301
Views
16
CrossRef citations to date
0
Altmetric
Review

Current status and future directions of hepatocellular carcinoma-targeted nanoparticles and nanomedicine

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon &
Pages 673-694 | Received 29 Jun 2020, Accepted 04 Dec 2020, Published online: 27 Dec 2020

References

  • Forner A, Reig M, Bruix J. Hepatocellular carcinoma. 2018;391(10127):1301–1314.
  • Zamboni CG, Kozielski KL, Vaughan HJ, et al. Polymeric nanoparticles as cancer-specific DNA delivery vectors to human hepatocellular carcinoma. J Control Release. 2017;263:18–28.
  • Li LM, Bin HZ, Zhou ZX, et al. Serum microRNA profiles serve as novel biomarkers for HBV infection and diagnosis of HBV-positive hepatocarcinoma. Cancer Res. 2010;70(23):9798–9807. .
  • Yang N, Ekanem NR, Sakyi CA, et al. Hepatocellular carcinoma and microRNA: new perspectives on therapeutics and diagnostics. 2015:81:62–74.
  • Jiang Y, Sun A, Zhao Y, et al. Proteomics identifies new therapeutic targets of early-stage hepatocellular carcinoma. Nature. 2019;567(7747):257–261. .
  • Baig B, Halim SA, Farrukh A, Greish Y, Amin A. Current status of nanomaterial-based treatment for hepatocellular carcinoma, (2019) 116:108852
  • Iranshahy M, Rezaee R, Karimi G. Hepatoprotective activity of metformin: A new mission for an old drug? 2019:5;850:1–7.
  • Li C, Zhang W, Yang H, et al. Integrative analysis of dysregulated lncRNA-associated ceRNA network reveals potential lncRNA biomarkers for human hepatocellular carcinoma. PeerJ. 2020;2020:3.
  • Hu WY, Wei HY, Li KM, et al. LINC00511 as a ceRNA promotes cell malignant behaviors and correlates with prognosis of hepatocellular carcinoma patients by modulating miR-195/EYA1 axis. Biomed Pharmacother. 2020;121. DOI:10.1016/j.biopha.2019.109642
  • Liu DH, Wang SL, Hua Y, et al. Five lncRNAs associated with the survival of hepatocellular carcinoma: a comprehensive study based on WGCNA and competing endogenous RNA network. Eur Rev Med Pharmacol Sci. 2020;24(14):7621–7633.
  • Rahman M, Beg S, Alharbi KS, et al. Implications of solid lipid nanoparticles of ganoderic acid for the treatment and management of hepatocellular carcinoma. J. Pharm. Innov 2020.
  • Pandey P, Rahman M, Bhatt PC, et al., Implication of nano-antioxidant therapy for treatment of hepatocellular carcinoma using PLGA nanoparticles of rutin. Nanomedicine. 13(8): 849–870. 2018. .
  • Heimbach JK, Kulik LM, Finn RS, et al. AASLD guidelines for the treatment of hepatocellular carcinoma. Hepatology. 2018;67(1):358–380. .
  • Subramani K, Elhissi A, Subbiah U, et al. Introduction to nanotechnology. In: Nanobiomaterials in Clinical Dentistry. 2019. p. 3–18.
  • Wilhelm SM, Adnane L, Newell P, et al. Preclinical overview of sorafenib. In: a multikinase inhibitor that targets both Raf and VEGF and PDGF receptor tyrosine kinase signaling. 2008;7(10):3129–40.
  • Liu L, Cao Y, Chen C, et al. Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5. Cancer Res. 2006;66(24):11851–11858. .
  • Xia H, Lee KW, Chen J, et al. Simultaneous silencing of ACSL4 and induction of GADD45B in hepatocellular carcinoma cells amplifies the synergistic therapeutic effect of aspirin and sorafenib. Cell Death Discov. 2017;3(1):1. .
  • Sanchez F, Sobolev K. Nanotechnology in concrete - A review. 2010;24(11):2060–2071.
  • Thakor AS, Gambhir SS. Nanooncology: the future of cancer diagnosis and therapy. CA Cancer J Clin. 2013;63(6):395–418.
  • Rizvi SAA, Saleh AM. Applications of nanoparticle systems in drug delivery technology. 2018;26(1): 64–70.
  • Nasrollahzadeh M, Sajadi SM, Sajjadi M, et al. An Introduction to Nanotechnology. In: Interface Science and Technology. Vol. ume 28. 2019. p. 1–27.
  • Pacelli S, Acosta F, Chakravarti AR, et al. Nanodiamond-based injectable hydrogel for sustained growth factor release: preparation, characterization and in vitro analysis. Acta Biomater. 2017;58:479–491.
  • Farajzadeh R, Pilehvar-Soltanahmadi Y, Dadashpour M, et al. Nano-encapsulated metformin-curcumin in PLGA/PEG inhibits synergistically growth and hTERT gene expression in human breast cancer cells. DOEArtif. Cells, Nanomedicine Biotechnol. 2018;46(5):917–925.
  • Zhu RX, Seto WK, Lai CL, et al. Epidemiology of hepatocellular carcinoma in the Asia-Pacific region. 2016;10(3):332–9.
  • Lafaro KJ, Demirjian AN, Pawlik TM. Epidemiology of Hepatocellular Carcinoma. In: Surgical oncology clinics of north america. Vol. ume 24. 2015. p. 1–17.
  • Omata M, Cheng AL, Kokudo N, et al. Asia–Pacific clinical practice guidelines on the management of hepatocellular carcinoma: a 2017 update. 2017;11(4):317–370.
  • London WT, Petrick JL, McGlynn KA. Liver cancer. In: Schottenfeld and fraumeni cancer epidemiology and prevention, fourth edition. 2017. p. 635–660.
  • Tang A, Hallouch O, Chernyak V, et al. Epidemiology of hepatocellular carcinoma: target population for surveillance and diagnosis. 2018;43(1):13–25.
  • Chen P-J, Lee P-H, Han K-H, et al. A phase III trial of muparfostat (PI-88) as adjuvant therapy in patients with hepatitis virus related hepatocellular carcinoma (HV-HCC) after resection. Ann Oncol. 2017;28(213):v. .
  • Park JW, Chen M, Colombo M, et al. Global patterns of hepatocellular carcinoma management from diagnosis to death: the BRIDGE Study. Liver Int. 2015;35(9):2155–2166. .
  • Bennett H, Waser N, Johnston K, et al. A review of the burden of hepatitis C virus infection in China, Japan, South Korea and Taiwan. 2015;9(3):378–90.
  • Goh GBB, Chang PE, Tan CK. Changing epidemiology of hepatocellular carcinoma in Asia. 2015;29(6):919–28.
  • Bagheri R, Sanaat Z, Zarghami N. Synergistic effect of free and nano-encapsulated chrysin-curcumin on inhibition of htert gene expression in SW480 colorectal cancer cell line. Drug Res. 2018;68(6):335–343. Stuttg. .
  • Mukherjee A, Sarkar S, Jana S, et al. Neuro-protective role of nanocapsulated curcumin against cerebral ischemia-reperfusion induced oxidative injury. Brain Res. 1704;164–173:2019.
  • Shan D, Zhang C, Kalaba S, et al. Flexible biodegradable citrate-based polymeric step-index optical fiber. Biomaterials. 2017;143:142–148.
  • Willoughby JLS, Chan A, Sehgal A, et al. Evaluation of GalNAc-siRNA conjugate activity in pre-clinical animal models with reduced asialoglycoprotein receptor expression. Mol Ther. 2018;26(1):105–114. .
  • Witzigmann D, Quagliata L, Schenk SH, et al. Variable asialoglycoprotein receptor 1 expression in liver disease: implications for therapeutic intervention. Hepatol Res. 2016;46(7):686–696.
  • Gu D, Jin H, Jin G, et al. The asialoglycoprotein receptor suppresses the metastasis of hepatocellular carcinoma via LASS2-mediated inhibition of V-ATPase activity. Cancer Lett. 2016;379(1):107–116.
  • Oh HR, Jo HY, Park JS, et al. Galactosylated liposomes for targeted co-delivery of doxorubicin/vimentin sirna to hepatocellular carcinoma. Nanomaterials. 2016;6:8.
  • Sonoke S, Ueda T, Fujiwara K, et al. Galactose-modified cationic liposomes as a liver-targeting delivery system for small interfering RNA. Biol Pharm Bull. 2011;34(8):1338–1342.
  • Ni W, Li Z, Liu Z, et al. Dual-targeting nanoparticles: codelivery of Curcumin and 5-Fluorouracil for synergistic treatment of hepatocarcinoma. J Pharm Sci. 2019;108(3):1284–1295. .
  • Kamruzzaman Selim KM, Ha YS, Kim SJ, et al. Surface modification of magnetite nanoparticles using lactobionic acid and their interaction with hepatocytes. Biomaterials. 2007;28(4):710–716. .
  • Barker K, Rastogi SK, Dominguez J, et al. Biodegradable DNA-enabled poly(ethylene glycol) hydrogels prepared by copper-free click chemistry. J Biomater Sci Polym Ed. 2016;27(1):22–39.
  • Liu H, Wang H, Xu Y, et al. Lactobionic acid-modified dendrimer-entrapped gold nanoparticles for targeted computed tomography imaging of human hepatocellular carcinoma. Presented at. ACS Appl Mater Interfaces. 2014;6(9):6944–53.
  • Gao DY, Lin TT, Sung YC, et al. CXCR4-targeted lipid-coated PLGA nanoparticles deliver sorafenib and overcome acquired drug resistance in liver cancer. Biomaterials. 2015;67:194–203.
  • Nasr M, Nafee N, Saad H, et al. Improved antitumor activity and reduced cardiotoxicity of epirubicin using hepatocyte-targeted nanoparticles combined with tocotrienols against hepatocellular carcinoma in mice. Eur J Pharm Biopharm. 2014;88(1):216–225.
  • Bor G, Intan D, Mat A, et al. Nanomedicines for cancer therapy: current status, challenges and future prospects. Ther Deliv. 2019;10.2:113–132.
  • Wolfram J, Ferrari M. Clinical cancer nanomedicine. Nano Today. 2019;25:85–98.
  • Pan Z, Chen C, Long H, et al. Overexpression of GPC3 inhibits hepatocellular carcinoma cell proliferation and invasion through induction of apoptosis. Mol Med Rep. 2013;7(3):969–974. .
  • Xu L, Beckebaum S, Iacob S, et al. MicroRNA-101 inhibits human hepatocellular carcinoma progression through EZH2 downregulation and increased cytostatic drug sensitivity. J Hepatol. 2014;60(3):590–598. .
  • Li J, Wang T, Jin B, et al. Diagnosis accuracy of serum glypican-3 level in patients with hepatocellular carcinoma: A systematic review with meta-analysis. 2018;33(4):353–363.
  • Xie C, Tiede C, Zhang X, et al. Development of an Affimer-antibody combined immunological diagnosis kit for glypican-3. Sci Rep. 2017;7:1.
  • Sol C, Jang JH, Riener MO, et al. Serotonin promotes tumor growth in human hepatocellular cancer. Hepatology. 2010;51(4):1244–1254. .
  • Guri Y, Colombi M, Dazert E, et al. mTORC2 promotes tumorigenesis via lipid synthesis. Cancer Cell. 2017;32(6):807–823.e12. .
  • Cui L, Gao B, Cao Z, et al. Downregulation of B7-H4 in the MHCC97-H hepatocellular carcinoma cell line by arsenic trioxide. Mol Med Rep. 2016;13(3):2032–2038.
  • Liu P, Ge M, Hu J, et al. A functional mammalian target of rapamycin complex 1 signaling is indispensable for c-Myc-driven hepatocarcinogenesis. Hepatology. 2017;66(1):167–181. .
  • Li L, Jin R, Zhang X, et al. Oncogenic activation of glypican-3 by c-Myc in human hepatocellular carcinoma. Hepatology. 2012;56(4):1380–1390. .
  • Ishiguro T, Sugimoto M, Kinoshita Y, et al. Anti-glypican 3 antibody as a potential antitumor agent for human liver cancer. Cancer Res. 2008;68(23):9832–9838. .
  • Sadeghi S, Olevsky O, Hurvitz SA. Profiling and targeting HER2-positive breast cancer using trastuzumab emtansine. 2014;7:329–38.
  • Daniels TR, Bernabeu E, Rodríguez JA, et al. The transferrin receptor and the targeted delivery of therapeutic agents against cancer. 2012;1820(3):291–317.
  • Dai L, Cai R, Li M, et al. Dual-targeted cascade-responsive prodrug micelle system for tumor therapy in vivo. Chem Mater. 2017;29(16):6976–6992.
  • Zhang L, Gong F, Zhang F, et al. Targeted therapy for human hepatic carcinoma cells using folate-functionalized polymeric micelles loaded with superparamagnetic iron oxide and sorafenib in vitro. Int J Nanomedicine. 2013;8:1517–1524.
  • Wang Q, Zhang X, Liao H, et al. Multifunctional shell–core nanoparticles for treatment of multidrug resistance hepatocellular carcinoma. Adv Funct Mater. 2018;28:14.
  • Wang K, Kievit FM, Sham JG, et al., Iron-Oxide-Based Nanovector for Tumor Targeted siRNA Delivery in an Orthotopic Hepatocellular Carcinoma Xenograft Mouse Model. Small. 12(4): 477–487. 2016. .
  • Luria-Pérez R, Helguera G, Rodríguez JA. Anticuerpos que reconocen el receptor de transferrina en células tumorales. Bol. Med. Hosp. Infant. Mex. 2016;73(6):372–379.
  • Wurz GT, Kao CJ, Degregorio MW. Novel cancer antigens for personalized immunotherapies: latest evidence and clinical potential. 2016:28;4–31.
  • Zhang X, Li J, Yan M. Targeted hepatocellular carcinoma therapy: transferrin modified, self-assembled polymeric nanomedicine for co-delivery of cisplatin and doxorubicin. Drug Dev Ind Pharm. 2016;42(10):1590–1599. .
  • Malarvizhi GL, Retnakumari AP, Nair S, et al. Transferrin targeted core-shell nanomedicine for combinatorial delivery of doxorubicin and sorafenib against hepatocellular carcinoma. Nanomed Nanotechnol Biol Med. 2014;10(8):1649–1659.
  • Baker EN, Baker HM. Molecular structure. In: binding properties and dynamics of lactoferrin. 2005;62(22):2531–9.
  • Golla K, Cherukuvada B, Ahmed F, et al. Anticancer activity of protein nanoparticle-based delivery of doxorubicin through intravenous administration in rats. PLoS One. 2012;7:12.
  • Lucock M. Folic acid: nutritional biochemistry, molecular biology, and role in disease processes. Mol Genet Metab. 2000;71(1–2):121–138.
  • Chen C, Ke J, Edward Zhou X, et al. Structural basis for molecular recognition of folic acid by folate receptors. Nature. 2013;500(7463):486–489. .
  • Cao N, Cheng D, Zou S, et al. The synergistic effect of hierarchical assemblies of siRNA and chemotherapeutic drugs co-delivered into hepatic cancer cells. Biomaterials. 2011;32(8):2222–2232.
  • Ling D, Xia H, Park W, et al., PH-sensitive nanoformulated triptolide as a targeted therapeutic strategy for hepatocellular carcinoma. ACS Nano. 8(8): 8027–8039. 2014. .
  • De Luca LM. Retinoids and their receptors in differentiation, embryogenesis, and neoplasia. Faseb J. 1991;5(14):2924–2933.
  • Varshosaz J, Farzan M. Nanoparticles for targeted delivery of therapeutics and small interfering RNAs in hepatocellular carcinoma. World J Gastroenterol. 2015;21(42):12022–12041. .
  • Cortes E, Lachowski D, Rice A, et al. Retinoic acid receptor-β is downregulated in hepatocellular carcinoma and cirrhosis and its expression inhibits myosin-driven activation and durotaxis in hepatic stellate cells. Hepatology. 2019;69(2):785–802.
  • Altucci L, Gronemeyer H. The promise of retinoids to fight against cancer. Nat Rev Cancer. 2001;1(3):181–193.
  • Varshosaz J, Hassanzadeh F, Aliabadi HS, et al. Cytotoxic effects of chitosan/retinoic acid/albumin targeted nanoparticles loaded with doxorubicin on human hepatoma cells. J. Isfahan Med. Sch. 2013;30(218):2206–2216.
  • Zhou X, Zhang M, Yung B, et al. Lactosylated liposomes for targeted delivery of doxorubicin to hepatocellular carcinoma. Int J Nanomedicine. 2012;7:5465–5474.
  • Niu C, Sun Q, Zhou J, et al. Folate-functionalized polymeric micelles based on biodegradable PEG-PDLLA as a hepatic carcinoma-targeting delivery system. Asian Pacific J Cancer Prev. 2011;12(8):1995–1999.
  • Tseng HH, Chang JG, Hwang YH, et al. Expression of hepcidin and other iron-regulatory genes in human hepatocellular carcinoma and its clinical implications. J Cancer Res Clin Oncol. 2009;135(10):1413–1420.
  • Wilson B, Ozturk M, Takahashi H, et al. Cell-surface changes associated with transformation of human hepatocytes to the malignant phenotype. Proc Natl Acad Sci U S A. 1988;85(9):3140–3144. .
  • Takahashi H, Ozturk M, Wilson B, et al. In Vivo expression of two novel tumor‐associated antigens and their use in immunolocalization of human hepatocellular carcinoma. Hepatology. 1989;9(4):625–634. .
  • Patel YC. Somatostatin and its receptor family. Front Neuroendocrinol. 1999;20(3):157–198.
  • Reynaert H, Rombouts K, Vandermonde A, et al. Expression of somatostatin receptors in normal and cirrhotic human liver and in hepatocellular carcinoma. Gut. 2004;53(8):1180–1189. .
  • Sun M, Wang Y, Shen J, et al. Octreotide-modification enhances the delivery and targeting of doxorubicin-loaded liposomes to somatostatin receptors expressing tumor in vitro and in vivo. Nanotechnology. 2010;21:47.
  • Jia WD, Xu GL, Wang W, et al. A somatostatin analogue, octreotide, inhibits the occurrence of second primary tumors and lung metastasis after resection of hepatocellular carcinoma in mice. Tohoku J Exp Med. 2009;218(2):155–160. .
  • Zhang L, Yu SU, Duan Z, et al. Treatment of liver cancer in mice by the intratumoral injection of an octreotide-based temperature-sensitive gel. Int J Mol Med. 2014;33(1):117–127. .
  • Verset G, Verslype C, Reynaert H, et al. Efficacy of the combination of long-acting release octreotide and tamoxifen in patients with advanced hepatocellular carcinoma: A randomised multicentre phase III study. Br J Cancer. 2007;97(5):582–588. .
  • Marhaba R, Zöller M. CD44 in cancer progression: adhesion. In migration and growth regulation. 2004.
  • Endo K, Terada T. Protein expression of CD44 (standard and variant isoforms) in hepatocellular carcinoma: relationships with tumor grade, clinicopathologic parameters, p53 expression, and patient survival. J Hepatol. 2000;32(1):78–84.
  • Xie Z, Choong PF, Poon LF, et al. Inhibition of CD44 expression in hepatocellular carcinoma cells enhances apoptosis, chemosensitivity, and reduces tumorigenesis and invasion. Cancer Chemother Pharmacol. 2008;62(6):949–957. .
  • Wang L, Su W, Liu Z, et al. CD44 antibody-targeted liposomal nanoparticles for molecular imaging and therapy of hepatocellular carcinoma. Biomaterials. 2012;33(20):5107–5114. .
  • Bottini M, Magrini A, Fadeel B, et al. Tackling chondrocyte hypertrophy with multifunctional nanoparticles. Gene Ther. 2016. DOI:10.1038/gt.2016.33
  • Ali Y, Alqudah A, Ahmad S, et al. Macromolecules as targeted drugs delivery vehicles: an overview. Des. Monomers Polym. 2019;22(1):91–97.
  • Methachan B, Polymer-Based TK. Materials in Cancer Treatment: from Therapeutic Carrier and Ultrasound Contrast Agent to Theranostic Applications. 2017;43(1):69–82.
  • Li M, Zhang W, Wang B, et al. Ligand-based targeted therapy: A novel strategy for hepatocellular carcinoma. 2016;11: 5645–5669.
  • Yameen B, Il CW, Vilos C, et al. Insight into nanoparticle cellular uptake and intracellular targeting. 2014;28;190:485–99.
  • Upponi JR, Torchilin VP. Passive vs. Active Targeting: an Update of the EPR Role in Drug Delivery to Tumors. 2014;(197):3–53.
  • Masood F. Polymeric nanoparticles for targeted drug delivery system for cancer therapy. 2016;60:569–578.
  • Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. 2010;75(1):1–18.
  • Dutta R, Kumar V, Peng Y, et al. Pharmacokinetics and Biodistribution of GDC-0449 loaded micelles in normal and liver fibrotic mice. Pharm Res. 2017. DOI:10.1007/s11095-016-2081-3
  • Zhang HT, Sun J, Yan Y, et al. Encapsulated microRNA by gemcitabine prodrug for cancer treatment. J Control Release. 2019. DOI:10.1016/j.jconrel.2019.11.010.
  • Zhang J, Zhang M, Ji J, et al. Glycyrrhetinic acid-mediated polymeric drug delivery targeting the acidic microenvironment of hepatocellular carcinoma. Pharm Res. 2015;32(10):3376–3390. .
  • Zhang J, Zheng Y, Xie X, et al. Cleavable multifunctional targeting mixed micelles with sequential ph-triggered tat peptide activation for improved antihepatocellular carcinoma efficacy. Mol Pharm. 2017;14(11):3644–3659. .
  • Negishi M, Irie A, Nagata N, et al. Specific binding of glycyrrhetinic acid to the rat liver membrane. BBA - Biomembr. 1991;1066(1):77–82.
  • Devulapally R, Foygel K, Sekar TV, et al. Nanoparticles for Hepatocellular Carcinoma Therapy. ACS Appl Mater Interfaces. 2016;8(49):33412–33422.
  • Chowdhury SM, Lee T, Bachawal SV, et al. Longitudinal assessment of ultrasound-guided complementary microRNA therapy of hepatocellular carcinoma. J Control Release. 2018;281:19–28.
  • Usmani A, Mishra A, Ahmad M. Nanomedicines: a theranostic approach for hepatocellular carcinoma. 2018;46(4):680–690.
  • Kumar V, Bhatt PC, Rahman M, et al. Fabrication, optimization, and characterization of umbelliferone β-D-galactopyranoside-loaded PLGA nanoparticles in treatment of hepatocellular carcinoma: in vitro and in vivo studies. Int J Nanomedicine. 2017;12:6747–6758.
  • Jain NK, Jain SK. Development and in vitro characterization of galactosylated low molecular weight chitosan nanoparticles bearing doxorubicin. AAPS PharmSciTech. 2010;11(2):686–697. .
  • Bernier B. The production of polysaccharides by fungi active in the decomposition of wood and forest litter Can. BolJ. Microbiol. 1958;4(3):195–204.
  • Swierczewska M, Han HS, Kim K, et al. Polysaccharide-based nanoparticles for theranostic nanomedicine. 2016;99(Pt A):70–84.
  • Li H, Sun Y, Liang J, et al. PH-Sensitive pullulan-DOX conjugate nanoparticles for co-loading PDTC to suppress growth and chemoresistance of hepatocellular carcinoma. J Mater Chem B. 2015;3(41):8070–8078.
  • Sui J, Cui Y, Cai H, et al. Synergistic chemotherapeutic effect of sorafenib-loaded pullulan-Dox conjugate nanoparticles against murine breast carcinoma. Nanoscale. 2017;9(8):2755–2767. .
  • Chittasupho C, Jaturanpinyo M, Mangmool S. Pectin nanoparticle enhances cytotoxicity of methotrexate against hepG2 cells. Drug Deliv. 2013;20(1):1–9.
  • Gurunathan S, Park JH, Han JW, et al. Comparative assessment of the apoptotic potential of silver nanoparticles synthesized by Bacillus tequilensis and Calocybe indica in MDA-MB-231 human breast cancer cells: targeting p53 for anticancer therapy. Int J Nanomedicine. 2015;10:4203–4223.
  • Raoof M, Corr SJ, Zhu C, et al. Gold nanoparticles and radiofrequency in experimental models for hepatocellular carcinoma. Nanomed Nanotechnol Biol Med. 2014;10(6):1121–1130. .
  • Zhang Q, Iwakuma N, Sharma P, et al. Gold nanoparticles as a contrast agent for invivo tumor imaging with photoacoustic tomography. Nanotechnology. 2009;20:39.
  • Kang JH, Toita R, Murata M. Liver cell-targeted delivery of therapeutic molecules. 2016;36(1):132–43.
  • Soenen SJH, Brisson AR, Jonckheere E, et al. The labeling of cationic iron oxide nanoparticle-resistant hepatocellular carcinoma cells using targeted magnetoliposomes. Biomaterials. 2011;32(6):1748–1758. .
  • Singh D, Singh M, Yadav E, et al. Amelioration of diethylnitrosamine (DEN)-induced hepatocellular carcinogenesis in animal models via knockdown oxidative stress and proinflammatory markers by Madhuca longifolia embedded silver nanoparticles. RSC Adv. 2018;8(13):6940–6953. .
  • Faedmaleki F, Shirazi FH, Salarian AA, et al. Toxicity effect of silver nanoparticles on mice liver primary cell culture and HepG2 cell line. 2014;13(1):235–242. Iran. J. Pharm. Res.
  • El-Kharrag R, Amin A, Hisaindee S, et al. Development of a therapeutic model of precancerous liver using crocin-coated magnetite nanoparticles. Int J Oncol. 2017;50(1):212–222.
  • Meijer E, Kromhout H, Heederik D. Respiratory effects of exposure to low levels of concrete dust containing crystalline silica. Am J Ind Med. 2001;40(2):133–140.
  • Kim IY, Joachim E, Choi H, et al. Toxicity of silica nanoparticles depends on size, dose, and cell type. Nanomed Nanotechnol Biol Med. 2015;11(6):1407–1416.
  • Brinker CJ, Carnes EC, Ashley CE, et al. Porous nanoparticle-supported lipid bilayers (protocells) for targeted delivery and methods of using same. DOE Patents. 2017.
  • Patra HK, Dasgupta AK. Cancer cell response to nanoparticles: criticality and optimality. Nanomed Nanotechnol Biol Med. 2012;8(6):842–852.
  • van der Meel R, Chen S, Zaifman J, et al. Modular lipid nanoparticle platform technology for siRNA and lipophilic prodrug delivery. bioRxiv. 2020. https://doi.org/10.1101/2020.01.16.907394
  • Hoy SM. Patisiran: first Global Approval. Drugs. 2018;78(15):1625–1631.
  • Müller RH, Radtke M, Wissing SA. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Presented at. Adv Drug Deliv Rev. 2002;54(Suppl_1):S131–55.
  • Doktorovová S, Santos DL, Costa I, et al. Cationic solid lipid nanoparticles interfere with the activity of antioxidant enzymes in hepatocellular carcinoma cells. Int J Pharm. 2014;471(1–2):18–27.
  • Rahman M, Al-Ghamdi SA, Alharbi KS, et al. Ganoderic acid loaded nano-lipidic carriers improvise treatment of hepatocellular carcinoma. Drug Deliv. 2019;26(1):782–793. .
  • Pandita A, Pharmacosomes SP. An emerging novel vesicular drug delivery system for poorly soluble synthetic and herbal drugs. ISRN Pharm. 2013;1–10:2013.
  • Bulbake U, Doppalapudi S, Kommineni N, et al. Liposomal formulations in clinical use: an updated review. 2017;9(2):12.
  • Zhang X, Ng HLH, Lu A, et al. Drug delivery system targeting advanced hepatocellular carcinoma: current and future. 2016;12(4):853–869.
  • Comfort KK, Maurer EI, Braydich-Stolle LK, et al. Interference of silver, gold, and iron oxide nanoparticles on epidermal growth factor signal transduction in epithelial cells. ACS Nano. 2011;5(12):10000–10008.
  • Salem DS, Sliem MA, El-Sesy M, et al. Improved chemo-photothermal therapy of hepatocellular carcinoma using chitosan-coated gold nanoparticles. J Photochem Photobiol B Biol. 2018;182:92–99.
  • Dar MA, Ingle A, Rai M. Enhanced antimicrobial activity of silver nanoparticles synthesized by Cryphonectria sp. evaluated singly and in combination with antibiotics. Nanomed Nanotechnol Biol Med. 2013;9(1):105–110.
  • van der Meel R, et al. Smart cancer nanomedicine. Nat Nanotechnol. 2019;14.11:1007–1017.
  • Zhao Y, Zhang Y, Mehdiabad MV, et al. Enhanced anti-tumor effect of liposomal Fasudil on hepatocellular carcinoma in vitro and in vivo. PLoS One. 2019;14(10):e0223232.
  • Cheng Y, Zhao P, Wu S, et al. Cisplatin and curcumin co-loaded nano-liposomes for the treatment of hepatocellular carcinoma. Int J Pharm. 2018. DOI:10.1016/j.ijpharm.2018.05.007.
  • Hann IM, Prentice HG. Lipid-based amphotericin B: A review of the last 10 years of use. 2001;17(3):161–9.
  • Miller AD. Lipid-based nanoparticles in cancer diagnosis and therapy. J Drug Deliv. 2013;1–9:2013.
  • Lombardi G, Zustovich F, Farinati F, et al. Pegylated liposomal doxorubicin and gemcitabine in patients with advanced hepatocellular carcinoma: results of a phase 2 study. Cancer. 2011;117(1):125–133. .
  • Needham D, Ponce A. Nanoscale drug delivery vehicles for solid tumors: a new paradigm for localized drug delivery using temperature sensitive liposomes. In: Nanotechnology for Cancer Therapy. 2019. p. 677–719.
  • Rahman A, Kessler A, More N, et al. Liposomal protection of adriamycin-induced cardiotoxicity in mice. Cancer Res. 1980;40(5):1532–1537.
  • Mohamed NK, Hamad MA, Hafez MZE, et al. Nanomedicine in management of hepatocellular carcinoma: challenges and opportunities. 2017;140(71):1475–1484.
  • Wicki A, Witzigmann D, Balasubramanian V, et al. Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. 2015;200:138–57.
  • Rosenblum D, Joshi N, Tao W, et al. Progress and challenges towards targeted delivery of cancer therapeutics. 2018;9(1):1410.
  • Shi J, Kantoff PW, Wooster R, et al. Cancer nanomedicine: progress, challenges and opportunities. 2017;17(1):20–37.
  • Naahidi S, Jafari M, Edalat F, et al. Biocompatibility of engineered nanoparticles for drug delivery. 2013;166(2):182–94.
  • Gref R, Minamitake Y, Peracchia MT, et al. Biodegradable long-circulating polymeric nanospheres. Science. 1994;(80-263)(5153):1600–1603.
  • Bahadar H, Maqbool F, Niaz K, et al. Toxicity of nanoparticles and an overview of current experimental models. 2016;20(1):1–11.
  • Divya K, Jisha MS. Chitosan nanoparticles preparation and applications. 2018;16:101–112.
  • Eftekhari A, Dizaj SM, Chodari L, et al. The promising future of nano-antioxidant therapy against environmental pollutants induced-toxicities. 2018;103:1018–1027.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.