229
Views
2
CrossRef citations to date
0
Altmetric
Review

Pharmaceutical strategies in improving anti-tumour efficacy and safety of intraperitoneal therapy for peritoneal metastasis

, ORCID Icon, ORCID Icon, , &
Pages 1193-1210 | Received 15 Aug 2020, Accepted 24 Feb 2021, Published online: 10 Mar 2021

References

  • Nissan A, Stojadinovic A, Garofalo A, et al. Evidence-based medicine in the treatment of peritoneal carcinomatosis: past, present, and future. J Surg Oncol. 2009;100(4):335–344.
  • Qiu N, Gao J, Liu Q, et al. Enzyme-Responsive Charge-Reversal Polymer-Mediated Effective Gene Therapy for Intraperitoneal Tumors. Biomacromolecules. 2018;19(6):2308–2319.
  • Gunji S, Obama K, Matsui M, et al. A novel drug delivery system of intraperitoneal chemotherapy for peritoneal carcinomatosis using gelatin microspheres incorporating cisplatin. Surgery. 2013;154(5):991–999.
  • Tsai M, Lu Z, Wang J, et al. Effects of carrier on disposition and antitumor activity of intraperitoneal Paclitaxel. Pharm Res. 2007;24(9):1691–1701.
  • Dakwar GR, Shariati M, Willaert W, et al. Nanomedicine-based intraperitoneal therapy for the treatment of peritoneal carcinomatosis — mission possible? Adv Drug Deliv Rev. 2017;108:13–24.
  • Amoozgar Z, Wang L, Brandstoetter T, et al. Dual-layer surface coating of PLGA-based nanoparticles provides slow-release drug delivery to achieve metronomic therapy in a paclitaxel-resistant murine ovarian cancer model. Biomacromolecules. 2014;15(11):4187–4194.
  • Al-Shammaa HAH, Li Y, Yonemura Y. Current status and future strategies of cytoreductive surgery plus intraperitoneal hyperthermic chemotherapy for peritoneal carcinomatosis. World J Gastroenterol. 2008;14(8):1159–1166.
  • Markman M. Intraperitoneal antineoplastic drug delivery: rationale and results. The Lancet Oncology. 2003;4(5):277–283.
  • Marchettini P, Stuart OA, Mohamed F, et al. Docetaxel: pharmacokinetics and tissue levels after intraperitoneal and intravenous administration in a rat model. Cancer Chemother Pharmacol. 2002;49(6):499–503.
  • Shimada T, Nomura M, Yokogawa K, et al. Pharmacokinetic advantage of intraperitoneal injection of docetaxel in the treatment for peritoneal dissemination of cancer in mice. J Pharm Pharmacol. 2005;57(2):177–181.
  • Williamson SK, Johnson GA, Maulhardt HA, et al. A phase I study of intraperitoneal nanoparticulate paclitaxel (Nanotax®) in patients with peritoneal malignancies. Cancer Chemother Pharmacol. 2015;75(5):1075–1087.
  • Harrison LE, Bryan M, Pliner L, et al. Phase I trial of pegylated liposomal doxorubicin with hyperthermic intraperitoneal chemotherapy in patients undergoing cytoreduction for advanced intra-abdominal malignancy. Ann Surg Oncol. 2008;15(5):1407–1413.
  • Auer RC, Sivajohanathan D, Biagi J, et al. Indications for hyperthermic intraperitoneal chemotherapy with cytoreductive surgery: a systematic review. Eur J Cancer. 2020;127:76–95.
  • Solass W, Kerb R, Murdter T, et al. Intraperitoneal chemotherapy of peritoneal carcinomatosis using pressurized aerosol as an alternative to liquid solution: first evidence for efficacy. Ann Surg Oncol. 2014;21(2):553–559.
  • Alyami M, Hubner M, Grass F, et al. Pressurised intraperitoneal aerosol chemotherapy: rationale, evidence, and potential indications. The Lancet Oncology. 2019;20(7):e368–e377.
  • Grass F, Vuagniaux A, Teixeira-Farinha H, et al. Systematic review of pressurized intraperitoneal aerosol chemotherapy for the treatment of advanced peritoneal carcinomatosis. Br J Surg. 2017;104(6):669–678.
  • Kakchekeeva T, Demtröder C, Herath NI, et al. In Vivo Feasibility of Electrostatic Precipitation as an Adjunct to Pressurized Intraperitoneal Aerosol Chemotherapy (ePIPAC). Ann Surg Oncol. 2016;23(S5):1–7.
  • Sun B, Taha MS, Ramsey B, et al. Intraperitoneal chemotherapy of ovarian cancer by hydrogel depot of paclitaxel nanocrystals. J Control Release. 2016;235:91–98.
  • Lu Z, Tsai M, Lu D, et al. Tumor-penetrating microparticles for intraperitoneal therapy of ovarian cancer. J Pharmacol Exp Ther. 2008;327(3):673–682.
  • Tamura T, Imai J, Matsumoto A, et al. Organ distribution of cisplatin after intraperitoneal administration of cisplatin-loaded microspheres. Eur J Pharmaceutics Biopharm. 2002;54(1):1–7.
  • Hagiwara A, Sakakura C, Tsujimoto H, et al. Selective delivery of 5-fluorouracil (5-FU) to i.p. tissues using 5-FU microspheres in rats. Anticancer Drugs. 1997;8(2):182–188.
  • Dai M, Xu X, Song J, et al. Preparation of camptothecin-loaded PCEC microspheres for the treatment of colorectal peritoneal carcinomatosis and tumor growth in mice. Cancer Lett. 2011;312(2):189–196.
  • Yang M, Yu T, Wood J, et al. Intraperitoneal delivery of paclitaxel by poly(ether-anhydride) microspheres effectively suppresses tumor growth in a murine metastatic ovarian cancer model. Drug Deliv Transl Res. 2014;4(2):203–209.
  • De Smet L, Colin P, Ceelen W, et al. Development of a nanocrystalline Paclitaxel formulation for HIPEC treatment. Pharm Res. 2012;29(9):2398–2406.
  • Sadzuka Y, Nakai S-I, Miyagishima A, et al. Effects of administered route on tissue distribution and antitumor activity of polyethyleneglycol-coated liposomes containing adriamycin. Cancer Lett. 1997;111(1–2):77–86.
  • Sharma A, Sharma US, Straubinger RM. Paclitaxel-liposomes for intracavitary therapy of intraperitoneal P388 leukemia. Cancer Lett. 1996;107(2):0–272.
  • Dadashzadeh S, Mirahmadi N, Babaei MH, et al. Peritoneal retention of liposomes: effects of lipid composition, PEG coating and liposome charge. J Control Release. 2010;148(2):177–186.
  • Lin YY, Li JJ, Chang CH, et al., Evaluation of pharmacokinetics of 111In-labeled VNB-PEGylated liposomes after intraperitoneal and intravenous administration in a tumor/ascites mouse model, (2009).
  • Rovira-Bru M, Thompson DH, Szleifer I. Size and structure of spontaneously forming liposomes in lipid/PEG-lipid mixtures. Biophys J. 2002;83(5):2419–2439.
  • Jørgensen K, Kiebler T, Hylander I, et al. Interaction of a lipid-membrane destabilizing enzyme with PEG-liposomes. Int J Pharm. 1999;183(1):21–24.
  • Shen YA, Lan KL, Chang CH, et al. Intraperitoneal 188Re-Liposome delivery switches ovarian cancer metabolism from glycolysis to oxidative phosphorylation and effectively controls ovarian tumour growth in mice. Radiother Oncol. 2016;119(2):282–290.
  • Deng Y, Yang F, Cocco E, et al. Improved i.p. drug delivery with bioadhesive nanoparticles. Proc Natl Acad Sci U S A. 2016;113(41):11453–11458.
  • Yeo Y, Ito T, Bellas E, et al. In situ cross-linkable hyaluronan hydrogels containing polymeric nanoparticles for preventing postsurgical adhesions. Ann Surg. 2007;245(5):819–824.
  • Emoto S, Yamaguchi H, Kamei T, et al. Intraperitoneal administration of cisplatin via an in situ cross-linkable hyaluronic acid-based hydrogel for peritoneal dissemination of gastric cancer. Surg Today. 2014;44(5):919–926.
  • Ohta S, Hiramoto S, Amano Y, et al. Production of Cisplatin-Incorporating Hyaluronan Nanogels via Chelating Ligand–Metal Coordination. Bioconjug Chem. 2016;27(3):504–508.
  • Ohta S, Hiramoto S, Amano Y, et al. Intraperitoneal Delivery of Cisplatin via a Hyaluronan-Based Nanogel/ in Situ Cross-Linkable Hydrogel Hybrid System for Peritoneal Dissemination of Gastric Cancer. Mol Pharm. 2017;14(9):3105–3113.
  • Hyoudou K, Nishikawa M, Ikemura M, et al. Cationized catalase-loaded hydrogel for growth inhibition of peritoneally disseminated tumor cells. J Control Release. 2007;122(2):151–158.
  • Cho S, Sun Y, Jarboe EA, et al. Mucoadhesive hybrid gel improves intraperitoneal platinum delivery. Int J Pharm. 2013;458(1):148–155.
  • Gong C, Yang B, Qian Z, et al. Improving intraperitoneal chemotherapeutic effect and preventing postsurgical adhesions simultaneously with biodegradable micelles. Nanomedicine: Nanotechnology, Biology and Medicine. 2012;8(6):963–973.
  • Xu S, Fan H, Yin L, et al. Thermosensitive hydrogel system assembled by PTX-loaded copolymer nanoparticles for sustained intraperitoneal chemotherapy of peritoneal carcinomatosis. Eur J Pharmaceutics Biopharm. 2016;104:251–259.
  • Bae WK, Park MS, Lee JH, et al. Docetaxel-loaded thermoresponsive conjugated linoleic acid-incorporated poloxamer hydrogel for the suppression of peritoneal metastasis of gastric cancer. Biomaterials. 2013;34(4):1433–1441.
  • Vassileva V, Grant J, De Souza R, et al. Novel biocompatible intraperitoneal drug delivery system increases tolerability and therapeutic efficacy of paclitaxel in a human ovarian cancer xenograft model. Cancer Chemother Pharmacol. 2007;60(6):907–914.
  • De Souza R, Zahedi P, Allen CJ, et al. Biocompatibility of injectable chitosan–phospholipid implant systems. Biomaterials. 2009;30(23–24):3818–3824.
  • Padmakumar S, Parayath NN, Nair SV, et al. Enhanced anti-tumor efficacy and safety with metronomic intraperitoneal chemotherapy for metastatic ovarian cancer using biodegradable nanotextile implants. J Control Release. 2019;305:29–40.
  • Ho EA, Soo PL, Allen C, et al. Impact of intraperitoneal, sustained delivery of paclitaxel on the expression of P-glycoprotein in ovarian tumors. J Control Release. 2007;117(1):20–27.
  • Padmakumar S, Paul-Prasanth B, Pavithran K, et al. Long-term drug delivery using implantable electrospun woven polymeric nanotextiles. Nanomedicine: Nanotechnology, Biology and Medicine. 2019;15(1):274–284.
  • Ye H, Tanenbaum LM, Na YJ, et al. Sustained, low-dose intraperitoneal cisplatin improves treatment outcome in ovarian cancer mouse models. J Control Release. 2015;220:358–367.
  • De Souza R, Zahedi P, Moriyama EH, et al. Continuous docetaxel chemotherapy improves therapeutic efficacy in murine models of ovarian cancer. Mol Cancer Ther. 2010;9(6):1820–1830.
  • Lin -Y-Y, Li -J-J, Chang C-H, et al. Evaluation of Pharmacokinetics of 111 In-Labeled VNB-PEGylated Liposomes After Intraperitoneal and Intravenous Administration in a Tumor/Ascites Mouse Model. Cancer Biother Radiopharm. 2009;24(4):453–460.
  • Fu Q, Hargrove D, Lu X. Improving paclitaxel pharmacokinetics by using tumor-specific mesoporous silica nanoparticles with intraperitoneal delivery. Nanomedicine: Nanotechnology, Biology and Medicine. 2016;12(7):1951–1959.
  • Di Pasqua AJ, Yuan H, Chung Y, et al. Neutron-activatable holmium-containing mesoporous silica nanoparticles as a potential radionuclide therapeutic agent for ovarian cancer. J Nucl Med. 2013;54(1):111–116.
  • Gao Y, Liu L, Shen B, et al. Amphiphilic PEGylated Lanthanide-Doped Upconversion Nanoparticles for Significantly Passive Accumulation in the Peritoneal Metastatic Carcinomatosis Models Following Intraperitoneal Administration. ACS Biomater Sci Eng. 2017;3(9):2176–2184.
  • Li S-D, Howell SB. CD44-Targeted Microparticles for Delivery of Cisplatin to Peritoneal Metastases. Mol Pharm. 2010;7(1):280–290.
  • Zavaleta CL, Phillips WT, Soundararajan A, et al. Use of avidin/biotin-liposome system for enhanced peritoneal drug delivery in an ovarian cancer model. Int J Pharm. 2007;337(1–2):316–328.
  • Iinuma H, Maruyama K, Okinaga K, et al. Intracellular targeting therapy of cisplatin-encapsulated transferrin-polyethylene glycol liposome on peritoneal dissemination of gastric cancer. Int J Cancer. 2002;99(1):130–137.
  • He H, Markoutsa E, Li J, et al. Repurposing disulfiram for cancer therapy via targeted nanotechnology through enhanced tumor mass penetration and disassembly. Acta Biomater. 2018;68:113–124.
  • Simon-Gracia L, Hunt H, Scodeller PD, et al. Paclitaxel-Loaded Polymersomes for Enhanced Intraperitoneal Chemotherapy. Mol Cancer Ther. 2016;15(4):670–679.
  • Simon-Gracia L, Hunt H, Scodeller P, et al. iRGD peptide conjugation potentiates intraperitoneal tumor delivery of paclitaxel with polymersomes. Biomaterials. 2016;104:247–257.
  • Hunt H, Simon-Gracia L, Tobi A, et al. Targeting of p32 in peritoneal carcinomatosis with intraperitoneal linTT1 peptide-guided pro-apoptotic nanoparticles. J Control Release. 2017;260:142–153.
  • Zhai J, Jia Y, Zhao L, et al. Turning On/Off the Anti-Tumor Effect of the Au Cluster via Atomically Controlling Its Molecular Size. ACS Nano. 2018;12(5):4378–4386.
  • Malekshah OM, Sarkar S, Nomani A, et al. Bioengineered adipose-derived stem cells for targeted enzyme-prodrug therapy of ovarian cancer intraperitoneal metastasis. J Control Release. 2019;311–312:273–287.
  • Cao P, Mooney R, Tirughana R, et al. Intraperitoneal Administration of Neural Stem Cell–Nanoparticle Conjugates Targets Chemotherapy to Ovarian Tumors. Bioconjug Chem. 2017;28(6):1767–1776.
  • Mikhaylov G, Mikac U, Magaeva AA, et al. Ferri-liposomes as an MRI-visible drug-delivery system for targeting tumours and their microenvironment. Nat Nanotechnol. 2011;6(9):594–602.
  • Leite EA, Dos santos giuberti C, Wainstein AJA, et al. Acute toxicity of long-circulating and pH-sensitive liposomes containing cisplatin in mice after intraperitoneal administration. Life Sci. 2009;84(19–20):641–649.
  • Colson YL, Liu R, Southard EB, et al. The performance of expansile nanoparticles in a murine model of peritoneal carcinomatosis. Biomaterials. 2011;32(3):832–840.
  • Liu Y, Xu Y, Zhang Z, et al. A Simple, Yet Multifunctional, Nanoformulation for Eradicating Tumors and Preventing Recurrence with Safely Low Administration Dose. Nano Lett. 2019;19(8):5515–5523.
  • Li L, Shufang C, Jiangchuan S, et al.Ultrasound-mediated destruction of paclitaxel and oxygen loaded lipid microbubbles for combination therapy in ovarian cancer xenografts. Cancer Lett. 2015; 361: 147–154.
  • Luo T, Sun J, Zhu S, et al. Ultrasound-mediated destruction of oxygen and paclitaxel loaded dual-targeting microbubbles for intraperitoneal treatment of ovarian cancer xenografts. Cancer Lett. 2017;391:1–11.
  • Hayashi N, Kataoka H, Yano S, et al. A novel photodynamic therapy targeting cancer cells and tumor-associated macrophages. Mol Cancer Ther. 2015;14(2):452–460.
  • Sugahara KN, Scodeller P, Braun GB, et al. A tumor-penetrating peptide enhances circulation-independent targeting of peritoneal carcinomatosis. J Control Release. 2015;212:59–69.
  • Herman A, Herman AP. Essential oils and their constituents as skin penetration enhancer for transdermal drug delivery: a review. J Pharm Pharmacol. 2015;67(4):473–485.
  • Fang Z, Wang Y, Li H, et al. Combination Treatment of Citral Potentiates the Efficacy of Hyperthermic Intraperitoneal Chemoperfusion with Pirarubicin for Colorectal Cancer. Mol Pharm. 2017;14(10):3588–3597.
  • Ruoslahti E. Tumor penetrating peptides for improved drug delivery. Adv Drug Deliv Rev. 2017;110–111:3–12.
  • Torchilin VP. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat Rev Drug Discov. 2014;13(11):813–827.
  • Zahedi P, De Souza R, Huynh L, et al. Combination Drug Delivery Strategy for the Treatment of Multidrug Resistant Ovarian Cancer. Mol Pharm. 2011;8(1):260–269.
  • Zhidkov N, De Souza R, Ghassemi AH, et al. Continuous intraperitoneal carboplatin delivery for the treatment of late-stage ovarian cancer. Mol Pharm. 2013;10(9):3315–3322.
  • Hopper-Borge E, Chen Z-S, Shchaveleva I, et al. Analysis of the Drug Resistance Profile of Multidrug Resistance Protein 7 (ABCC10). Cancer Res. 2004;64(14):4927–4930.
  • Wang H, Agarwal P, Zhao G, et al. Overcoming Ovarian Cancer Drug Resistance with a Cold Responsive Nanomaterial. ACS Cent Sci. 2018;4(5):567–581.
  • Rajeshkumar BR, Paliwal S, Lambert L, et al. Treatment of peritoneal carcinomatosis with intraperitoneal administration of Ad-hARF. J Surg Res. 2015;197(1):85–90.
  • Defatta RJ, Chervenak RP, De Benedetti A. A cancer gene therapy approach through translational control of a suicide gene. Cancer Gene Ther. 2002;9(6):505–512.
  • Liu Z, Ke F, Duan C, et al. Mannan-Conjugated Adenovirus Enhanced Gene Therapy Effects on Murine Hepatocellular Carcinoma Cells in Vitro and in Vivo. Bioconjug Chem. 2013;24(8):1387–1397.
  • Günther M, Lipka J, Malek A, et al. Polyethylenimines for RNAi-mediated gene targeting in vivo and siRNA delivery to the lung. Eur J Pharmaceutics Biopharm. 2011;77(3):0–449.
  • Louis M-H, Dutoit S, Denoux Y, et al. Intraperitoneal linear polyethylenimine (L-PEI)-mediated gene delivery to ovarian carcinoma nodes in mice. Cancer Gene Ther. 2006;13(4):367–374.
  • Golan M, Feinshtein V, Polyak D, et al. Inhibition of Gene Expression and Cancer Cell Migration by CD44v3/6-Targeted Polyion Complexes. Bioconjug Chem. 2016;27(4):947–960.
  • Gou ML, Men K, Zhang J, et al. Efficient Inhibition of C-26 Colon Carcinoma by VSVMP Gene Delivered by Biodegradable Cationic Nanogel Derived from Polyethyleneimine. ACS Nano. 2010;4(10):5573–5584.
  • Parayath NN, Parikh A, Amiji MM. Repolarization of Tumor-Associated Macrophages in a Genetically Engineered Nonsmall Cell Lung Cancer Model by Intraperitoneal Administration of Hyaluronic Acid-Based Nanoparticles Encapsulating MicroRNA-125b. Nano Lett. 2018;18(6):3571–3579.
  • Itaka K, Ishii T, Hasegawa Y, et al. Biodegradable polyamino acid-based polycations as safe and effective gene carrier minimizing cumulative toxicity. Biomaterials. 2010;31(13):3707–3714.
  • Ohgidani M, Furugaki K, Shinkai K, et al. Block/homo polyplex micelle-based GM-CSF gene therapy via intraperitoneal administration elicits antitumor immunity against peritoneal dissemination and exhibits safety potentials in mice and cynomolgus monkeys. J Control Release. 2013;167(3):238–247.
  • Leblanc HN, Ashkenazi A. Apo2L/TRAIL and its death and decoy receptors. Cell Death Differ. 2003;10(1):66–75.
  • Xiang J, Liu X, Zhou Z, et al. Reactive Oxygen Species (ROS)-Responsive Charge-Switchable Nanocarriers for Gene Therapy of Metastatic Cancer. ACS Appl Mater Interfaces. 2018;10(50):43352–43362.
  • Kotcherlakota R, Vydiam K, Jeyalakshmi Srinivasan D, et al. Restoration of p53 Function in Ovarian Cancer Mediated by Gold Nanoparticle-Based EGFR Targeted Gene Delivery System. ACS Biomater Sci Eng. 2019;5(7):3631–3644.
  • Wong S-F. Cetuximab: an epidermal growth factor receptor monoclonal antibody for the treatment of colorectal cancer. Clin Ther. 2005;27(6):684–694.
  • Fumoto S, Nakajima S, Mine T, et al. Efficient in Vivo Gene Transfer by Intraperitoneal Injection of Plasmid DNA and Calcium Carbonate Microflowers in Mice. Mol Pharm. 2012;9(7):1962–1970.
  • Kobayashi N, Nishikawa M, Hirata K, et al. Hydrodynamics-based procedure involves transient hyperpermeability in the hepatic cellular membrane: implication of a nonspecific process in efficient intracellular gene delivery. J Gene Med. 2004;6(5):584–592.
  • Archid R, Zieker D, Weinreich F-J, et al. shRNA-mediated inhibition of PhosphoGlycerate Kinase 1 (PGK1) enhances cytotoxicity of intraperitoneal chemotherapy in peritoneal metastasis of gastric origin. Eur J Surg Oncol. 2020;46(4):613–619.
  • Zhan C, Wei X, Qian J, et al. Co-delivery of TRAIL gene enhances the anti-glioblastoma effect of paclitaxel in vitro and in vivo. J Control Release. 2012;160(3):630–636.
  • Long J, Yang Y, Kang T, et al. Ovarian Cancer Therapy by VSVMP Gene Mediated by a Paclitaxel-Enhanced Nanoparticle. ACS Appl Mater Interfaces. 2017;9(45):39152–39164.
  • Lu Z, Tsai M, Wang J, et al. Activity of Drug-loaded Tumor-Penetrating Microparticles In Peritoneal Pancreatic Tumors. Current Cancer Drug Targets. 2014;14(1):70–78.
  • Wang J, Lu Z, Yeung BZ, et al. Tumor priming enhances siRNA delivery and transfection in intraperitoneal tumors. J Control Release. 2014;178:79–85.
  • Schumann C, Chan S, Millar JA, et al. Intraperitoneal nanotherapy for metastatic ovarian cancer based on siRNA-mediated suppression of DJ-1 protein combined with a low dose of cisplatin. Nanomedicine: Nanotechnology, Biology and Medicine. 2018;14(4):1395–1405.
  • Xie Y, Hang Y, Wang Y, et al. Stromal Modulation and Treatment of Metastatic Pancreatic Cancer with Local Intraperitoneal Triple miRNA/siRNA Nanotherapy. ACS Nano. 2020;14(1):255–271.
  • Tringali G, Bettella F, Greco MC, et al. Pharmacokinetic profile of Oncofid-S after intraperitoneal and intravenous administration in the rat. J Pharm Pharmacol. 2012;64(3):360–365.
  • Gelderblom H, Verweij J, Van Zomeren DM, et al. Influence of Cremophor El on the bioavailability of intraperitoneal paclitaxel. Clin Cancer Res. 2002;8(4):1237–1241.
  • Zhang K, Rossin R, Hagooly A, et al. Folate-mediated cell uptake of shell-crosslinked spheres and cylinders. Journal of Polymer Science Part A: Polymer Chemistry. 2008;46(22):7578–7583.
  • Toft DJ, Moyer TJ, Standley SM, et al. Coassembled Cytotoxic and Pegylated Peptide Amphiphiles Form Filamentous Nanostructures with Potent Antitumor Activity in Models of Breast Cancer. ACS Nano. 2012;6(9):7956–7965.
  • De Wolf HK, Luten J, Snel CJ, et al. Biodegradable, Cationic Methacrylamide-Based Polymers for Gene Delivery to Ovarian Cancer Cells in Mice. Mol Pharm. 2008;5(2):349–357.
  • Huang Y-H, Zugates GT, Peng W, et al. Nanoparticle-delivered suicide gene therapy effectively reduces ovarian tumor burden in mice. Cancer Res. 2009;69(15):6184–6191.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.