671
Views
12
CrossRef citations to date
0
Altmetric
Original Research

Real-time quantitative monitoring of in vitro nasal drug delivery by a nasal epithelial mucosa-on-a-chip model

, , , , ORCID Icon, , & show all
Pages 803-818 | Received 04 Oct 2020, Accepted 05 Jan 2021, Published online: 19 Jan 2021

References

  • Esch EW, Bahinski A, Huh D. Organs-on-chips at the frontiers of drug discovery. Nat Rev Drug Discovery. 2015;14(4):248–260.
  • Kilic T, Navaee F, Stradolini F, et al. Organs-on-chip monitoring: sensors and other strategies. Microphysiol Syst. 2018;2(5):1–32
  • Švorc Ľ, Strežova I, Kianičkova K, et al. An advanced approach for electrochemical sensing of ibuprofen in pharmaceuticals and human urine samples using a bare boron-doped diamond electrode. J Electroanal Chem. 2018;822:144–152.
  • Arvand M, Gholizadeh TM. Simultaneous voltammetric determination of tyrosine and paracetamol using a carbon nanotube-graphene nanosheet nanocomposite modified electrode in human blood serum and pharmaceuticals. Colloid Surf B. 2013;103:84–93.
  • Amin S, Soomro MT, Memon N, et al. Disposable screen printed graphite electrode for the direct electrochemical determination of ibuprofen in surface water. Environ Nanotechnol Monit Manag .2014;1–2:8–13
  • Uslu B, Ozkan SA. Electroanalytical application of carbon based electrodes to the pharmaceuticals. Anal Lett. 2007;40(5):817–853.
  • Sameenoi Y, Mensack MM, Boonsong K, et al. Poly (dimethylsiloxane) cross-linked carbon paste electrodes for microfluidic electrochemical sensing. Analyst. 2011;136(15):3177–3184.
  • Na K, Lee M, Shin H-W, et al. In vitro nasal mucosa gland-like structure formation on a chip. Lab Chip. 2017;17(9):1578–1584.
  • Wang W, Yan Y, Li CW, et al. Live human nasal epithelial cells (hNECs) on chip for in vitro testing of gaseous formaldehyde toxicity via airway delivery. Lab Chip. 2014;14(4):677–680.
  • Mercier C, Perek N, Delavenne X. Is RPMI 2650 a suitable in vitro nasal model for drug transport studies? Eur J Drug Metab Pharmacokinet. 2018;43(1):13–24.
  • Gonçalves VS, Matias AA, Poejo J, et al. Application of RPMI 2650 as a cell model to evaluate solid formulations for intranasal delivery of drugs. Int J Pharm. 2016;515(1–2):1–10.
  • Mercier C, Hodin S, He Z, et al. Pharmacological characterization of the RPMI 2650 model as a relevant tool for assessing the permeability of intranasal drugs. Mol Pharm. 2018;15(6):2246–2256.
  • Sibinovska N, Žakelj S, Kristan K. Suitability of RPMI 2650 cell models for nasal drug permeability prediction. Eur J Pharm Biopharm. 2019;145:85–95.
  • Pozzoli M, Ong HX, Morgan L, et al. Application of RPMI 2650 nasal cell model to a 3D printed apparatus for the testing of drug deposition and permeation of nasal products. Eur J Pharm Biopharm. 2016;107:223–233.
  • Tscheik C, Blasig IE, Winkler L. Trends in drug delivery through tissue barriers containing tight junctions. Tissue Barriers. 2013;1(2):e24565.
  • van der Helm MW, Odijk M, Frimat J-P, et al. Direct quantification of transendothelial electrical resistance in organs-on-chips. Biosens Bioelectron. 2016;85:924–929.
  • Henry OY, Villenave R, Cronce MJ, et al. Organs-on-chips with integrated electrodes for trans-epithelial electrical resistance (TEER) measurements of human epithelial barrier function. Lab Chip. 2017;17(13):2264–2271.
  • van der Helm MW, Henry OY, Bein A, et al. Non-invasive sensing of transepithelial barrier function and tissue differentiation in organs-on-chips using impedance spectroscopy. Lab Chip. 2019;19(3):452–463.
  • Maoz BM, Herland A, Henry OY, et al. Organs-on-Chips with combined multi-electrode array and transepithelial electrical resistance measurement capabilities. Lab Chip. 2017;17(13):2294–2302.
  • Gholizadeh H, Cheng S, Pozzoli M, et al. Smart thermosensitive chitosan hydrogel for nasal delivery of ibuprofen to treat neurological disorders. Expert Opin Drug Delivery. 2019;16(4):453–466.
  • Wong LR, Ho PC. Role of serum albumin as a nanoparticulate carrier for nose‐to‐brain delivery of R‐flurbiprofen: implications for the treatment of Alzheimer’s disease. J Pharm Pharmacol. 2018;70(1):59–69.
  • Van Dam D, Coen K, De Deyn P. Ibuprofen modifies cognitive disease progression in an Alzheimer’s mouse model. J Psychopharmacol. 2010;24(3):383–388.
  • Lim GP, Yang F, Chu T, et al. Ibuprofen suppresses plaque pathology and inflammation in a mouse model for Alzheimer’s disease. J Neurosci. 2000;20(15):5709–5714.
  • Kalepu S, Nekkanti V. Insoluble drug delivery strategies: review of recent advances and business prospects. Acta Pharm Sin B. 2015;5(5):442–453.
  • Manallack DT. The pKa distribution of drugs: application to drug discovery. Perspect Med Chem. 2007;1:25–38.
  • Zhao D, Wang T, Han D, et al. Electrospun carbon nanofiber modified electrodes for stripping voltammetry. Anal Chem. 2015;87(18):9315–9321.
  • Bard AJ, Faulkner LR, Leddy J, et al. Electrochemical methods: fundamentals and applications. Vol. 2. New York: Wiley; 1980
  • Ong HX, Jackson CL, Cole JL, et al. Primary air–liquid interface culture of nasal epithelium for nasal drug delivery. Mol Pharm. 2016;13(7):2242–2252.
  • Srinivasan B, Kolli AR, Esch MB, et al. TEER measurement techniques for in vitro barrier model systems. J Lab Autom. 2015;20(2):107–126.
  • Moore J, Flanner H. Mathematical comparison of dissolution profiles. Pharm Technol. 1996;20(6):64–74.
  • Tjong SC, Liang G, Bao S. Effects of crystallization on dispersion of carbon nanofibers and electrical properties of polymer nanocomposites. Polym Eng Sci. 2008;48(1):177–183.
  • Mekassa B, Tessema M, Chandravanshi BS, et al. Square wave voltammetric determination of ibuprofen at poly (l-aspartic acid) modified glassy carbon electrode. IEEE Sens J. 2017;18(1):37–44.
  • Allen JB, Larry RF. Electrochemical methods fundamentals and applications. 2nd ed. New York: John Wiley & Sons; 2001.
  • Elgrishi N, Rountree KJ, McCarthy BD, et al. A practical beginner’s guide to cyclic voltammetry. J Chem Educ. 2018;95(2):197–206.
  • Zhang H, Huang J, Hou H, et al. Electrochemical detection of hydrazine based on electrospun palladium nanoparticle/carbon nanofibers. Electroanalysis. 2009;21(16):1869–1874.
  • Wengst A, Reichl S. RPMI 2650 epithelial model and three-dimensional reconstructed human nasal mucosa as in vitro models for nasal permeation studies. Eur J Pharm Biopharm. 2010;74(2):290–297.
  • Snow C. Formulas for computing capacitance and inductance. Vol. 544. Washington, D.C., USA: National Bureau of Standards Circular; 1954.
  • Dolberg AM, Reichl S. Expression of P-glycoprotein in excised human nasal mucosa and optimized models of RPMI 2650 cells. Int J Pharm. 2016;508(1–2):22–33.
  • Mustafov SD, Mohanty AK, Misra M, et al. Fabrication of conductive Lignin/PAN carbon nanofibers with enhanced graphene for the modified electrodes. Carbon. 2019;147:262–275.
  • Gholizadeh H, Messerotti E, Pozzoli M, et al. Application of a thermosensitive in situ gel of chitosan-based nasal spray loaded with tranexamic acid for localised treatment of nasal wounds. AAPS PharmSciTech. 2019;20(7):299.
  • Medina Sánchez M, Miserere S, Morales-Narváez E, et al. On-chip magneto-immunoassay for Alzheimer’s biomarker electrochemical detection by using quantum dots as labels. Biosens Bioelectron. 2014;54:279–284.
  • Medina Sánchez M, Miserere S, Cadevall M, et al. Enhanced detection of quantum dots labeled protein by simultaneous bismuth electrodeposition into microfluidic channel. Electrophoresis. 2016;37(3):432–437.
  • Kokkinos CT, Giokas DL, Economou AS, et al. Paper-based microfluidic device with integrated sputtered electrodes for stripping voltammetric determination of DNA via quantum dot labeling. Anal Chem. 2018;90(2):1092–1097.
  • Medina Sánchez M, Miserere S, Marín S, et al. On-chip electrochemical detection of CdS quantum dots using normal and multiple recycling flow through modes. Lab Chip. 2012;12(11):2000–2005.
  • Karuwan C, Wisitsoraat A, Chaisuwan P, et al. Screen-printed graphene-based electrochemical sensors for a microfluidic device. Anal Methods. 2017;9(24):3689–3695.
  • Chand R, Han D, Kim YS. Voltammetric analysis on a disposable microfluidic electrochemical cell. B Korean Chem Soc. 2013;34(4):1175–1180.
  • Morgan JR, Yarmush ML. Tissue engineering methods and protocols. Vol. 18. New York: Humana Press; 1998.
  • FDA. Guidance for industry: dissolution testing of immediate release solid oral dosage forms. 1997.
  • Bird RB, Stewart WE, Lightfoot EN. Transport phenomena. New York: John Wiley & Sons; 2002.
  • Bennet D, Estlack Z, Reid T, et al. A microengineered human corneal epithelium-on-a-chip for eye drops mass transport evaluation. Lab Chip. 2018;18(11):1539–1551.
  • Jang KJ, Mehr AP, Hamilton GA, et al. Human kidney proximal tubule-on-a-chip for drug transport and nephrotoxicity assessment. Integr Biol. 2013;5(9):1119–1129.
  • Apetrei IM, Bejinaru AA, Boev M, et al. Determination of ibuprofen based on screen-printed electrodes modified with carbon nanofibers. Farmacia. 2017;65:790–795.
  • Uslu B, Ozkan SA. Electroanalytical methods for the determination of pharmaceuticals: a review of recent trends and developments. Anal Lett. 2011;44(16):2644–2702.
  • Shaw L, Dennany L. Applications of electrochemical sensors: forensic drug analysis. Curr Opin Electrochem. 2017;3(1):23–28.
  • Sanghavi BJ, Wolfbeis OS, Hirsch T, et al. Nanomaterial-based electrochemical sensing of neurological drugs and neurotransmitters. Mikrochim Acta. 2015;182(1–2):1–41.
  • Hirst RA, Jackson CL, Coles JL, et al. Culture of primary ciliary dyskinesia epithelial cells at air-liquid interface can alter ciliary phenotype but remains a robust and informative diagnostic aid. PloS One. 2014;9(2):e89675.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.