminskas LM, McLeod VM, Ryan GM, et al. Pulmonary administration of a doxorubicin-conjugated dendrimer enhances drug exposure to lung metastases and improves cancer therapy. J Control Release. 2014 Jun 10;183:18–26.
  • Abdelaziz HM, Gaber M, Abd-Elwakil MM, et al. Inhalable particulate drug delivery systems for lung cancer therapy: nanoparticles, microparticles, nanocomposites and nanoaggregates. J Control Release. 2018 Jan 10;269:374–392.
  • Rosiere R, Hureaux J, Levet V, et al. [Inhaled chemotherapy - Part 1: general concept and current technological challenges]. Rev Mal Respir. 2018 Apr;35(4):357–377.
  • Zanen P, Go LT, Lammers J-WJ. The optimal particle size for beta-adrenergic aerosols in mild asthmatics. Int J Pharm. 1994;107:211–217.
  • Olsson B, Bondesson E, Borgström L, et al. Pulmonary drug metabolism, clearance, and absorption. In: Smyth HDC, Hickey AJeditors. Controlled pulmonary drug delivery. New York: Springer; 2011. p. 36–50.
  • Shen YB, Du Z, Tang C, et al. Formulation of insulin-loaded N-trimethyl chitosan microparticles with improved efficacy for inhalation by supercritical fluid assisted atomization. Int J Pharm. 2016 May 30;505(1–2):223–233.
  • Tsapis N, Bennett D, Jackson B, et al. Trojan particles: large porous carriers of nanoparticles for drug delivery. Proc Natl Acad Sci U S A. 2002 Sep 17;99(19):12001–12005.
  • Patel B, Gupta V, Ahsan F. PEG-PLGA based large porous particles for pulmonary delivery of a highly soluble drug, low molecular weight heparin. J Control Release. 2012 Sep 10;162(2):310–320.
  • Champion JA, Mitragotri S. Role of target geometry in phagocytosis. Proc Natl Acad Sci U S A. 2006 Mar 28;103(13):4930–4934.
  • Evora C, Soriano I, Rogers RA, et al. Relating the phagocytosis of microparticles by alveolar macrophages to surface chemistry: the effect of 1,2-dipalmitoylphosphatidylcholine. J Control Release. 1998 Feb 12;51(2–3):143–152.
  • Depreter F, Pilcer G, Amighi K. Inhaled proteins: challenges and perspectives. Int J Pharm. 2013 Apr 15;447(1–2):251–280.
  • Lebhardt T, Roesler S, Uusitalo HP, et al. Surfactant-free redispersible nanoparticles in fast-dissolving composite microcarriers for dry-powder inhalation. Eur J Pharm Biopharm. 2011 May;78(1):90–96.
  • Sebti T, Amighi K. Preparation and in vitro evaluation of lipidic carriers and fillers for inhalation. Eur J Pharm Biopharm. 2006 May;63(1):51–58.
  • Sung JC, Padilla DJ, Garcia-Contreras L, et al. Formulation and pharmacokinetics of self-assembled rifampicin nanoparticle systems for pulmonary delivery. Pharm Res. 2009 Aug;26(8):1847–1855.
  • Levet V, Rosiere R, Merlos R, et al. Development of controlled-release cisplatin dry powders for inhalation against lung cancers. Int J Pharm. 2016 Dec 30;515(1–2):209–220.
  • Levet V, Merlos R, Rosiere R, et al. Platinum pharmacokinetics in mice following inhalation of cisplatin dry powders with different release and lung retention properties. Int J Pharm. 2017 Jan 30;517(1–2):359–372.
  • Levet V, Rosiere R, Hecq J, et al. Tolerance of cisplatin dry powders for inhalation and efficacy on an orthotopic grafted lung tumor preclinical model. In: Dalby RRN, Peart J, Suman JD, et al., editors. RDD Europe. Antibes, France: USA: Virginia Commonwealth University; 2017. p. 335–340.
  • Wauthoz N, Deleuze P, Saumet A, et al. Temozolomide-based dry powder formulations for lung tumor-related inhalation treatment. Pharm Res. 2011 Apr;28(4):762–775.
  • Klonne DR, Dodd DE, Losco PE, et al. Two-week aerosol inhalation study on polyethylene glycol (PEG) 3350 in F-344 rats. Drug Chem Toxicol. 1989 Mar;12(1):39–48.
  • Shah AR, Banerjee R. Effect of D-alpha-tocopheryl polyethylene glycol 1000 succinate (TPGS) on surfactant monolayers. Colloids Surf B Biointerfaces. 2011 Jul 1;85(2):116–124.
  • Ventola CL. Progress in nanomedicine: approved and investigational nanodrugs. P T. 2017 Dec;42(12):742–755.
  • Rivera Gil P, Huhn D, Del Mercato LL, et al. Nanopharmacy: inorganic nanoscale devices as vectors and active compounds. Pharmacol Res. 2010 Aug;62(2):115–125.
  • Choi YH, Han HK. Nanomedicines: current status and future perspectives in aspect of drug delivery and pharmacokinetics. J Pharm Invest. 2018;48(1):43–60.
  • Schroeder A, Heller DA, Winslow MM, et al. Treating metastatic cancer with nanotechnology. Nat Rev Cancer. 2011 Dec 23;12(1):39–50.
  • Shi Y, Lammers T. Combining nanomedicine and immunotherapy. Acc Chem Res. 2019 Jun 18;52(6):1543–1554.
  • Joshi K, Chandra A, Jain K, et al. Nanocrystalization: an emerging technology to enhance the bioavailability of poorly soluble drugs. Pharm Nanotechnol. 2019;7(4):259–278.
  • Jena L, McErlean E, McCarthy H. Delivery across the blood-brain barrier: nanomedicine for glioblastoma multiforme. Drug Deliv Transl Res. 2020 Apr;10(2):304–318.
  • Date AA, Hanes J, Ensign LM. Nanoparticles for oral delivery: design, evaluation and state-of-the-art. J Control Release. 2016 Oct 28;240:504–526.
  • Omidi Y, Barar J. Targeting tumor microenvironment: crossing tumor interstitial fluid by multifunctional nanomedicines. Bioimpacts. 2014;4(2):55–67.
  • Bertrand N, Wu J, Xu X, et al. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev. 2014 Feb;66:2–25.
  • Salvioni L, Rizzuto MA, Bertolini JA, et al. Thirty years of cancer nanomedicine: success, frustration, and hope. Cancers (Basel). 2019 Nov 25;11(12):1855.
  • Shi J, Kantoff PW, Wooster R, et al. Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer. 2017 Jan;17(1):20–37.
  • Martin JD, Cabral H, Stylianopoulos T, et al. Improving cancer immunotherapy using nanomedicines: progress, opportunities and challenges. Nat Rev Clin Oncol. 2020 Apr;17(4):251–266.
  • Irvine DJ, Dane EL. Enhancing cancer immunotherapy with nanomedicine. Nat Rev Immunol. 2020 Jan 31;20:321–334.
  • Zhang XY, Lu WY. Recent advances in lymphatic targeted drug delivery system for tumor metastasis. Cancer Biol Med. 2014 Dec;11(4):247–254.
  • Abellan-Pose R, Csaba N, Alonso MJ. Lymphatic targeting of nanosystems for anticancer drug therapy. Curr Pharm Des. 2016;22(9):1194–1209.
  • Obinu A, Gavini E, Rassu G, et al. Nanoparticles in detection and treatment of lymph node metastases: an update from the point of view of administration routes. Expert Opin Drug Deliv. 2018 Nov;15(11):1117–1126.
  • Zhou Q, Dong C, Fan W, et al. Tumor extravasation and infiltration as barriers of nanomedicine for high efficacy: the current status and transcytosis strategy. Biomaterials. 2020 May;240:119902.
  • Videira MA, Gano L, Santos C, et al. Lymphatic uptake of lipid nanoparticles following endotracheal administration. J Microencapsul. 2006 Dec;23(8):855–862.
  • Ahmad J, Akhter S, Rizwanullah M, et al. Nanotechnology-based inhalation treatments for lung cancer: state of the art. Nanotechnol Sci Appl. 2015;8:55–66.
  • Rosiere R, Amighi K, Wauthoz N. Nanomedicine-based inhalation treatment for lung cancer. In: Kesharwani P, editor. Nanotechnology-based targeted drug delivery systems for lung cancer. London: Academic Press; 2019. p. 249–268.
  • Tseng CL, Wu SY, Wang WH, et al. Targeting efficiency and biodistribution of biotinylated-EGF-conjugated gelatin nanoparticles administered via aerosol delivery in nude mice with lung cancer. Biomaterials. 2008 Jul;29(20):3014–3022.
  • Tseng CL, Su WY, Yen KC, et al. The use of biotinylated-EGF-modified gelatin nanoparticle carrier to enhance cisplatin accumulation in cancerous lungs via inhalation. Biomaterials. 2009 Jul;30(20):3476–3485.
  • Taratula O, Kuzmov A, Shah M, et al. Nanostructured lipid carriers as multifunctional nanomedicine platform for pulmonary co-delivery of anticancer drugs and siRNA. J Control Release. 2013 Nov 10;171(3):349–357.
  • Muralidharan P, Malapit M, Mallory E, et al. Inhalable nanoparticulate powders for respiratory delivery. Nanomed. 2015 Jul;11(5):1189–1199.
  • Rosiere R, Van Woensel M, Gelbcke M, et al. New folate-grafted chitosan derivative to improve delivery of paclitaxel-loaded solid lipid nanoparticles for lung tumor therapy by inhalation. Mol Pharm. 2018 Mar 5;15(3):899–910.
  • Rosiere R, Van Woensel M, Mathieu V, et al. Development and evaluation of well-tolerated and tumor-penetrating polymeric micelle-based dry powders for inhaled anti-cancer chemotherapy. Int J Pharm. 2016 Mar 30;501(1–2):148–159.
  • Leamon CP, Reddy JA. Folate-targeted chemotherapy. Adv Drug Deliv Rev. 2004 Apr 29;56(8):1127–1141.
  • Kumar A, Dailey LA, Forbes B. Lost in translation: what is stopping inhaled nanomedicines from realizing their potential? Ther Deliv. 2014 Jul;5(7):757–761.
  • Globocan I; 2018 Nov [cited 2020 Apr 15]. Available from: https://gco.iarc.fr/
  • Howlader N, Noone A, Krapcho M, et al. SEER cancer statistics review 1975–2017, based on November 2019 SEER data submission, posted to the SEER web site, April 2020. National Cancer Institute; 2020. Available from: https://seer.cancer.gov/csr/1975_2017/
  • Kelsey CR, Marks LB, Hollis D, et al. Local recurrence after surgery for early stage lung cancer: an 11-year experience with 975 patients. Cancer. 2009 Nov 15;115(22):5218–5227.
  • Xu YJ, Zheng H, Gao W, et al. Is neoadjuvant chemotherapy mandatory for limited-disease small-cell lung cancer? Interact Cardiovasc Thorac Surg. 2014 Dec;19(6):887–893.
  • Postmus PE, Kerr KM, Oudkerk M, et al. Early and locally advanced non-small-cell lung cancer (NSCLC): ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2017 Jul 1;28(suppl_4):iv1–iv21.
  • Planchard D, Popat S, Kerr K, et al. Metastatic non-small cell lung cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2018 Oct 1;29(Suppl 4):iv192–iv237.
  • Howlader N, Noone AM, Krapcho M, et al. SEER cancer statistic review, 1975–2008. National Cancer Institute; 2010. Available from: http://seer.cancer.gov/archive/csr/1975_2008/
  • Remon J, Passiglia F, Ahn MJ, et al. Immune checkpoint inhibitors in thoracic malignancies: review of the existing evidence by an IASLC expert panel and recommendations. J Thorac Oncol. 2020 Mar 14;15:914–947.
  • Berghmans T, Dingemans AM, Hendriks LEL, et al. Immunotherapy for nonsmall cell lung cancer: a new therapeutic algorithm. Eur Respir J. 2020 Feb;55(2):1901907.
  • Horn L, Mansfield AS, Szczesna A, et al. First-line atezolizumab plus chemotherapy in extensive-stage small-cell lung cancer. N Engl J Med. 2018 Dec 6;379(23):2220–2229.
  • Eichhorn F, Klotz LV, Bischoff H, et al. Neoadjuvant anti-programmed Death-1 immunotherapy by Pembrolizumab in resectable nodal positive stage II/IIIa non-small-cell lung cancer (NSCLC): the NEOMUN trial. BMC Cancer. 2019 May 2;19(1):413.
  • Vansteenkiste J, Wauters E, Reymen B, et al. Current status of immune checkpoint inhibition in early-stage NSCLC. Ann Oncol. 2019 Aug 1;30(8):1244–1253.
  • Schiller JH, New A. Standard of care for advanced lung cancer. N Engl J Med. 2018 May 31;378(22):2135–2137.
  • Majem M, Juan O, Insa A, et al. SEOM clinical guidelines for the treatment of non-small cell lung cancer (2018). Clin Transl Oncol. 2019 Jan;21(1):3–17.
  • Smit EF, de Langen AJ. Pembrolizumab for all PD-L1-positive NSCLC. Lancet. 2019 May 4;393(10183):1776–1778.
  • Mountzios G, Remon J, Novello S, et al. Position of an international panel of lung cancer experts on the decision for expansion of approval for pembrolizumab in advanced non-small-cell lung cancer with a PD-L1 expression level of >/=1% by the USA food and drug administration. Ann Oncol. 2019 Nov 1;30(11):1686–1688.
  • Brown JS, Sundar R, Lopez J. Combining DNA damaging therapeutics with immunotherapy: more haste, less speed. Br J Cancer. 2018 Feb 6;118(3):312–324.
  • Gadgeel S, Rodriguez-Abreu D, Speranza G, et al. Updated analysis from KEYNOTE-189: pembrolizumab or placebo plus pemetrexed and platinum for previously untreated metastatic nonsquamous non-small-cell lung cancer. J Clin Oncol. 2020 Mar 9;38(14):1505-1517.
  • Paz-Ares L, Luft A, Vicente D, et al. Pembrolizumab plus chemotherapy for squamous non-small-cell lung cancer. N Engl J Med. 2018 Nov 22;379(21):2040–2051.
  • Simsek C, Esin E, Yalcin S. Metronomic chemotherapy: a systematic review of the literature and clinical experience. J Oncol. 2019;2019:5483791.
  • Wu J, Waxman DJ. Immunogenic chemotherapy: dose and schedule dependence and combination with immunotherapy. Cancer Lett. 2018 Apr 10;419:210–221.
  • Tsao SY. The role of metronomic chemotherapy in the era of cancer immunotherapy: an oncologist’s perspective. Curr Oncol. 2019 Aug;26(4):e422–e4.
  • Wang DY, Salem JE, Cohen JV, et al. Fatal toxic effects associated with immune checkpoint inhibitors: a systematic review and meta-analysis. JAMA Oncol. 2018 Dec 1;4(12):1721–1728.
  • Rajasekaran T, Ng QS, Tan DS, et al. Metronomic chemotherapy: A relook at its basis and rationale. Cancer Lett. 2017 Mar 1;388:328–333.