414
Views
13
CrossRef citations to date
0
Altmetric
Review

3D-printed porous tantalum: recent application in various drug delivery systems to repair hard tissue defects

, , , , & ORCID Icon
Pages 625-634 | Received 09 Nov 2020, Accepted 02 Dec 2020, Published online: 19 Jan 2021

References

  • Lu H, Liu Y, Guo J, Wu H, Wang J, Wu G. Biomaterials with Antibacterial and Osteoinductive Properties to Repair Infected Bone Defects. International journal of molecular sciences 2016 Mar 3;17(3):334.
  • Mehnath S, Ayisha Sithika MA, Arjama M, Rajan M, Amarnath Praphakar R, Jeyaraj M. Sericin-chitosan doped maleate gellan gum nanocomposites for effective cell damage in Mycobacterium tuberculosis. International journal of biological macromolecules 2019 Feb 1;122:174–84.
  • Martin V, Bettencourt A. Bone regeneration: Biomaterials as local delivery systems with improved osteoinductive properties. Materials Science and Engineering: C 2018;82:363–71.
  • Guo X, Chen M, Feng W, Liang J, Zhao H, Tian L, et al. Electrostatic self-assembly of multilayer copolymeric membranes on the surface of porous tantalum implants for sustained release of doxorubicin. International journal of nanomedicine 2011;6:3057–64.
  • Zeng H, Pang XY, Wang S, Xu ZQ, Peng W, Zhang PH, et al. The preparation of core/shell structured microsphere of multi first-line anti-tuberculosis drugs and evaluation of biological safety. International journal of clinical and experimental medicine 2015;8(6):8398–414.
  • Li K, Zhu M, Xu P, Xi Y, Cheng Z, Zhu Y, et al. Three-dimensionally plotted MBG/PHBHHx composite scaffold for antitubercular drug delivery and tissue regeneration. Journal of materials science Materials in medicine 2015 Feb;26(2):102.
  • Liu Y, Zhu J, Jiang D. Release characteristics of bonelike hydroxyapatite/poly amino acid loaded with rifapentine microspheres in vivo. Molecular medicine reports 2017 Aug;16(2):1425–30.
  • Dong J, Zhang S, Ma J, Liu H, Du Y, Liu Y. Preparation, characterization, and in vitro cytotoxicity evaluation of a novel anti-tuberculosis reconstruction implant. PloS one 2014;9(4):e94937.
  • Huang D, Li D, Wang T, Shen H, Zhao P, Liu B, et al. Isoniazid conjugated poly(lactide-co-glycolide): Long-term controlled drug release and tissue regeneration for bone tuberculosis therapy. Biomaterials 2015 Jun;52:417–25.
  • Bagde AD, Kuthe AM, Quazi S, Gupta V, Jaiswal S, Jyothilal S, et al. State of the Art Technology for Bone Tissue Engineering and Drug Delivery. Irbm 2019 Jun;40(3):133–44.
  • Wang H, Li Q, Wang Q, Zhang H, Shi W, Gan H, et al. Enhanced repair of segmental bone defects in rabbit radius by porous tantalum scaffolds modified with the RGD peptide. Journal of materials science Materials in medicine 2017 Mar;28(3):50.
  • Garbuz DS, Hu Y, Kim WY, Duan K, Masri BA, Oxland TR, et al. Enhanced gap filling and osteoconduction associated with alendronate-calcium phosphate-coated porous tantalum. The Journal of bone and joint surgery American volume 2008 May;90(5):1090–100.
  • Issack PS. Use of Porous Tantalum for Acetabular Reconstruction in Revision Hip Arthroplasty. Journal of Bone and Joint Surgery-American Volume 2013 Nov 6;95A(21):1981–87.
  • Paganias CG, Tsakotos GA, Koutsostathis SD, Macheras GA. Osseous integration in porous tantalum implants. Indian journal of orthopaedics 2012 Sep-Oct;46(5):505–13.
  • Zhou R, Xu W, Chen F, Qi C, Lu BQ, Zhang H, et al. Amorphous calcium phosphate nanospheres/polylactide composite coated tantalum scaffold: facile preparation, fast biomineralization and subchondral bone defect repair application. Colloids and surfaces B, Biointerfaces 2014 Nov 1;123:236–45.
  • Rodriguez-Contreras A, Guillem-Marti J, Lopez O, Manero JM, Ruperez E. Antimicrobial PHAs coatings for solid and porous tantalum implants. Colloids and surfaces B, Biointerfaces 2019 Jul 4;182:110317.
  • Ahmadi SM, Hedayati R, Li Y, Lietaert K, Tümer N, Fatemi A, et al. Fatigue performance of additively manufactured meta-biomaterials: The effects of topology and material type. Acta biomaterialia 2018 Jan;65:292–304.
  • Sautet P, Parratte S, Mekideche T, Abdel MP, Flecher X, Argenson JN, et al. Antibiotic-loaded tantalum may serve as an antimicrobial delivery agent. The bone & joint journal 2019 Jul;101-b(7):848–51.
  • Sautet P, Mekideche T, Guilhaumou R, Abdel MP, Argenson J-N, Parratte S, et al. Vancomycin elution kinetics from porous tantalum metal. Journal of Orthopaedic Research 2019 Feb;37(2):308–12.
  • Miyazaki T, Kim HM, Miyaji F, Kokubo T, Kato H, Nakamura T. Bioactive tantalum metal prepared by NaOH treatment. Journal of biomedical materials research 2000 Apr;50(1):35–42.
  • Paredes V, Salvagni E, Rodriguez E, Gil FJ, Manero JM. Assessment and comparison of surface chemical composition and oxide layer modification upon two different activation methods on a cocrmo alloy. Journal of materials science Materials in medicine 2014 Feb;25(2):311–20.
  • Kim HM, Miyaji F, Kokubo T, Nakamura T. Preparation of bioactive Ti and its alloys via simple chemical surface treatment. Journal of biomedical materials research 1996 Nov;32(3):409–17.
  • Caplin JD, Garcia AJ. Implantable antimicrobial biomaterials for local drug delivery in bone infection models. Acta biomaterialia 2019 Jul 15;93:2–11.
  • De Witte T-M, Fratila-Apachitei LE, Zadpoor AA, Peppas NA. Bone tissue engineering via growth factor delivery: from scaffolds to complex matrices. Regenerative Biomaterials 2018 Aug;5(4):197–211.
  • Saunders L, Ma PX. Self-Healing Supramolecular Hydrogels for Tissue Engineering Applications. Macromolecular bioscience 2019 Jan;19(1).
  • Li J, Mooney DJ. Designing hydrogels for controlled drug delivery. Nature Reviews Materials 2016;1(12).
  • Rodríguez-Contreras A, Koller M, Miranda-de Sousa Dias M, Calafell-Monfort M, Braunegg G, Marqués-Calvo MS. High production of poly(3-hydroxybutyrate) from a wild Bacillus megaterium Bolivian strain. J Appl Microbiol 2013 May;114(5):1378–87.
  • Chen GQ, Wu Q. The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials 2005 Nov;26(33):6565–78.
  • Wu Q, Wang Y, Chen GQ. Medical application of microbial biopolyesters polyhydroxyalkanoates. Artificial cells, blood substitutes, and immobilization biotechnology 2009;37(1):1–12.
  • Wang F, Wang L, Feng Y, Yang X, Ma Z, Shi L, et al. Evaluation of an artificial vertebral body fabricated by a tantalum-coated porous titanium scaffold for lumbar vertebral defect repair in rabbits. Scientific reports 2018 Jun 12;8(1):8927.
  • Tang Z, Xie Y, Yang F, Huang Y, Wang C, Dai K, et al. Porous Tantalum Coatings Prepared by Vacuum Plasma Spraying Enhance BMSCs Osteogenic Differentiation and Bone Regeneration In Vitro and In Vivo. PloS one 2013 Jun 11;8(6).
  • Kurtz S, Ong K, Lau E, Mowat F, Halpern M. Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. The Journal of bone and joint surgery American volume 2007 Apr;89(4):780–5.
  • Aggarwal VK, Bakhshi H, Ecker NU, Parvizi J, Gehrke T, Kendoff D. Organism profile in periprosthetic joint infection: pathogens differ at two arthroplasty infection referral centers in Europe and in the United States. The journal of knee surgery 2014 Oct;27(5):399–406.
  • Jenkins DR, Odland AN, Sierra RJ, Hanssen AD, Lewallen DG. Minimum Five-Year Outcomes with Porous Tantalum Acetabular Cup and Augment Construct in Complex Revision Total Hip Arthroplasty. The Journal of bone and joint surgery American volume 2017 May 17;99(10):e49.
  • Flecher X, Appy B, Parratte S, Ollivier M, Argenson JN. Use of porous tantalum components in Paprosky two and three acetabular revision. A minimum five-year follow-up of fifty one hips. International orthopaedics 2017 May;41(5):911–16.
  • Chou TG, Petti CA, Szakacs J, Bloebaum RD. Evaluating antimicrobials and implant materials for infection prevention around transcutaneous osseointegrated implants in a rabbit model. Journal of biomedical materials research Part A 2010 Mar 1;92(3):942–52.
  • Harrison PL, Harrison T, Stockley I, Smith TJ. Does tantalum exhibit any intrinsic antimicrobial or antibiofilm properties? Bone & Joint Journal 2017 Sep;99B(9):1153–56.
  • Yang C, Li J, Zhu C, Zhang Q, Yu J, Wang J, et al. Advanced antibacterial activity of biocompatible tantalum nanofilm via enhanced local innate immunity. Acta biomaterialia 2019 Apr 15;89:403–18.
  • Schild T, Low V, Blenis J, Gomes AP. Unique Metabolic Adaptations Dictate Distal Organ-Specific Metastatic Colonization. Cancer Cell 2018 Mar 12;33(3):347–54.
  • Schmitz JP, Hollinger JO. The critical size defect as an experimental model for craniomandibulofacial nonunions. Clinical orthopaedics and related research 1986 Apr(205):299–308.
  • Lu MM, Wu PS, Guo XJ, Yin LL, Cao HL, Zou D. Osteoinductive effects of tantalum and titanium on bone mesenchymal stromal cells and bone formation in ovariectomized rats. European review for medical and pharmacological sciences 2018 Nov;22(21):7087–104.
  • Lu JX, Flautre B, Anselme K, Hardouin P, Gallur A, Descamps M, et al. Role of interconnections in porous bioceramics on bone recolonization in vitro and in vivo. Journal of materials science Materials in medicine 1999 Feb;10(2):111–20.
  • Van Bael S, Chai YC, Truscello S, Moesen M, Kerckhofs G, Van Oosterwyck H, et al. The effect of pore geometry on the in vitro biological behavior of human periosteum-derived cells seeded on selective laser-melted Ti6Al4V bone scaffolds. Acta biomaterialia 2012 Jul;8(7):2824–34.
  • Wauthle R, van der Stok J, Amin Yavari S, Van Humbeeck J, Kruth JP, Zadpoor AA, et al. Additively manufactured porous tantalum implants. Acta biomaterialia 2015 Mar;14:217–25.
  • Sinclair SK, Konz GJ, Dawson JM, Epperson RT, Bloebaum RD. Host Bone Response to Polyetheretherketone Versus Porous Tantalum Implants for Cervical Spinal Fusion in a Goat Model. Spine 2012 May 1;37(10):E571–E80.
  • Tanzer M, Karabasz D, Krygier JJ, Cohen R, Bobyn JD. The Otto Aufranc Award: bone augmentation around and within porous implants by local bisphosphonate elution. Clinical orthopaedics and related research 2005 Dec;441:30–9.
  • McKenzie K, Dennis Bobyn J, Roberts J, Karabasz D, Tanzer M. Bisphosphonate remains highly localized after elution from porous implants. Clinical orthopaedics and related research 2011 Feb;469(2):514–22.
  • Bobyn JD, McKenzie K, Karabasz D, Krygier JJ, Tanzer M. Locally delivered bisphosphonate for enhancement of bone formation and implant fixation. The Journal of bone and joint surgery American volume 2009 Nov;91 Suppl 6:23–31.
  • Tanzer M, Karabasz D, Krygier JJ, Cohen R, Bobyn JD. The Otto Aufranc Award: bone augmentation around and within porous implants by local bisphosphonate elution. Clinical orthopaedics and related research 2005 Dec;441:30–9.
  • Horowitz SM, Algan SA, Purdon MA. Pharmacologic inhibition of particulate-induced bone resorption. Journal of biomedical materials research 1996 May;31(1):91–6.
  • Shanbhag AS, Hasselman CT, Rubash HE. The John Charnley Award. Inhibition of wear debris mediated osteolysis in a canine total hip arthroplasty model. Clinical orthopaedics and related research 1997 Nov(344):33–43.
  • Soininvaara TA, Jurvelin JS, Miettinen HJ, Suomalainen OT, Alhava EM, Kröger PJ. Effect of alendronate on periprosthetic bone loss after total knee arthroplasty: a one-year, randomized, controlled trial of 19 patients. Calcified tissue international 2002 Dec;71(6):472–7.
  • Venesmaa PK, Kröger HP, Miettinen HJ, Jurvelin JS, Suomalainen OT, Alhav EM. Alendronate reduces periprosthetic bone loss after uncemented primary total hip arthroplasty: a prospective randomized study. J Bone Miner Res 2001 Nov;16(11):2126–31.
  • Wilkinson JM, Stockley I, Peel NF, Hamer AJ, Elson RA, Barrington NA, et al. Effect of pamidronate in preventing local bone loss after total hip arthroplasty: a randomized, double-blind, controlled trial. J Bone Miner Res 2001 Mar;16(3):556–64.
  • Elmengaard B, Bechtold JE, Søballe K. In vivo study of the effect of RGD treatment on bone ongrowth on press-fit titanium alloy implants. Biomaterials 2005 Jun;26(17):3521–6.
  • Mas-Moruno C, Dorfner PM, Manzenrieder F, Neubauer S, Reuning U, Burgkart R, et al. Behavior of primary human osteoblasts on trimmed and sandblasted Ti6Al4V surfaces functionalized with integrin αvβ3-selective cyclic RGD peptides. Journal of biomedical materials research Part A 2013 Jan;101(1):87–97.
  • Widuchowski W, Widuchowski J, Trzaska T. Articular cartilage defects: study of 25,124 knee arthroscopies. The Knee 2007 Jun;14(3):177–82.
  • Wright TM, Maher SA. Current and novel approaches to treating chondral lesions. The Journal of bone and joint surgery American volume 2009 Feb;91 Suppl 1:120–5.
  • Christensen BB. Autologous tissue transplantations for osteochondral repair. Dan Med J 2016 Apr;63(4).
  • Knutsen G, Drogset JO, Engebretsen L, Grøntvedt T, Isaksen V, Ludvigsen TC, et al. A randomized trial comparing autologous chondrocyte implantation with microfracture. Findings at five years. The Journal of bone and joint surgery American volume 2007 Oct;89(10):2105–12.
  • O’Driscoll SW, Keeley FW, Salter RB. The chondrogenic potential of free autogenous periosteal grafts for biological resurfacing of major full-thickness defects in joint surfaces under the influence of continuous passive motion. An experimental investigation in the rabbit. The Journal of bone and joint surgery American volume 1986 Sep;68(7):1017–35.
  • Duffy GP, Trousdale RT, Stuart MJ. Total knee arthroplasty in patients 55 years old or younger. 10- to 17-year results. Clinical orthopaedics and related research 1998 Nov(356):22–7.
  • Duffy GP, Crowder AR, Trousdale RR, Berry DJ. Cemented total knee arthroplasty using a modern prosthesis in young patients with osteoarthritis. The Journal of arthroplasty 2007 Sep;22(6 Suppl 2):67–70.
  • Hofmann AA, Heithoff SM, Camargo M. Cementless total knee arthroplasty in patients 50 years or younger. Clinical orthopaedics and related research 2002 Nov(404):102–7.
  • Sheng PY, Konttinen L, Lehto M, Ogino D, Jämsen E, Nevalainen J, et al. Revision total knee arthroplasty: 1990 through 2002. A review of the Finnish arthroplasty registry. The Journal of bone and joint surgery American volume 2006 Jul;88(7):1425–30.
  • Convery FR, Akeson WH, Keown GH. The repair of large osteochondral defects. An experimental study in horses. Clinical orthopaedics and related research 1972 Jan-Feb;82:253–62.
  • Furukawa T, Eyre DR, Koide S, Glimcher MJ. Biochemical studies on repair cartilage resurfacing experimental defects in the rabbit knee. The Journal of bone and joint surgery American volume 1980 Jan;62(1):79–89.
  • Hunter W. Of the structure and disease of articulating cartilages. 1743. Clinical orthopaedics and related research 1995 Aug(317):3–6.
  • Hurtig MB, Fretz PB, Doige CE, Schnurr DL. Effects of lesion size and location on equine articular cartilage repair. Can J Vet Res 1988 Jan;52(1):137–46.
  • Tsou IY, Yegappan M, Ong WS, Goh PO, Tan JL, Chee TS. Cartilage injury and repair: assessment with magnetic resonance imaging. Singapore Med J 2006 Jan;47(1):80–7; quiz 88.
  • Mankin HJ. The response of articular cartilage to mechanical injury. The Journal of bone and joint surgery American volume 1982 Mar;64(3):460–6.
  • Meachim G, Roberts C. Repair of the joint surface from subarticular tissue in the rabbit knee. J Anat 1971 Jul;109(Pt 2):317–27.
  • Mitchell N, Shepard N. The resurfacing of adult rabbit articular cartilage by multiple perforations through the subchondral bone. The Journal of bone and joint surgery American volume 1976 Mar;58(2):230–3.
  • Salter RB, Simmonds DF, Malcolm BW, Rumble EJ, MacMichael D, Clements ND. The biological effect of continuous passive motion on the healing of full-thickness defects in articular cartilage. An experimental investigation in the rabbit. The Journal of bone and joint surgery American volume 1980 Dec;62(8):1232–51.
  • Robertson W, Kelly BT, Green DW. Osteochondritis dissecans of the knee in children. Curr Opin Pediatr 2003 Feb;15(1):38–44.
  • Kocher MS, Tucker R, Ganley TJ, Flynn JM. Management of osteochondritis dissecans of the knee: current concepts review. The American journal of sports medicine 2006 Jul;34(7):1181–91.
  • Nukavarapu SP, Dorcemus DL. Osteochondral tissue engineering: current strategies and challenges. Biotechnol Adv 2013 Sep-Oct;31(5):706–21.
  • Gordon WJ, Conzemius MG, Birdsall E, Wannemuehler Y, Mallapragada S, Lewallen DG, et al. Chondroconductive potential of tantalum trabecular metal. Journal of biomedical materials research Part B, Applied biomaterials 2005 Nov;75(2):229–33.
  • Ding C, Qiao Z, Jiang W, Li H, Wei J, Zhou G, et al. Regeneration of a goat femoral head using a tissue-specific, biphasic scaffold fabricated with CAD/CAM technology. Biomaterials 2013 Sep;34(28):6706–16.
  • Mrosek EH, Schagemann JC, Chung H-W, Fitzsimmons JS, Yaszemski MJ, Mardones RM, et al. Porous Tantalum and Poly-epsilon-Caprolactone Biocomposites for Osteochondral Defect Repair: Preliminary Studies in Rabbits. Journal of Orthopaedic Research 2010 Feb;28(2):141–48.
  • Mardones RM, Reinholz GG, Fitzsimmons JS, Zobitz ME, An KN, Lewallen DG, et al. Development of a biologic prosthetic composite for cartilage repair. Tissue engineering 2005 Sep-Oct; 11 (9–10): 1368–78.
  • Jamil K, Chua K-H, Joudi S, Ng S-L, Yahaya NH. Development of a cartilage composite utilizing porous tantalum, fibrin, and rabbit chondrocytes for treatment of cartilage defect. Journal of orthopaedic surgery and research 2015 Feb 7;10.
  • Chubinskaya S, Kawakami M, Rappoport L, Matsumoto T, Migita N, Rueger DC. Anti-catabolic effect of OP-1 in chronically compressed intervertebral discs. Journal of orthopaedic research : official publication of the Orthopaedic Research Society 2007 Apr;25(4):517–30.
  • Mason JM, Grande DA, Barcia M, Grant R, Pergolizzi RG, Breitbart AS. Expression of human bone morphogenic protein 7 in primary rabbit periosteal cells: potential utility in gene therapy for osteochondral repair. Gene Ther 1998 Aug;5(8):1098–104.
  • Mason JM, Breitbart AS, Barcia M, Porti D, Pergolizzi RG, Grande DA. Cartilage and bone regeneration using gene-enhanced tissue engineering. Clinical orthopaedics and related research 2000 Oct(379 Suppl): S171–8.
  • Vinall RL, Lo SH, Reddi AH. Regulation of articular chondrocyte phenotype by bone morphogenetic protein 7, interleukin 1, and cellular context is dependent on the cytoskeleton. Exp Cell Res 2002 Jan 1;272(1):32–44.
  • Wang Q, Zhang H, Gan H, Wang H, Li Q, Wang Z. Application of combined porous tantalum scaffolds loaded with bone morphogenetic protein 7 to repair of osteochondral defect in rabbits<sup/>. International orthopaedics 2018 Jul;42(7):1437–48.
  • Wei X, Liu B, Liu G, Yang F, Cao F, Dou X, et al. Mesenchymal stem cell-loaded porous tantalum integrated with biomimetic 3D collagen-based scaffold to repair large osteochondral defects in goats. Stem cell research&therpy 2019 Mar 5;10(1):72.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.