317
Views
8
CrossRef citations to date
0
Altmetric
Review

Loco-regional drug delivery in oncology: current clinical applications and future translational opportunities

, , & ORCID Icon
Pages 607-623 | Received 31 Aug 2020, Accepted 23 Nov 2020, Published online: 16 Dec 2020

References

  • Kruger S, Ilmer M, Kobold S, et al. Advances in cancer immunotherapy 2019 - latest trends. J Exp Clin Cancer Res. 2019;38(1):268.
  • Emens LA, Ascierto PA, Darcy PK, et al. Cancer immunotherapy: opportunities and challenges in the rapidly evolving clinical landscape. Eur J Cancer. 2017;81:116–129.
  • Nurgali K, Jagoe RT, Abalo R. Editorial: adverse effects of cancer chemotherapy: anything new to improve tolerance and reduce sequelae? Front Pharmacol. 2018;9:245.
  • Kennedy LB, Salama AKS. A review of cancer immunotherapy toxicity. CA Cancer J Clin. 2020;70(2):86–104.
  • Stylianopoulos T, Munn LL, Jain RK. Reengineering the physical microenvironment of tumors to improve drug delivery and efficacy: from mathematical modeling to bench to bedside. Trends Cancer. 2018;4(4):292–319.
  • Kosmidis C, Sardeli C, Zaragoulidis P, et al. Producing the appropriate model and drug for intratumoural ablation. Br J Cancer, 2020
  • Wolinsky JB, Colson YL, Grinstaff MW. Local drug delivery strategies for cancer treatment: gels, nanoparticles, polymeric films, rods, and wafers. J Control Release. 2012;159(1):14–26.
  • Celikoglu F, Celikoglu SI, Goldberg EP. Techniques for intratumoral chemotherapy of lung cancer by bronchoscopic drug delivery. Cancer Ther. 2008;6:545–552.
  • Fakhari A, Anand Subramony J. Engineered in-situ depot-forming hydrogels for intratumoral drug delivery. J Control Release. 2015;220(Pt A):465–475.
  • Goldberg EP, Hadba AR, Almond BA, et al. Intratumoral cancer chemotherapy and immunotherapy: opportunities for nonsystemic preoperative drug delivery. J Pharm Pharmacol. 2002;54(2):159–180.
  • Budker VG, Monahan SD, Subbotin VM. Loco-regional cancer drug therapy: present approaches and rapidly reversible hydrophobization (RRH) of therapeutic agents as the future direction. Drug Discov Today. 2014;19(12):1855–1870.
  • Garrastazu Pereira G, Lawson AJ, Buttini F, et al. Loco-regional administration of nanomedicines for the treatment of lung cancer. Drug Deliv. 2016;23(8):2881–2896.
  • REESE AB, et al. The treatment of retinoblastoma by X-Ray and triethylene melamine. JAMA Ophthalmol. 1958;60(5):897–906.
  • Kiribuchi M. [Retrograde infusion of anti-cancer drugs to ophthalmic artery for intraocular malignant tumors]. Nippon Ganka Gakkai Zasshi. 1966;70(11):1829–1833.
  • Abramson DH, Shields CL, Jabbour P, et al. Metastatic deaths in retinoblastoma patients treated with intraarterial chemotherapy (ophthalmic artery chemosurgery) worldwide. Int J Retina Vitreous. 2017;3(1):40.
  • Chen Q, Zhang B, Dong Y, et al. Comparison between intravenous chemotherapy and intra-arterial chemotherapy for retinoblastoma: a meta-analysis. BMC Cancer. 2018;18(1):486.
  • Yousef YA, Soliman SE, Astudillo PPP, et al. Intra-arterial chemotherapy for retinoblastoma: a systematic review. JAMA Ophthalmol. 2016;134(5):584–591.
  • Ceresoli M, Frigerio L, Ansaloni L. Hyperthermic Intraperitoneal Chemotherapy in Ovarian Cancer. N Engl J Med. 2018;378(14):1363.
  • Gill RS, Al-Adra DP, Nagendran J, et al. Treatment of gastric cancer with peritoneal carcinomatosis by cytoreductive surgery and HIPEC: a systematic review of survival, mortality, and morbidity. J Surg Oncol. 2011;104(6):692–698.
  • Sugarbaker PH. Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy in the management of gastrointestinal cancers with peritoneal metastases: progress toward a new standard of care. Cancer Treat Rev. 2016;48:42–49.
  • Deraco M, Kusamura S, Virzì S, et al. Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy as upfront therapy for advanced epithelial ovarian cancer: multi-institutional phase-II trial. Gynecol Oncol. 2011;122(2):215–220.
  • Di Giorgio A, Naticchioni E, Biacchi D, et al. Cytoreductive surgery (peritonectomy procedures) combined with hyperthermic intraperitoneal chemotherapy (HIPEC) in the treatment of diffuse peritoneal carcinomatosis from ovarian cancer. Cancer. 2008;113(2):315–325.
  • Bijelic L, Jonson A, Sugarbaker PH. Systematic review of cytoreductive surgery and heated intraoperative intraperitoneal chemotherapy for treatment of peritoneal carcinomatosis in primary and recurrent ovarian cancer. Ann Oncol. 2007;18(12):1943–1950.
  • Ceelen W, Braet H, van Ramshorst G, et al. Intraperitoneal chemotherapy for peritoneal metastases: an expert opinion. Expert Opin Drug Deliv. 2020;17(4):511–522.
  • Gonzalez-Moreno S, Gonzalez-Bayon LA, Ortega-Perez G. Hyperthermic intraperitoneal chemotherapy: rationale and technique. World J Gastrointest Oncol. 2010;2(2):68–75.
  • Zhang G, Zhu Y, Liu C, et al. The prognosis impact of hyperthermic intraperitoneal chemotherapy (HIPEC) plus cytoreductive surgery (CRS) in advanced ovarian cancer: the meta-analysis. J Ovarian Res. 2019;12(1):33.
  • Tewari D, Java JJ, Salani R, et al. Long-term survival advantage and prognostic factors associated with intraperitoneal chemotherapy treatment in advanced ovarian cancer: a gynecologic oncology group study. J Clin Oncol. 2015;33(13):1460–1466.
  • Mehta SS, Gelli M, Agarwal D, et al. Complications of cytoreductive surgery and HIPEC in the treatment of peritoneal metastases. Indian J Surg Oncol. 2016;7(2):225–229.
  • Ohto M, Ebara M, Kita K, et al. Treatment of Liver Carcinoma by Percutaneous Intratumoral Ethanol Injection. In: Henner HDeditor. Ultraschalldiagnostik ’88. Berlin, Heidelberg: Springer Berlin Heidelberg; 1989. p. 155–159.
  • Lencioni R, Crocetti L, Cioni D, et al. Single-session percutaneous ethanol ablation of early-stage hepatocellular carcinoma with a multipronged injection needle: results of a pilot clinical study. J Vasc Interv Radiol. 2010;21(10):1533–1538.
  • Lencioni R, Cioni D, Crocetti L, et al. Percutaneous ablation of hepatocellular carcinoma: state-of-the-art. Liver Transpl. 2004;10(Suppl S2):S91–7.
  • Fuge O, et al. Immunotherapy for bladder cancer. Res Rep Urol. 2015;7:65–79.
  • Sylvester RJ, van der MA, Lamm DL. Intravesical bacillus Calmette-Guerin reduces the risk of progression in patients with superficial bladder cancer: a meta-analysis of the published results of randomized clinical trials. J Urol. 2002;168(5):1964–1970.
  • Alexandroff AB, Jackson AM, O’Donnell MA, et al. BCG immunotherapy of bladder cancer: 20 years on. Lancet. 1999;353(9165): 1689–1694.
  • Brausi M, et al. Side effects of Bacillus Calmette-Guerin (BCG) in the treatment of intermediate- and high-risk Ta, T1 papillary carcinoma of the bladder: results of the EORTC genito-urinary cancers group randomised phase 3 study comparing one-third dose with full dose and 1 year with 3 years of maintenance BCG. Eur Urol. 2014;65(1):69–76.
  • Pfister C, Kerkeni W, Rigaud J, et al. Efficacy and tolerance of one-third full dose bacillus Calmette-Guerin maintenance therapy every 3 months or 6 months: two-year results of URO-BCG-4 multicenter study. Int J Urol. 2015;22(1):53–60.
  • Agarwala SS, et al. Mature results of a phase III randomized trial of bacillus Calmette-Guerin (BCG) versus observation and BCG plus dacarbazine versus BCG in the adjuvant therapy of American Joint Committee on Cancer Stage I-III melanoma (E1673): a trial of the Eastern Oncology Group. Cancer. 2004;100(8):1692–1698.
  • Abbott AM, Zager JS. Locoregional therapies in melanoma. Surg Clin North Am. 2014;94(5):1003–1015. viii.
  • Corbin ZA, Nagpal S. Leptomeningeal Metastases. JAMA Oncol. 2016;2(6):839.
  • Remon J, Le Rhun E, Besse B. Leptomeningeal carcinomatosis in non-small cell lung cancer patients: A continuing challenge in the personalized treatment era. Cancer Treat Rev. 2017;53(p):128–137.
  • Glantz MJ, Van Horn A, Fisher R, et al. Route of intracerebrospinal fluid chemotherapy administration and efficacy of therapy in neoplastic meningitis. Cancer. 2010;116(8):1947–1952.
  • Le Rhun E, Preusser M, van den Bent M, et al. How we treat patients with leptomeningeal metastases. ESMO Open. 2019;4(Suppl 2):e000507.
  • Pacira Shutters DepCyt Operations After Years of Manufacturing Problems. 2017 2020 10 16]; Available from: https://www.fdanews.com/articles/182667-pacira-shutters-depcyt-operations-after-years-of-manufacturing-problems.
  • Niu Q, Wang W, Li Q, et al. Percutaneous fine-needle 5% ethanol-cisplatin intratumoral injection combined with second-line chemotherapy improves on the standard of care in patients with platinum-pretreated stage IV non-small cell lung cancer. Transl Oncol. 2014;7(2):303–308.
  • Celikoglu F, Celikoglu SI, Goldberg EP. Bronchoscopic intratumoral chemotherapy of lung cancer. Lung Cancer. 2008;61(1):1–12.
  • Li SY, Li Q, Guan W-J, et al. Effects of para-toluenesulfonamide intratumoral injection on non-small cell lung carcinoma with severe central airway obstruction: A multi-center, non-randomized, single-arm, open-label trial. Lung Cancer. 2016;98:43–50.
  • Yan BM, Van Dam J. Endoscopic ultrasound-guided intratumoural therapy for pancreatic cancer. Can J Gastroenterol. 2008;22(4):405–410.
  • Levy MJ, Alberts SR, Bamlet WR, et al. EUS-guided fine-needle injection of gemcitabine for locally advanced and metastatic pancreatic cancer. Gastrointest Endosc. 2017;86(1):161–169.
  • Roelcke U, et al. PET Imaging Drug Distribution After Intratumoral Injection: the Case for 124I-Iododeoxyuridine in Malignant Gliomas. J Nucl Med. 2002;43(11):1444–1451.
  • Domb AJ, Israel ZH, Elmalak O, et al. Preparation and characterization of carmustine loaded polyanhydride wafers for treating brain tumors. Pharm Res. 1999;16(5):762–765.
  • FDA. Gliadel Wafer (polifeprosan 20 with carmustine implant). 1997 2019 11 29]; Available from: https://www.centerwatch.com/directories/1067-fda-approved-drugs/listing/3583-gliadel-wafer-polifeprosan-20-with-carmustine-implant.
  • Fleming AB, Saltzman WM. Pharmacokinetics of the carmustine implant. Clin Pharmacokinet. 2002;41(6):403–419.
  • Dang W, Daviau T, Ying P, et al. Effects of GLIADEL® wafer initial molecular weight on the erosion of wafer and release of BCNU. J Control Release. 1996;42(1):83–92.
  • Strasser JF, et al. Distribution of 1,3-bis(2-chloroethyl)-1-nitrosourea and tracers in the rabbit brain after interstitial delivery by biodegradable polymer implants. J Pharmacol Exp Ther. 1995;275(3):1647–1655.
  • Fung LK, Shin M, Tyler B, et al. Chemotherapeutic drugs released from polymers: distribution of 1,3-bis(2-chloroethyl)-1-nitrosourea in the rat brain. Pharm Res. 1996;13(5):671–682.
  • Fung LK, et al. Pharmacokinetics of interstitial delivery of carmustine, 4-hydroperoxycyclophosphamide, and paclitaxel from a biodegradable polymer implant in the monkey brain. Cancer Res. 1998;58(4):672–684.
  • Sage W, Guilfoyle M, Luney C, et al. Local alkylating chemotherapy applied immediately after 5-ALA guided resection of glioblastoma does not provide additional benefit. J Neurooncol. 2018;136(2):273–280.
  • De Bonis P, Anile C, Pompucci A, et al. Safety and efficacy of Gliadel wafers for newly diagnosed and recurrent glioblastoma. Acta Neurochir (Wien). 2012;154(8):1371–1378.
  • National Institute for Health and Clinical Excellence, Carmustine implants and temozolomide for the treatment of newly diagnosed high-grade glioma. Technology appraisal guidance [TA121]. 2007.
  • Hart MG, et al. Chemotherapy wafers for high grade glioma. Cochrane Database Syst Rev. 2011(3):CD007294.
  • Chowdhary SA, Ryken T, Newton HB. Survival outcomes and safety of carmustine wafers in the treatment of high-grade gliomas: a meta-analysis. J Neurooncol. 2015;122(2):367–382.
  • Xing WK, et al. The role of Gliadel wafers in the treatment of newly diagnosed GBM: a meta-analysis. Drug Des Devel Ther. 2015;9:3341–3348.
  • Ashby LS, Smith KA, Stea B. Gliadel wafer implantation combined with standard radiotherapy and concurrent followed by adjuvant temozolomide for treatment of newly diagnosed high-grade glioma: a systematic literature review. World J Surg Oncol. 2016;14(1):225.
  • Champeaux C, Weller J. Implantation of carmustine wafers (Gliadel®) for high-grade glioma treatment. A 9-year nationwide retrospective study. J Neurooncol. 2020;147(1):159–169.
  • Lohitesh K, Chowdhury R, Mukherjee S. Resistance a major hindrance to chemotherapy in hepatocellular carcinoma: an insight. Cancer Cell Int. 2018;18(1):44.
  • Raoul JL, Forner A, Bolondi L, et al. Updated use of TACE for hepatocellular carcinoma treatment: how and when to use it based on clinical evidence. Cancer Treat Rev. 2019;72:28–36.
  • Raoul JL, Sangro B, Forner A, et al. Evolving strategies for the management of intermediate-stage hepatocellular carcinoma: available evidence and expert opinion on the use of transarterial chemoembolization. Cancer Treat Rev. 2011;37(3):212–220.
  • Kan Z, Madoff DC. Liver anatomy: microcirculation of the liver. Semin Intervent Radiol. 2008;25(2):77–85.
  • Oliveri RS, Wetterslev J, Gluud C. Transarterial (chemo)embolisation for unresectable hepatocellular carcinoma. Cochrane Database Syst Rev. 2011;3:CD 004787.
  • Osuga K, Maeda N, Higashihara H, et al. Current status of embolic agents for liver tumor embolization. Int J Clin Oncol. 2012;17(4):306–315.
  • Idee JM, Guiu B. Use of Lipiodol as a drug-delivery system for transcatheter arterial chemoembolization of hepatocellular carcinoma: a review. Crit Rev Oncol Hematol. 2013;88(3):530–549.
  • Dorland’s. Medical Dictionary. Elsevier.
  • Giunchedi P, Maestri M, Gavini E, et al. Transarterial chemoembolization of hepatocellular carcinoma. Agents and drugs: an overview. Part 1. Expert Opin Drug Deliv. 2013;10(5): 679–690.
  • 2020 08 25]; NCI drug dictionary]. Available from: https://www.cancer.gov/publications/dictionaries/cancer-drug/def/ethiodized-oil.
  • Marelli L, Stigliano R, Triantos C, et al. Transarterial therapy for hepatocellular carcinoma: which technique is more effective? A systematic review of cohort and randomized studies. Cardiovasc Intervent Radiol. 2007;30(1):6–25.
  • Giunchedi P, Maestri M, Gavini E, et al. Transarterial chemoembolization of hepatocellular carcinoma – agents and drugs: an overview. Part 2. Expert Opin Drug Deliv. 2013;10(6):799–810.
  • Varela M, Real MI, Burrel M, et al. Chemoembolization of hepatocellular carcinoma with drug eluting beads: efficacy and doxorubicin pharmacokinetics. J Hepatol. 2007;46(3):474–481.
  • Zhang S, Huang C, Li Z, et al. Comparison of pharmacokinetics and drug release in tissues after transarterial chemoembolization with doxorubicin using diverse lipiodol emulsions and CalliSpheres Beads in rabbit livers. Drug Deliv. 2017;24(1):1011–1017.
  • Karalli A, Teiler J, Haji M, et al. Comparison of lipiodol infusion and drug-eluting beads transarterial chemoembolization of hepatocellular carcinoma in a real-life setting. Scand J Gastroenterol. 2019;54(7):905–912.
  • Facciorusso A. Drug-eluting beads transarterial chemoembolization for hepatocellular carcinoma: current state of the art. World J Gastroenterol. 2018;24(2):161–169.
  • Raoul J-L, Forner A, Bolondi L, et al. Updated use of TACE for hepatocellular carcinoma treatment: how and when to use it based on clinical evidence. Cancer Treat Rev. 2019;72:28–36.
  • Poursaid A, Jensen MM, Huo E, et al. Polymeric materials for embolic and chemoembolic applications. J Control Release. 2016;240:414–433.
  • Lewis AL, Holden RR. DC Bead embolic drug-eluting bead: clinical application in the locoregional treatment of tumours. Expert Opin Drug Deliv. 2011;8(2):153–169.
  • Biondi M, Fusco S, Lewis AL, et al. Investigation of the mechanisms governing doxorubicin and irinotecan release from drug-eluting beads: mathematical modeling and experimental verification. J Mater Sci Mater Med. 2013;24(10):2359–2370.
  • Wiggermann P, Sieron D, Brosche C, et al. Transarterial chemoembolization of child-A hepatocellular carcinoma: drug-eluting bead TACE (DEB TACE) vs. TACE with cisplatin/lipiodol (cTACE). Med Sci Monit. 2011;17(4):CR 189–95.
  • Delicque J, Guiu B, Boulin M, et al. Liver chemoembolization of hepatocellular carcinoma using TANDEM((R)) microspheres. Future Oncol. 2018;14(26):2761–2772.
  • BTG plc, BTG announces CE Mark Certification for DC Bead LUMI™, the First commercially available Radiopaque Drug-Eluting Bead. 2017: UK.
  • Han K, Kim JH. Transarterial chemoembolization in hepatocellular carcinoma treatment: barcelona clinic liver cancer staging system. World J Gastroenterol. 2015;21(36):10327–10335.
  • Facciorusso A, Di Maso M, Muscatiello N. Drug-eluting beads versus conventional chemoembolization for the treatment of unresectable hepatocellular carcinoma: A meta-analysis. Dig Liver Dis. 2016;48(6):571–577.
  • Lee E, Leon Pachter H, Sarpel U. Hepatic arterial embolization for the treatment of metastatic neuroendocrine tumors. Int J Hepatol. 2012;2012:471203.
  • Martin RC, Joshi J, Robbins K, et al. Hepatic intra-arterial injection of drug-eluting bead, irinotecan (DEBIRI) in unresectable colorectal liver metastases refractory to systemic chemotherapy: results of multi-institutional study. Ann Surg Oncol. 2011;18(1):192–198.
  • Heianna J, Makino W, Ariga T, et al. Concomitant radiotherapy and transarterial chemoembolization reduce skeletal-related events related to bone metastases from renal cell carcinoma. Eur Radiol. 2020;30(3):1525–1533.
  • Vogl TJ, Mekkawy AIA, Thabet DB, et al. Transvenous pulmonary chemoembolization (TPCE) for palliative or neoadjuvant treatment of lung metastases. Eur Radiol. 2019;29(4):1939–1949.
  • Hakim GIL, Konorty M, Jeshurun M. Reverse thermal hydrogel preparations for use in the treatment of disorders of the urothelium. EP: UROGEN PHARMA LTD; 2020.
  • Donin NM, Duarte S, Lenis AT, et al. Sustained-release formulation of mitomycin c to the upper urinary tract using a thermosensitive polymer: a preclinical study. Urology. 2017;99:270–277.
  • García FJV, Carrión NP, de la Cruz-merino L. Long-term complete response to intrathecal trastuzumab in a patient with leptomeningeal carcinomatosis due to her2- overexpressing breast cancer: case report. Medicine (Baltimore). 2020;99(1):e18298.
  • Glitza IC, Phillips S, Brown C, et al. Single-center phase I/Ib study of concurrent intrathecal (IT) and intravenous (IV) nivolumab (N) for metastatic melanoma (MM) patients (pts) with leptomeningeal disease (LMD). J Clin Oncol. 2020;38(15_suppl):10008.
  • Yu S, He C, Chen X. Injectable hydrogels as unique platforms for local chemotherapeutics-based combination antitumor therapy. Macromol Biosci. 2018;18(12):e1800240.
  • Chew SA, Danti S. Biomaterial-based implantable devices for cancer therapy. Adv Healthc Mater. 2017;6(2):2.
  • Gunji S, Obama K, Matsui M, et al. A novel drug delivery system of intraperitoneal chemotherapy for peritoneal carcinomatosis using gelatin microspheres incorporating cisplatin. Surgery. 2013;154(5):991–999.
  • Karavana SY, Ay Şenyiğit Z, Çalışkan Ç, et al. Gemcitabine hydrochloride microspheres used for intravesical treatment of superficial bladder cancer: a comprehensive in vitro/ex vivo/in vivo evaluation. Drug Des Devel Ther. 2018;12:1959–1975.
  • Grudén S, Hassan M, Axén N. Cold isostatic pressing of hydrating calcium sulfate as a means to produce parenteral slow-release drug formulations. J Drug Delivery Sci Technol. 2018;46:482–489.
  • Tammela TL, Häggman M, Ladjevardi S, et al. An intraprostatic modified release formulation of antiandrogen 2-hydroxyflutamide for localized prostate cancer. J Urol. 2017;198(6):1333–1339.
  • Sjogren E, Tammela TL, Lennernäs B, et al. Pharmacokinetics of an injectable modified-release 2-hydroxyflutamide formulation in the human prostate gland using a semiphysiologically based biopharmaceutical model. Mol Pharm. 2014;11(9):3097–3111.
  • Alyami M, Hübner M, Grass F, et al. Pressurised intraperitoneal aerosol chemotherapy: rationale, evidence, and potential indications. Lancet Oncol. 2019;20(7):e368–e377.
  • Garg PK, Jara M, Alberto M, et al. The role of Pressurized IntraPeritoneal Aerosol Chemotherapy in the management of gastric cancer: A systematic review. Pleura Peritoneum. 2019;4(1):20180127.
  • Baltezor M, et al. Taxane particles and their use. US: CRITITECH INC; 2016.
  • NanOlogy, Proprietary Production Technology.
  • Williamson SK, Johnson GA, Maulhardt HA, et al. A phase I study of intraperitoneal nanoparticulate paclitaxel (Nanotax(R)) in patients with peritoneal malignancies. Cancer Chemother Pharmacol. 2015;75(5):1075–1087.
  • Verco J, Johnston W, Baltezor M, et al. Pharmacokinetic Profile of Inhaled Submicron Particle Paclitaxel (NanoPac((R))) in a Rodent Model. J Aerosol Med Pulm Drug Deliv. 2019;32(2):99–109.
  • Nayak S, Mahenthiran A, Yang Y, et al. Bone morphogenetic protein 4 targeting glioma stem-like cells for malignant glioma treatment: latest advances and implications for clinical application. Cancers (Basel). 2020;12(2):516.
  • Harn H-J, Lin S-Z, Lin P-C, et al. Local interstitial delivery of z-butylidenephthalide by polymer wafers against malignant human gliomas. Neuro Oncol. 2011;13(6):635–648.
  • Tsai NM, Chen Y-L, Lee -C-C, et al. The natural compound n-butylidenephthalide derived from Angelica sinensis inhibits malignant brain tumor growth in vitro and in vivo. J Neurochem. 2006;99(4):1251–1262.
  • Galon J, Bruni D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat Rev Drug Discov. 2019;18(3):197–218.
  • Wei SC, Duffy CR, Allison JP. Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discov. 2018;8(9):1069–1086.
  • Smith M, García-Martínez E, Pitter MR, et al. Trial Watch: toll-like receptor agonists in cancer immunotherapy. Oncoimmunology. 2018;7(12):e1526250.
  • Hollingsworth RE, Jansen K. Turning the corner on therapeutic cancer vaccines. NPJ Vaccines. 2019;4(1):7.
  • Rafiq S, Hackett CS, Brentjens RJ. Engineering strategies to overcome the current roadblocks in CAR T cell therapy. Nat Rev Clin Oncol. 2020;17(3):147–167.
  • Andtbacka RH, Kaufman HL, Collichio F, et al. Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J Clin Oncol. 2015;33(25):2780–2788.
  • Bonaventura P, et al. Cold tumors: a therapeutic challenge for immunotherapy. Front Immunol. 2019;10:168.
  • Alatrash G, Jakher H, Stafford PD, et al. Cancer immunotherapies, their safety and toxicity. Expert Opin Drug Saf. 2013;12(5):631–645.
  • Verma V, Sprave T, Haque W, et al. A systematic review of the cost and cost-effectiveness studies of immune checkpoint inhibitors. J Immunother Cancer. 2018;6(1):128.
  • Aznar MA, Tinari N, Rullán AJ, et al. Intratumoral delivery of immunotherapy-act locally, think globally. J Immunol. 2017;198(1):31–39.
  • Marabelle A, Tselikas L, de Baere T, et al. Intratumoral immunotherapy: using the tumor as the remedy. Ann Oncol. 2017;28(suppl_12): xii33–xii43.
  • Zhang WW, Li L, Li D, et al. The first approved gene therapy product for cancer Ad-p53 (Gendicine): 12 years in the clinic. Hum Gene Ther. 2018;29(2):160–179.
  • Henry CJ, Ornelles DA, Mitchell LM, et al. IL-12 Produced by Dendritic Cells Augments CD8 + T Cell Activation through the Production of the Chemokines CCL1 and CCL17. J Immunol. 2008;181(12):8576–8584.
  • Hammerich L, Binder A, Brody JD. In situ vaccination: cancer immunotherapy both personalized and off-the-shelf. Mol Oncol. 2015;9(10):1966–1981.
  • Algazi AP, Twitty CG, Tsai KK, et al. Phase II Trial of IL-12 Plasmid Transfection and PD-1 blockade in immunologically quiescent melanoma. Clin Cancer Res. 2020;26(12):2827–2837.
  • Algazi A, Bhatia S, Agarwala S, et al. Intratumoral delivery of tavokinogene telseplasmid yields systemic immune responses in metastatic melanoma patients. Ann Oncol. 2020;31(4):532–540.
  • Schwartzentruber DJ, Kirkwood JM, Guarino MJ, et al. Immunotherapy of advanced melanoma by intratumoral injections of autologous, purified dendritic cells transduced with gene construct of interleukin-12, with dose-dependent expression under the control of an oral activator ligand. J Clin Oncol. 2011;29(15_suppl):2540.
  • Chiocca EA, Yu JS, Lukas RV, et al. Regulatable interleukin-12 gene therapy in patients with recurrent high-grade glioma: results of a phase 1 trial. Sci Transl Med. 2019;11(505):505.
  • Buscail L, Bournet B, Vernejoul F, et al. First-in-man phase 1 clinical trial of gene therapy for advanced pancreatic cancer: safety, biodistribution, and preliminary clinical findings. Mol Ther. 2015;23(4):779–789.
  • Liang M. Oncorine, the World First Oncolytic Virus Medicine and its Update in China. Curr Cancer Drug Targets. 2018;18(2):171–176.
  • AMGEN, FDA Approves IMLYGIC™ (Talimogene Laherparepvec) As First Oncolytic Viral Therapy In The US. 2015.
  • Chesney J, Puzanov I, Collichio F, et al. Randomized, open-label phase ii study evaluating the efficacy and safety of talimogene laherparepvec in combination with ipilimumab versus ipilimumab alone in patients with advanced, unresectable melanoma. J Clin Oncol. 2018;36(17):1658–1667.
  • Oncovir. Hiltonol Science. 2020; Available from: https://www.oncovir.com/science.
  • Agarwala SS, Andtbacka RHI, Rice KN, et al. Intralesional rose bengal for treatment of melanoma. J Clin Oncol. 2016;34(15_suppl):TPS9600–TPS9600.
  • Maker AV, Prabhakar B, Pardiwala K. The potential of intralesional rose bengal to stimulate T-cell mediated anti-tumor responses. J Clin Cell Immunol. 2015;6(4):343.
  • Liu H, Innamarato PP, Kodumudi K, et al. Intralesional rose bengal in melanoma elicits tumor immunity via activation of dendritic cells by the release of high mobility group box 1. Oncotarget. 2016;7(25):37893–37905.
  • Tabet A, Jensen MP, Parkins CC, et al. Designing next-generation local drug delivery vehicles for glioblastoma adjuvant chemotherapy: lessons from the clinic. Adv Healthc Mater. 2019;8(3):1801391.
  • Seo Y-E, Suh H-W, Bahal R, et al. Nanoparticle-mediated intratumoral inhibition of miR-21 for improved survival in glioblastoma. Biomaterials. 2019;201:87–98.
  • Seo YE, Bu T, Saltzman WM. Nanomaterials for convection-enhanced delivery of agents to treat brain tumors. Curr Opin Biomed Eng. 2017;4:1–12.
  • Cheng CJ, Bahal R, Babar IA, et al. MicroRNA silencing for cancer therapy targeted to the tumour microenvironment. Nature. 2015;518(7537):107–110.
  • Sayour EJ, Grippin A, De Leon G, et al. Personalized Tumor RNA Loaded Lipid-Nanoparticles Prime the Systemic and Intratumoral Milieu for Response to Cancer Immunotherapy. Nano Lett. 2018;18(10):6195–6206.
  • Mukhopadhyay A, Wright J, Shirley S, et al. Characterization of abscopal effects of intratumoral electroporation-mediated IL-12 gene therapy. Gene Ther. 2019;26(1–2):1–15.
  • Postow MA, Sidlow R, Hellmann MD. Immune-related adverse events associated with immune checkpoint blockade. N Engl J Med. 2018;378(2):158–168.
  • Milling L, Zhang Y, Irvine DJ, Delivering safer immunotherapies for cancer. Advanced Drug Delivery Reviews, 2017. 114: p. 79–101.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.