646
Views
29
CrossRef citations to date
0
Altmetric
Review

Liposomes as vehicles for topical ophthalmic drug delivery and ocular surface protection

, , , &
Pages 819-847 | Received 23 Sep 2020, Accepted 04 Jan 2021, Published online: 22 Jan 2021

References

  • Bucolo C, Drago F, Salomone S. Ocular drug delivery: a clue from nanotechnology. Front Pharmacol. 2012 OCT;3:2002–2004.
  • Shen J, Lu GW, Hughes P. Targeted ocular drug delivery with pharmacokinetic/pharmacodynamic considerations. Pharm Res. 2018;35(11):217.
  • Kaur IP, Kanwar M. Ocular preparations: the formulation approach. Drug Dev Ind Pharm. 2002;28(5):473–493.
  • Pahuja P, Arora S, Pawar P. Ocular drug delivery system: A reference to natural polymers. Expert Opin. Drug Deliv. 2012;9:837–861.
  • Bravo-Osuna I, Andrés-Guerrero V, Pastoriza Abal P, et al. Pharmaceutical microscale and nanoscale approaches for efficient treatment of ocular diseases. Drug Deliv Transl Res [Internet]. 2016;6(6):686–707.
  • Urtti A. Challenges and obstacles of ocular pharmacokinetics and drug delivery. Adv Drug Deliv Rev. 2006;58(11):1131–1135.
  • Geroski DH, Edelhauser HF. Drug delivery for posterior segment eye disease. Invest Ophthalmol Vis Sci. 2000;41:39–42.
  • Moisseiev E, Loewenstein A. Drug delivery to the posterior segment of the eye. Dev Ophthalmol. 2017;58:87–101.
  • Gote V, Sikder S, Sicotte J, et al. Ocular drug delivery: present innovations and future challenges. J Pharmacol Exp Ther. 2019;370(3):602–624.
  • Gaudana R, Jwala J, Boddu SHS, et al. Recent perspectives in ocular drug delivery. Pharm Res. 2009;26:1197–1216.
  • Herrero-Vanrell R, Vicario De La Torre M, Andrés-Guerrero V, Andrés-Guerrero V, et al. Nano and microtechnologies for ophthalmic administration, an overview. Available from J Drug Deliv Sci Technol [Internet]. 2013;232:75–102.
  • Amadio M, Pascale A, Cupri S, et al. Nanosystems based on siRNA silencing HuR expression counteract diabetic retinopathy in rat. Pharmacol Res [Internet]. 2016;111:713–720.
  • Wadhwa S, Paliwal R, Paliwal S, et al. Nanocarriers in ocular drug delivery: an update review. Curr Pharm Des. 2009;15(23):2724–2750.
  • Mishra GP, Bagui M, Tamboli V, et al. Recent applications of liposomes in ophthalmic drug delivery. J Drug Deliv. 2011;2011:1–14.
  • Garrigue JS, Amrane M, Faure MO, et al. Relevance of lipid-based products in the management of dry eye disease. J Ocul Pharmacol Ther. 2017;33(9): 647–661.
  • Cher I. A new look at lubrication of the ocular surface: fluid mechanics behind the blinking eyelids. Ocul Surf. 2008;6(2):79–86.
  • Tiffany J. The normal tear film. Dev Ophthalmol. 2008;41:1–20.
  • Davidson HJ, Kuonen VJ. The tear film and ocular mucins. Vet Ophthalmol. 2004;7(2):71–77.
  • Dilly PN. Structure and function of the tear film. Adv. Exp. Med. Biol. 1994;350:239–247.
  • Lemp MA, Holly FJ, Iwata S, et al. The precorneal tear film I. Factors in Spreading and Maintaining a Continuous Tear Film over the Corneal Surface Arch Ophthalmol. 1970;83:89–94.
  • Argüeso P, Gipson IK. Epithelial mucins of the ocular surface: structure, biosynthesis and function. Exp Eye Res. 2001;73(3):281–289.
  • Willcox MDP, Argüeso P, Georgiev GA, et al. TFOS DEWS II tear film report. Ocul Surf [Internet]. 2017;15(3):366–403.
  • Gipson IK. Distribution of mucins at the ocular surface. Exp Eye Res. 2004;78(3):379–388.
  • Bron AJ, Tiffany JM, Gouveia SM, et al. Functional aspects of the tear film lipid layer. Exp Eye Res. 2004;78(3):347–360.
  • Hodges RR, Dartt DA. Tear film mucins: front line defenders of the ocular surface; comparison with airway and gastrointestinal tract mucins. Exp Eye Res. 2013;117:62–78.
  • Rolando M, Zierhut M. The ocular surface and tear film and their dysfunction in dry eye disease. Surv Ophthalmol. 2001;45:203–210.
  • Butovich IA, Millar TJ, Ham BM. Understanding and analyzing meibomian lipids — a review. Curr Eye Res. 2008;33(5–6):405–420.
  • Dean AW, Glasgow BJ. Mass spectrometric identification of phospholipids in human tears and tear lipocalin. Invest Ophthalmol Vis Sci. 2012;53(4):53.
  • Lam SM, Tong L, Duan X, et al. Extensive characterization of human tear fluid collected using different techniques unravels the presence of novel lipid amphiphiles. J Lipid Res. 2014;55(2):289–298.
  • Green-church KB, Butovich I, Willcox M, et al. The international workshop on meibomian gland dysfunction : report of the subcommittee on tear film lipids and lipid – protein interactions in health and disease of the invest. Ophthalmol Vis Sci. 2011;52(4):1922–1929.
  • Kulovesi P, Telenius J, Koivuniemi A, et al. The impact of lipid composition on the stability of the tear fluid lipid layer. Soft Matter. 2012;8(21):5826–5834.
  • Schuett BS, Millar TJ. Lipid component contributions to the surface activity of meibomian lipids invest . Ophthalmol Vis Sci. 2012;53(11):7208–7219.
  • Glasgow BJ, Marshall G, Gasymov OK, et al. Tear lipocalins : potential lipid scavengers for the invest. Ophthalmol Vis Sci. 1999;40(13):3100–3107.
  • Millar TJ, Mudgil P, Butovich IA, et al. Adsorption of human tear lipocalin to human meibomian lipid films and invest. Ophthalmol Vis Sci. 2009;50(1):140–151.
  • Gouveia SM, Tiffany JM. Human tear viscosity : an interactive role for proteins and lipids. Biochim Biophys Acta. 2005;1753(2):155–163.
  • Meek KM, Knupp C. Corneal structure and transparency. Prog Retin Eye Res [Internet]. 2015;49:1–16.
  • Girolamo N. Di stem cells of the human cornea. Br Med Bull. 2011;100(1):191–207.
  • Almubrad T, Akhtar S. Structure of corneal layers, collagen fibrils, and proteoglycans of tree shrew cornea. Mol Vis. 2011;17:2283–2291.
  • Eghrari AO, Riazuddin SA, Gottsch JD. Overview of the cornea: structure, function, and development [Internet]. 1st ed. Prog. Mol. Biol. Transl. Sci. Elsevier Inc; 2015;134:7–23. Available from 10.1016/bs.pmbts.2015.04.001.
  • Ramos T, Scott D, Ahmad S. An update on ocular surface epithelial stem cells: cornea and conjunctiva. Stem Cells Int. 2015;2015:2015.
  • DelMonte DW, Kim T. Anatomy and physiology of the cornea. J Cataract Refract Surg [Internet]. Available from. 2011;373:588–598.
  • Khodadoust AA, Silverstein AM, Kenyon KR, et al. Adhesion of regenerating corneal epithelium: the role of basement membrane. Am J Ophthalmol. 1968;65(3):339–348.
  • Dua HS, Azuara-blanco A. Limbal stem cells of the corneal epithelium. Surv Ophthalmol. 2000;44(5):415–425.
  • Thiagarajah JR, Verkman AS. Aquaporin deletion in mice reduces corneal water permeability and delays restoration of transparency after swelling. J Biol Chem. 2002;277(21):19139–19144.
  • Torricelli AAM, Singh V, Santhiago MR, et al. The corneal epithelial basement membrane: structure, function, and disease. Investig Ophthalmol Vis Sci. 2013;54(9):6390–6400.
  • Wilson SE, Hong JW. Bowman’s layer structure and function: critical or dispensable to corneal function?. A Hypothesis Cornea. 2000;19(4):417–420.
  • Müller LJ, Marfurt CF, Kruse F, et al. Corneal nerves: structure, contents and function. Exp Eye Res. 2003;76(5):521–542.
  • Lewis PN, Pinali C, Young RD, et al. Structural Interactions between collagen and proteoglycans are elucidated by three-dimensional electron tomography of bovine cornea. Structure [Internet]. 2010;18(2):239–245.
  • Meek KM, Boote C. The organization of collagen in the corneal stroma. Exp Eye Res. 2004;78(3):503–512.
  • West-mays JA, Dwivedi DJ. The keratocyte : corneal stromal cell with variable repair phenotypes. Int J Biochem Cell Biol. 2006;38(10):1625–1631.
  • Danielsen CC. Tensile mechanical and creep properties of descemet’s membrane and lens capsule. Exp Eye Res. 2004;79(3):343–350.
  • Hayashi S, Osawa T, Tohyama K. Comparative observations on corneas, with special reference to bowman’s layer and descemet’s membrane in mammals and amphibians. J Morphol. 2002;254(3):247–258.
  • Leung EW, Rife L, Smith RE, et al. Extracellular matrix components in retrocorneal fibrous membrane in comparison to corneal endothelium and descemet’s membrane. Mol Vis. 2000;6:15–23.
  • Joyce NC. Proliferative capacity of the corneal endothelium. Prog Retin Eye Res. 2003;22(3):359–389.
  • Joyce NC. Cell cycle status in human corneal endothelium. Exp Eye Res. 2005;81(6):629–638.
  • Bonanno JA. Molecular mechanisms underlying the corneal endothelial pump. Exp Eye Res [Internet]. Available from. 2012;951:2–7.
  • Messmer EM, Mackert MJ, Zapp DM, et al. In vivo confocal microscopy of normal conjunctiva and conjunctivitis. Cornea. 2006;25(7):781–788.
  • Dartt DA. Regulation of mucin and fluid secretion by conjunctival epithelial cells. Prog Retin Eye Res. 2002;21(6):555–576.
  • Jumblatt MM, McKenzie RW, Steele PS, et al. MUC7 expression in the human lacrimal gland and conjunctiva. Cornea. 2003;22(1):41–45.
  • Doughty MJ. Goblet cells of the normal human bulbar conjunctiva and their assessment by impression cytology sampling. Ocul Surf [Internet]. Available from. 2012;10(3):149–169.
  • Gipson IK. Goblet cells of the conjunctiva: A review of recent findings. Prog Retin Eye Res [Internet]. 2016;54:49–63.
  • Kobayashi A, Yoshita T, Sugiyama K. In vivo findings of the bulbar/palpebral conjunctiva and presumed meibomian glands by laser scanning confocal microscopy. Cornea. 2005;24(8):985–988.
  • Steven P, Andreas G. Conjunctiva-associated lymphoid tissue – current knowledge, animal models and experimental prospects. Ophthalmic Res. 2009;42(1):2–8.
  • Knop N, Knop E. Conjunctiva-associated lymphoid tissue in the human eye. Invest Ophthalmol Vis Sci. 2000;41(6):1270–1279.
  • Knop E, Knop N. The role of eye-associated lymphoid tissue in corneal immune protection. J Anat. 2005;206(3):271–285.
  • Gaudana R, Ananthula HK, Parenky A, et al. Ocular drug delivery. Aaps J. 2010;12(3):348–360.
  • Davies NM. Biopharmaceutical considerations in topical ocular drug delivery. Drug Deliv. 2000;27(7):558–62. doi:10.1046/j.1440-1681.2000.03288.x.
  • Bennett L. Drug delivery to specific compartments of the eye. In: Ocul Drug Deliv Adv Challenges Appl. Challenges Appl. Addo (ed.). © Springer International Publishing 2016;37–52.
  • Rabinovich-guilatt L, Couvreur P, Lambert G, et al. Cationic vectors in ocular drug delivery. J Drug Target. 2004;12(9–10):623–633.
  • Barar J, Javadzadeh AR, Omidi Y. Ocular novel drug delivery: impacts of membranes and barriers. Expert Opin Drug Deliv. 2008;5(5):567–581.
  • Prausnitz MR, Prausnitz MR. Predicted permeability of the cornea. Pharm Res. 2001;18(11):1497–1508.
  • Zhang W, Prausnitz MR, Edwards A. Model of transient drug diffusion across cornea. J Control Release. 2004;99(2):241–258.
  • Prausnitz MR, Noonan JS. Permeability of cornea, sciera, and conjunctiva: A literature analysis for drug delivery to the eye. J Pharm Sci. 1998;87(12):1479–1488.
  • Grass GM, Robinson JR. Mechanisms of corneal drug penetration i: in vivo and in vitro kinetics. J Pharm Sci. 1988;77(1):3–14.
  • Rodrigues GA, Lutz D, Shen J, et al. Topical drug delivery to the posterior segment of the eye: addressing the challenge of preclinical to clinical translation. Pharm Res. 2018;35(12):245..
  • Ramsay E, Ruponen M, Picardat T, et al. Impact of chemical structure on conjunctival drug permeability: adopting porcine conjunctiva and cassette dosing for construction of in silico model. J Pharm Sci [Internet]. 2017;106(9):2463–2471.
  • Andrés-Guerrero V, Herrero-Vanrell R. Ocular drug absorption by topical route. Role of Conjunctiva Arch Soc Esp Oftalmol. 2008;83:683–686.
  • Kim SH, Lutz J, Sun N, et al. Transport barriers in transscleral drug delivery for retinal diseases. Ophthalmic Res. 2007;39(5):244–254.
  • Cheruvu NPS, Kompella UB. Bovine and porcine transscleral solute transport : influence of lipophilicity and the choroid – bruch ’ s layer. Invest Ophthalmol Vis Sci. 2006;47(10):2–11.
  • Dey S, Mitra AK. Transporters and receptors in ocular drug delivery : opportunities and challenges. Expert Opin Drug Deliv. 2005;2(2):201–204.
  • Saba P, Yang JJ, Lee VHL. Existence of a p-glycoprotein drug efflux pump in cultured rabbit conjunctival epithelial cells. Invest Ophthalmol Vis Sci 1998;39:3–8.
  • Karla PK, Earla R, Boddu SH, et al. Molecular expression and functional evidence of a drug efflux pump (BCRP) in. Curr Eye Res. 2009;34(1):1–9.
  • Akbarzadeh A, Rezaei-Sadabady R, Davaran S, et al. Liposome: classification, preparation, and applications. Nanoscale Res Lett [Internet]. 2013;22;8(1):102.
  • Gómez-Ballesteros M, López-Cano JJ, Bravo-Osuna I, et al. Osmoprotectants in hybrid liposome/HPMC systems as potential glaucoma treatment. Polymers. 2019;28;11(6):929.
  • Bollag WB, Olala LO, Xie D, et al. Dioleoylphosphatidylglycerol accelerates corneal epithelial wound healing.Invest Ophthalmol Vis Sci 2020;3:1–4.
  • Thomas AH, Catalá Á, Vignoni M. Soybean phosphatidylcholine liposomes as model membranes to study lipid peroxidation photoinduced by pterin. Biochim Biophys Acta - Biomembr. 2016;1858(1):139–145.
  • Briuglia ML, Rotella C, McFarlane A, et al. Influence of cholesterol on liposome stability and on in vitro drug release. Drug Deliv Transl Res. 2015;5(3):231–242.
  • Virden JW, Berg JC. NaCl-induced aggregation of dipalmitoylphosphatidylglycerol small unilamellar vesicles with varying amounts of incorporated cholesterol. Langmuir. 1992;8(6):1532–1537.
  • Kreutzberger MA, Tejada E, Wang Y, et al. GUVs melt like luvs: the large heat capacity of mlvs is not due to large size or small curvature. Biophys J [Internet]. 2015;108(11):2619–2622.
  • Ateeq R, Veikko U, Daniel L. Mini review on emerging methods of preparation of liposome and its application as liposome drug delivery systems. Open J Pharmacol Pharmacother. 2018;3(1):005–021.
  • Jing L, Xuling W, Ting Z, et al. A review on phospholipids and their main applications in drug delivery systems. Asian J Pharm Sci [Internet]. 2014;10:81–98.
  • Bangham AD, Horne RW. Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope. J Mol Biol [Internet]. 1964;8(5):660–668.
  • Angelini G, Campestre C, Boncompagni S, et al. Liposomes entrapping β-cyclodextrin/ibuprofen inclusion complex: role of the host and the guest on the bilayer integrity and microviscosity. Chem Phys Lipids [Internet]. 2017;209:61–65.
  • Deepika Srivastava VA. Ansari, Satya Prakash Singh SA and JA. Development of Liposomal Cosmeceuticals. J. Chem. Pharm. Res. 2016;8:834–838.
  • Coatings O, Division P. Preparation of liposomes by reverse-phase evaporation using alternative organic solvents. J. Microencapsul. 1999;16:251–256.
  • Otake K, Shimomura T, Goto T, et al. Preparation of liposomes using an improved supercritical reverse phase evaporation method. Langmuir. 2006;22(6):2543–2550.
  • Kirby C, Gregoriadis G. Dehydration-rehydration vesicles: a simple method for high yield drug entrapment in liposomes. Bio/Technology. 1984;2:979–984.
  • Rewar S, Singh CJ, Bansal BK, et al. A Vital Role of Liposome’s on Controlled and Novel Drug Delivery. Int. J. Pharm. Biol. Arch. 2014;5:51–63.
  • Strauss G, Ingenito EP. Stabilization of liposome bilayers to freezing and thawing: effects of cryoprotective agents and membrane proteins. Cryobiology. 1980;17(5):508–515.
  • Roberto Mendez SB. Sonication-based basic protocol for liposome synthesis. Methods Mol Biol. [Internet]. 2017. p. 255–260. Available from: http://www.springer.com/series/7651.
  • Lapinski MM, Castro-Forero A, Greiner AJ, et al. Comparison of liposomes formed by sonication and extrusion: rotational and translational diffusion of an embedded chromophore. Langmuir. 2007;23(23):11677–11683.
  • Mathai JC, V S. Preparation of Large Uni-Lamellar Liposomes by the Ether Injection Method and Evaluation of the Physical Integrity by Osmometry. Biochemical Education. 1987;3:147–149.
  • Deamer DW. Preparation and properties of ether‐injection liposomes. Ann N Y Acad Sci. 1978;308:250–258.
  • Jaafar-Maalej C, Diab R, Andrieu V, et al. Ethanol injection method for hydrophilic and lipophilic drug-loaded liposome preparation. J Liposome Res. 2010;20(3):228–243.
  • Pons M, Foradada M, Estelrich J. Liposomes obtained by the ethanol injection method. Int J Pharm. 1993;95(1–3):51–56.
  • Dua JS, Prof. AC, Rana DAKB. Liposome: methods of preparation and applications. Int J Pharm Stud Res. 2012;3:14–20.
  • Miller DC, Dahl GP. Early events in calcium-induced liposome fusion. BBA - Biomembr. 1982;689(1):165–169.
  • Bo Y, Lee RJ, Lee LJ. Microfluidic methods for production of liposomes. Methods Enzymol. 2009;465:129–141.
  • Fan M, Xu S, Xia S, et al. Effect of different preparation methods on physicochemical properties of salidroside liposomes. J Agric Food Chem. 2007;55(8):3089–3095.
  • Schaeffer HE, Krohn DL. Liposomes in topical drug delivery. Investig Ophthalmol Vis Sci. 1982;22:220–227.
  • Soriano-Romaní L, Vicario-de-la-Torre M, Crespo-Moral M, et al. Novel anti-inflammatory liposomal formulation for the pre-ocular tear film: in vitro and ex vivo functionality studies in corneal epithelial cells. Exp Eye Res [Internet]. 2017;154:79–87.
  • Agarwal R, Iezhitsa I, Agarwal P, et al. Liposomes in topical ophthalmic drug delivery: an update. Drug Deliv. 2014;7544:1–17.
  • Natarajan JV, Ang M, Darwitan A, et al. Nanomedicine for glaucoma: liposomes provide sustained release of latanoprost in the eye. Int J Nanomedicine. 2012;7:123–131.
  • Elsana H, Olusanya TOB, Carr-wilkinson J, et al. Evaluation of novel cationic gene based liposomes with cyclodextrin prepared by thin film hydration and microfluidic systems. Sci Rep. 2019;9:1–17.
  • Mui BL, Döbereiner HG, Madden TD, et al. Influence of transbilayer area asymmetry on the morphology of large unilamellar vesicles. Biophys J. 1995;69(3):930–941.
  • Klymchenko AS, Oncul S, Didier P, et al. Visualization of lipid domains in giant unilamellar vesicles using an environment-sensitive membrane probe based on 3-hydroxyflavone. Biochim Biophys Acta - Biomembr [Internet]. 2009;1788(2):495–499.
  • Bibi S, Kaur R, Henriksen-Lacey M, et al. Microscopy imaging of liposomes: from coverslips to environmental SEM. Int J Pharm [Internet]. 2011;417(1–2):138–150.
  • Robson AL, Dastoor PC, Flynn J, et al. Advantages and limitations of current imaging techniques for characterizing liposome morphology. Front Pharmacol. 2018;9:1–8.
  • Ruozi B, Belletti D, Tombesi A, et al. AFM, ESEM, TEM, and CLSM in liposomal characterization: a comparative study. Int J Nanomedicine. 2011;6:557–563.
  • Bendas G, Krause A, Bakowsky U, et al. Targetability of novel immunoliposomes prepared by a new antibody conjugation technique. Int J Pharm. 1999;181(1):79–93.
  • Moutardier V, Tosini F, Vlieghe P, et al. Colloidal anticancer drugs bioavailabilities in oral administration models. Int J Pharm. 2003;260(1):23–38.
  • Davies NM, Fair SJ, Hadgraft J, et al. Evaluation of mucoadhesive polymers in ocular drug delivery. I Viscous Solutions. Pharm Res. 1991;8(8):1039–1043.
  • Tiffany JM, Winter N, Bliss G. Tear film stability and tear surface tension. Curr Eye Res. 1989;8(5):507–515.
  • Hotujac Grgurević M, Juretić M, Hafner A, et al. Tear fluid-eye drops compatibility assessment using surface tension. Drug Dev Ind Pharm [Internet]. 2017;43(2):275–282.
  • Holly FJ, Lemp MA. Tear physiology and dry eyes. Surv Ophthalmol. 1977;22(2):69–87.
  • Stahl U, Willcox M, Stapleton F. Osmolality and tear film dynamics. Clin Exp Optom. 2012;95(1):3–11.
  • Foster JB, Lee WB. The Tear Film: Anatomy, Structure and Function [Internet]. Ocul. Surf. Dis. Cornea, Conjunctiva Tear Film. WB Saunders; 2013:17-21 Available from: http://dx.doi.org/10.1016/B978-1-4557-2876-3.00003-1
  • http://www.lasuperficieocular.com/resources/documents/guias_ojo_seco_SESOC_THEA.pdf Merayo Lloves J, Benítez del Castillo Sanchez JM, Montero Iruzubieta J, et al. Guías Españolas para el tratamiento de la Enfermedad de Ojo Seco [Internet]. 2017. p. 1–72. Available from: http://www.lasuperficieocular.com/resources/documents/guias_ojo_seco_SESOC_THEA.pdf
  • Vicario-de-la-Torre M, Caballo-González M, Vico E, et al. Novel nano-liposome formulation for dry eyes with components similar to the preocular tear film. Polymers. 2018;10(4):1–13.
  • Abelson MB, Udell IJ, Weston JH. Normal Human Tear pH by Direct Measurement. Arch. Ophthalmol. 1981;99:301.
  • Coles WH, Jaros PA. Dynamics of ocular surface pH. Br J Ophthalmol. 1984;68(8):549–552.
  • Dimov N, Kastner E, Hussain M, et al. Formation and purification of tailored liposomes for drug delivery using a module-based micro continuous-flow system. Sci Rep. 2017;7(1):1–13.
  • Lin M, Qi X-R. Purification Method of Drug-Loaded Liposome. In: Lu W-L, Qi X-R, editors. Liposome-Based Drug Deliv. Syst. Springer; 2019. p. 1–11.
  • Abdelwahed W, Degobert G, Stainmesse S, et al. Freeze-drying of nanoparticles: formulation, process and storage considerations. Adv Drug Deliv Rev. 2006;58(15):1688–1713.
  • Obata Y, Saito S, Takeda N, et al. Plasmid DNA-encapsulating liposomes: effect of a spacer between the cationic head group and hydrophobic moieties of the lipids on gene expression efficiency. Biochim Biophys Acta - Biomembr [Internet]. 2009;1788(5):1148–1158.
  • Singh B, Mundlamuri R, Friese T, et al. Benchmarking of sterilizing-grade filter membranes with liposome filtration. PDA J Pharm Sci Technol. 2017;72(3):223–235.
  • Toh M-R, Chiu GNC. Liposomes as sterile preparations and limitations of sterilisation techniques in liposomal manufacturing. Asian J Pharm Sci. 2013;82:88–95.
  • Mozafari MR. Vesicular phospholipid gels. Methods Mol Biol. 2010;605:205–212.
  • Ratz H, Freise J, Magerstedt P, et al. Sterilization of contrast media (isovist) containing liposomes by ethylene oxide. J Microencapsul. 1989;6(4):485–492.
  • Zuidam NJ, Stephen SL, Lee DJAC. Sterilization of liposomes by heat treatment. Pharm Res. 1993;10(11):1591–1596.
  • Çağdaş, M., Sezer, A. D., & Bucak, S. Liposomes as Potential Drug Carrier Systems for Drug Delivery. In Application of Nanotechnology in Drug Delivery; Science, IntechOpen, 2014; pp. 1–100.
  • Kaur IP, Garg A, Singla AK, et al. Vesicular systems in ocular drug delivery : an overview. Int J Pharm. 2004;269(1):1–14.
  • Ebrahim S, Peyman GA, Lee PJ. Applications of liposomes in ophthalmology. Surv Ophthalmol. 2005;50(2):167–182.
  • Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov. 2005;4(2):145–160.
  • Bhattacharjee A, Das PJ, Adhikari P, et al. Novel drug delivery systems for ocular therapy : with special reference to liposomal ocular delivery. Eur J Ophthalmol. 2019;29(1):113–126.
  • Alavi M, Karimi N, Safaei M. Application of various types of liposomes in drug delivery systems. Adv Pharm Bull. 2017;7(1):3–9.
  • Gonzalez Gomez A, Syed S, Marshall K, et al. Liposomal nanovesicles for efficient encapsulation of staphylococcal antibiotics. ACS Omega. 2019;4(6):10866–10876.
  • Assil KK, Frucht-Perry J, Ziegler E, et al. Tobramycin liposomes: single subconjunctival therapy of pseudomonal keratitis. Investig Ophthalmol Vis Sci. 1991;32:3216–3220.
  • Dubald M, Bourgeois S, Andrieu V, et al. Ophthalmic drug delivery systems for antibiotherapy- a review. Pharmaceutics. 2018;10(1):10.
  • Mehanna MM, Elmaradny HA, Samaha MW. Ciprofloxacin liposomes as vesicular reservoirs for ocular delivery: formulation, optimization, and in vitro characterization. Drug Dev Ind Pharm. 2009;35(5):583–593.
  • Budai L, Hajdú M, Budai M, et al. Gels and liposomes in optimized ocular drug delivery: studies on ciprofloxacin formulations. Int J Pharm. 2007;343(1–2):34–40.
  • Taha EI, El-Anazi MH, El-Bagory IM, et al. Design of liposomal colloidal systems for ocular delivery of ciprofloxacin. Saudi Pharm J [Internet]. 2014;22(3):231–239.
  • Ren T, Lin X, Zhang Q, et al. Encapsulation of azithromycin ion pair in liposome for enhancing ocular delivery and therapeutic efficacy on dry eye. Mol Pharm. 2018;15(11):4862–4871.
  • Fresta M, Panico AM, Bucolo C, et al. Characterization and in-vivo ocular absorption of liposome-encapsulated acyclovir. J Pharm Pharmacol. 1999;51(5):565–576.
  • Law SL, Huang KJ, Chiang CH. Acyclovir-containing liposomes for potential ocular delivery corneal penetration and absorption. J Control Release. 2000;63(1–2):135–140.
  • Shen Y, Preparation TJ. Ocular pharmacokinetics of ganciclovir liposomes. Aaps J. 2007;9(3):E371.
  • Chetoni P, Monti D, Tampucci S, et al. Liposomes as a potential ocular delivery system of distamycin A. Int J Pharm [Internet]. Available from:. 2015;4921–2:120–126.
  • Augusto F, De SP, Fleury S, et al. Liposomal voriconazole (VOR) formulation for improved ocular delivery. Colloids Surfaces B Biointerfaces [Internet]. 2015;133:331–338.
  • Zhang Z, Teng F, Sun Q, et al. Rapamycin liposome gutta inhibiting fungal keratitis of rats. Int J Ophthalmol. 2019;12(4):536–541.
  • Habib FS, Fouad EA, Abdel-Rhaman MS, et al. Liposomes as an ocular delivery system of fluconazole: in-vitro studies. Acta Ophthalmol. 2010;88(8):901–904.
  • Abdel-Rhaman MS, Soliman W, Habib F, et al. A new long-acting liposomal topical antifungal formula: human clinical study. Cornea. 2012;31(2):126–129.
  • Morand K, Bartoletti AC, Bochot A, et al. Liposomal amphotericin B eye drops to treat fungal keratitis : physico-chemical and formulation stability. Int J Pharm. 2007;344(1–2):150–153.
  • Li H, Liu Y, Zhang Y, et al. Liposomes as a novel ocular delivery system for brinzolamide : in vitro and in vivo studies. AAPS PharmSciTech [Internet]. 2016;17(3):710–717.
  • Altamirano-vallejo JC, Navarro-partida J, Rosa AG, et al. Characterization and pharmacokinetics of triamcinolone acetonide-loaded liposomes topical formulations. J Ocul Pharmacol Ther. 2018;34(5):416–425.
  • Rosa AG, Navarro-partida J, Altamirano-vallejo JC, et al. Novel triamcinolone acetonide-loaded liposomes topical formulation for the treatment of cystoid macular edema after cataract surgery : a pilot study. J Ocul Pharmacol Ther. 2019;35(5):1–10.
  • Soriano-Romaní L, Álvarez-Trabado J, López-García A, et al. Improved in vitro corneal delivery of a thrombospondin-1-derived peptide using a liposomal formulation. Exp Eye Res [Internet]. 2018;167:118–121..
  • Lai S, Wei Y, Wu Q, et al. Liposomes for effective drug delivery to the ocular posterior chamber. J Nanobiotechnology [Internet]. 2019;17:1–12.
  • Muthu MS, Singh S. Targeted nanomedicines: effective treatment modalities for cancer, AIDS and brain disorders. Nanomedicine. 2009;4(1):105–118.
  • Zylberberg C, Gaskill K, Pasley S, et al. Engineering liposomal nanoparticles for targeted gene therapy. Gene Ther [Internet]. 2017;24(8):441–452.
  • Fotoran WL, Santangelo R, de Miranda BNM, et al. DNA-loaded cationic liposomes efficiently function as a vaccine against malarial proteins. Mol Ther - Methods Clin Dev [Internet]. 2017;7:1–10.
  • Du JD, Fong WK, Caliph S, et al. Lipid-based drug delivery systems in the treatment of wet age-related macular degeneration. Drug Deliv Transl Res [Internet]. 2016;6(6):781–792. Available from:.
  • Ohigashi H, Hashimoto D, Hayase E, et al. Ocular instillation of vitamin A–coupled liposomes containing HSP47 siRNA ameliorates dry eye syndrome in chronic GVHD. Blood Adv. 2019;3(7):1003–1010.
  • Jiang J, Zhang X, Tang Y, et al. Progress on ocular siRNA gene-silencing therapy and drug delivery systems. Fundam Clin Pharmacol. 2020;1–21. https://pubmed.ncbi.nlm.nih.gov/32298491/
  • Malta JB, Soong HK, Shtein RM, et al. Treatment of ocular graft-versus-host disease with topical cyclosporine 0.05%. Cornea. 2010;29(12):1392–1396.
  • Abud TB, Amparo F, Saboo US, et al. A clinical trial comparing the safety and efficacy of topical tacrolimus versus methylprednisolone in ocular graft-versus- host disease. Physiol Behav. 2016;123:1449–1457.
  • Li XQ, Büch G, Otasevic L, et al. Prolongation of corneal allograft survival by topical application of everolimus in experimental keratoplasty. Ophthalmic Res. 2008;40(6):309–314.
  • Dai Y, Zhou R, Liu L, et al. Liposomes containing bile salts as novel ocular delivery systems for tacrolimus (FK506): in vitro characterization and improved corneal permeation. Int J Nanomedicine. 2013;8:1921–1933.
  • Karn PR, Do Kim H, Kang H, et al. Supercritical fluid-mediated liposomes containing cyclosporin A for the treatment of dry eye syndrome in a rabbit model: comparative study with the conventional cyclosporin A emulsion. Int J Nanomedicine. 2014;9:3791–3800.
  • Santos A, Altamirano-vallejo JC, Navarro-partida J, et al. Breaking down the Barrier: Topical Liposomes as Nanocarriers for Drug Delivery into the Posterior Segment of the Eyeball. Role Nov. Drug Deliv. Veh. Nanobiomedicine. IntechOpen. 2019. p 1-36.
  • Hathout RM, Mansour S, Mortada ND, et al. Liposomes as an ocular delivery system for acetazolamide: in vitro and in vivo studies. AAPS Pharm Sci Tech. 2007;8(1):8.
  • Elbialy NS, Abdol-Azim BM, Shafaa MW, et al. Enhancement of the ocular therapeutic effect of prednisolone acetate by liposomal entrapment. J Biomed Nanotechnol. 2013;9(12):2105–2116.
  • Shimokawa T, Fukuta T, Inagi T, et al. Protective effect of high-affinity liposomes encapsulating astaxanthin against corneal disorder in the in vivo rat dry eye disease model. J Clin Biochem Nutr. 2020;66(3):224–232.
  • Mehanna MM, Elmaradny HA, Samaha MW. Mucoadhesive liposomes as ocular delivery system: physical, microbiological, and in vivo assessment. Drug Dev Ind Pharm. 2010;36(1):108–118.
  • Chen H, Pan H, Li P, et al. The potential use of novel chitosan-coated deformable liposomes in an ocular drug delivery system. Colloids Surfaces B Biointerfaces [Internet]. 2016;143:455–462. Available from:.
  • Tan G, Yu S, Pan H, et al. Bioadhesive chitosan-loaded liposomes: a more efficient and higher permeable ocular delivery platform for timolol maleate. Int J Biol Macromol [Internet]. 2017;94:355–363. Available from:.
  • Li J, Cheng T, Tian Q, et al. A more efficient ocular delivery system of triamcinolone acetonide as eye drop to the posterior segment of the eye. Drug Deliv. 2019;26(1):188–198.
  • Cheng T, Li J, Cheng Y, et al. Triamcinolone acetonide-chitosan coated liposomes efficiently treated retinal edema as eye drops. Exp Eye Res. 2019;188:107805.
  • Khalil M, Hashmi U, Riaz R, et al. Chitosan coated liposomes (CCL) containing triamcinolone acetonide for sustained delivery: A potential topical treatment for posterior segment diseases. Int J Biol Macromol [Internet]. 2020;143:483–491. Available from:.
  • Li N, Zhuang C, Wang M, et al. Liposome coated with low molecular weight chitosan and its potential use in ocular drug delivery. Int J Pharm. 2009;379(1):131–138.
  • Li N, Zhuang CY, Wang M, et al. Low molecular weight chitosan-coated liposomes for ocular drug delivery: in vitro and in vivo studies. Drug Deliv. 2012;19(1):28–35.
  • Zhang J, Wang S. Topical use of coenzyme Q10-loaded liposomes coated with trimethyl chitosan: tolerance, precorneal retention and anti-cataract effect. Int J Pharm. 2009;372(1–2):66–75.
  • Zhang J, Liang X, Li X, et al. Ocular delivery of cyanidin-3-glycoside in liposomes and its prevention of selenite-induced oxidative stress. Drug Dev Ind Pharm. 2015;42(4):546–553.
  • Lin J, Wu H, Wang Y, et al. Preparation and ocular pharmacokinetics of hyaluronan acid-modified mucoadhesive liposomes. Drug Deliv [Internet]. 2016;23(4):1144–1151. Available from:.
  • Moustafa MA, Elnaggar YSR, El-Refaie WM, et al. Hyalugel-integrated liposomes as a novel ocular nanosized delivery system of fluconazole with promising prolonged effect. Int J Pharm [Internet]. 2017;534(1–2):14–24. Available from:.
  • Yu S, Wang QM, Wang X, et al. Liposome incorporated ion sensitive in situ gels for opthalmic delivery of timolol maleate. Int J Pharm [Internet]. 2015;480(1–2):128–136. Available from:.
  • Quinteros D, Vicario-De-La-Torre M, Andrés-Guerrero V, et al. Hybrid formulations of liposomes and bioadhesive polymers improve the hypotensive effect of the melatonin analogue 5-MCA-NAT in rabbit eyes. PLoS One. 2014;9(10):9.
  • Hosny KM. Ciprofloxacin as ocular liposomal hydrogel. AAPS Pharm Sci Tech. 2010;11(1):241–246.
  • Feghhi M, Sharif Makhmalzadeh B, Farrahi F, et al. Anti-microbial effect and in vivo ocular delivery of ciprofloxacin-loaded liposome through rabbit’s eye. Curr Eye Res [Internet]. 2020;1–7. Available from:. 10.1080/02713683.2020.1728777.
  • Ghareb MDF. Development and in vitro/in vivo evaluation of liposomal gels for the sustained ocular delivery of latanoprost. J Clin Exp Ophthalmol. 2015;6(390):2.
  • Mehanna MM, El-kader NA, Samaha MW. Liposomes as potential carriers for ketorolac ophthalmic delivery : formulation and stability issues. Brazilian J Pharm Sci. 2017;53:1–10.
  • Dong Y, Dong P, Huang D, et al. Fabrication and characterization of silk fibroin-coated liposomes for ocular drug delivery. Eur J Pharm Biopharm. 2015;91:82–90.
  • Zhan C, Santamaria CM, Wang W, et al. Biomaterials long-acting liposomal corneal anesthetics. Biomaterials [Internet]. 2018;181:372–377.
  • Stapleton F, Alves M, Bunya VY, et al. TFOS DEWS II epidemiology report. Ocul Surf [Internet]. 2017;15(3):334–365.
  • Foulks GN. The correlation between the tear film lipid layer and dry eye disease. Surv Ophthalmol. 2007;52(4):369–374.
  • Vicario-De-La-Torre M, Herrero-Vanrell R, Benítez-Del-Castillo JM, et al. New formulations for dry eye treatment. Arch Soc Esp Oftalmol. 2007;82(7):395–396.
  • Jones L, Downie LE, Korb D, et al. TFOS DEWS II management and therapy report. Ocul Surf [Internet]. 2017;15(3):575–628.
  • Moshirfar M, Pierson K, Hanamaikai K, et al. Artificial tears potpourri: A literature review. Clin Ophthalmol. 2014;8:1419–1433.
  • Weisenberger K, Fogt N, Swingle Fogt J. Comparison of nanoemulsion and non-emollient artificial tears on tear lipid layer thickness and symptoms. J Optom [Internet]. 2020. Available from:. 10.1016/j.optom.2020.03.002.
  • Aguilar AJ, Marquez MI, Albera PA, et al. Effects of systane® balance on noninvasive tear film break-up time in patients with lipid-deficient dry eye. Clin Ophthalmol. 2014;8:2365–2372.
  • Pucker AD, McGwin G, Franklin QX, et al. Evaluation of systane complete for the treatment of contact lens discomfort. Contact Lens Anterior Eye [Internet]. 2019;1–7. Available from:. 10.1016/j.clae.2019.10.141.
  • Lallemand F, Daull P, Benita S, et al. Successfully improving ocular drug delivery using the cationic nanoemulsion, novasorb. J Drug Deliv. 2012;2012:1–16.
  • Robert PY, Cochener B, Amrane M, et al. Efficacy and safety of a cationic emulsion in the treatment of moderate to severe dry eye disease: a randomized controlled study. Eur J Ophthalmol. 2016;26(6):546–555.
  • Georgiev GA, Yokoi N, Nencheva Y, et al. Surface chemistry interactions of cationorm with films by human meibum and tear film compounds. Int J Mol Sci. 2017;18(7):18.
  • Baudouin C, De La Maza MS, Amrane M, et al. One-year efficacy and safety of 0.1% cyclosporine a cationic emulsion in the treatment of severe dry eye disease. Eur J Ophthalmol. 2017;27(6):678–685.
  • Craig JP, Purslow C, Murphy PJ, et al. Effect of a liposomal spray on the pre-ocular tear film. Contact Lens Anterior Eye [Internet]. 2010;33(2):83–87.
  • https://www.esteve.com/es/areas-terapeuticas/productos-sin-receta [Internet].[cited 2020 May 10]. Available from: https://www.esteve.com/es/areas-terapeuticas/productos-sin-receta.
  • Meng T, Kulkarni V, Simmers R, et al. Therapeutic implications of nanomedicine for ocular drug delivery. Drug Discov Today. 2019;24(8):1524–1538. Available from:.
  • Vicario-de-la-Torre M, Benítez-del-Castillo JM, Vico E, et al. Design and characterization of an ocular topical liposomal preparation to replenish the lipids of the tear film. Investig Ophthalmol Vis Sci. 2014;55(12):7839–7847.
  • Acar D, Molina-Martínez IT, Gómez-Ballesteros M, et al. Novel liposome-based and in situ gelling artificial tear formulation for dry eye disease treatment. Contact Lens Anterior Eye [Internet]. 2018;41(1):93–96. Available from:.
  • Zhang W, Li W, Zhang C, et al. Effects of vitamin A on expressions of apoptosis genes bax and bcl-2 in epithelial cells of corneal tissues induced by benzalkonium chloride in mice with dry eye. Med Sci Monit. 2019;25:4583–4589.
  • He W, Guo X, Feng M, et al. In vitro and in vivo studies on ocular vitamin A palmitate cationic liposomal in situ gels. Int J Pharm [Internet]. 2013;458(2):305–314. Available from:.
  • Barabino S, Horwath-winter J, Messmer EM, et al. The role of systemic and topical fatty acids for dry eye treatment. Prog Retin Eye Res [Internet]. 2017. Available from:. 10.1016/j.preteyeres.2017.05.003..
  • Li Z, Choi J, Oh H, et al. Effects of eye drops containing a mixture of omega-3 essential fatty acids and hyaluronic acid on the ocular surface in desiccating stress- induced murine dry eye effects of eye drops containing a mixture of omega-3 essential fatty acids and hyaluronic ac. Curr. Eye Res. 2014;39:871–878.
  • Rashid S, Jin Y, Ecoiffier T, et al. Topical omega-3 and omega-6 fatty acids for treatment of dry eye. Arch Ophthalmol. 2015;126:219–225.
  • Ivanova S, Tonchev V, Yokoi N, et al. Surface properties of squalene/meibum films and NMR confirmation of squalene in tears. Int J Mol Sci. 2015;16(9):21813–21831.
  • Grit M, Crommelin DJA. Chemical stability of liposomes” implications for their physical stability. Chem Phys Lipids. 1992;64(1–3):3–18.
  • Klingeborn M, Dismuke WM, Bowes Rickman C, et al. Roles of exosomes in the normal and diseased eye. Prog Retin Eye Res. 2017;59:158–177.
  • Yu B, Li X-R, Zhang X-M. Mesenchymal stem cell-derived extracellular vesicles as a new therapeutic strategy for ocular diseases. World J Stem Cells. 2020;12(3):178–187.
  • Samaeekia R, Rabiee B, Putra I, et al. Effect of human corneal mesenchymal stromal cell-derived exosomes on corneal epithelial wound healing. Investig Ophthalmol Vis Sci. 2018;59(12): 5194–5200. .
  • Urtti A. Comment on “ topical delivery of avastin to the posterior segment of the eye in vivo using annexin a5-associated liposomes ”: topical liposomal bevacizumab results in negligible retinal concentrations. Small. 2019;15(15):1805199.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.