405
Views
6
CrossRef citations to date
0
Altmetric
Review

Current strategies for oral delivery of BCS IV drug nanocrystals: challenges, solutions and future trends

, , , , , , , ORCID Icon, , , & show all
Pages 1211-1228 | Received 09 Nov 2020, Accepted 11 Mar 2021, Published online: 29 Mar 2021

References

  • Kaur G, Arora M, Ravi KM. Oral drug delivery technologies-A decade of developments. J Pharmacol Exp Ther. 2019;370(3):529–543.
  • Ghadi R, Dand N. BCS class IV drugs: highly notorious candidates for formulation development. J Control Release. 2017;248:71–95.
  • Raza A, Ngieng S, Sime F, et al. Oral meropenem for superbugs: challenges and opportunities. Drug Discov Today. 2020;13(20):s1359–6446.
  • Amidon GL, Lennernas H, Shah VP, et al. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res. 1995;12(3):413–420.
  • Ambrogi V, Perioli L, Pagano C, et al. Use of SBA-15 for furosemide oral delivery enhancement. Eur J Pharm Sci. 2012;46(1–2):43–48.
  • Li Y, Sun S, Chang Q, et al. A strategy for the improvement of the bioavailability and antiosteoporosis activity of BCS iv flavonoid glycosides through the formulation of their lipophilic aglycone into nanocrystals. Mol Pharm. 2013;10(7):2534–2542.
  • Cirri M, Maestrini L, Maestrelli F, et al. Design, characterization and in vivo evaluation of nanostructured lipid carriers (NLC) as a new drug delivery system for hydrochlorothiazide oral administration in pediatric therapy. Drug Deliv. 2018;25(1):1910–1921.
  • Shah JC, Chen JR, Chow D. Preformulation study of etoposide: identification of physicochemical characteristics responsible for the low and erratic oral bioavailability of etoposide. Pharm Res. 1989;6(5):408.
  • D’Errico S, Baldari B, Arcangeli M, et al. Mast cells activation and high blood tryptase levels due to paclitaxel administration. Is Cremophor EL the culprit? Medicine (Baltimore). 2020;99(43):e22814. A case report.
  • Pathak K, Raghuvanshi S. Oral bioavailability: issues and solutions via nanoformulations. Clin Pharmacokinet. 2015;54(4):325–357.
  • Daeihamed M, Haeri A, Ostad S, et al. Doxorubicin-loaded liposomes: enhancing the oral bioavailability by modulation of physicochemical characteristics. Nanomedicine. 2017;12(10):1187–1202.
  • He H, Lu Y, Qi J, et al. Adapting liposomes for oral drug delivery. Acta Pharm Sin B. 2019;9(1):36–48.
  • Dian L, Hu Y, Lin J, et al. Fabrication of paclitaxel hybrid nanomicelles to treat resistant breast cancer via oral administration. Int J Nanomedicine. 2018;13:719–731.
  • Simões S, Figueiras A, Veiga F, et al. Polymeric micelles for oral drug administration enabling locoregional and systemic treatments. Expert Opin Drug Deliv. 2015;12(2):297–318.
  • Khalid N, Sarfraz M, Arafat M, et al. Nano-sized droplets of self-emulsifying system for enhancing oral bioavailability of chemotherapeutic agent VP-16 in rats: a nano lipid carrier for BCS class IV drugs. J Pharm Pharm Sci. 2018;21(1):398–408.
  • Pandey M, Choudhury H, Yeun O, et al. Perspectives of nanoemulsion strategies in the improvement of oral, parenteral and transdermal chemotherapy. Curr Pharm Biotechnol. 2018;19(4):276–292.
  • Zhu Y, Liang X, Lu C, et al. Nanostructured lipid carriers as oral delivery systems for improving oral bioavailability of Nintedanib by promoting intestinal absorption. Int J Pharm. 2020;586:119569.
  • Gaba B, Fazil M, Ali A, et al. Nanostructured lipid (NLCs) carriers as a bioavailability enhancement tool for oral administration. Drug Deliv. 2015;22(6):691–700.
  • Abeer M, Meka A, Pujara N, et al. Rationally designed dendritic silica nanoparticles for oral delivery of exenatide. Pharmaceutics. 2019;11(8):418.
  • Abbaraju P, Meka A, Jambhrunkar S, et al. Floating tablets from mesoporous silica nanoparticles. J Mater Chem B. 2014;2(47):8298–8302.
  • Juère E, Del Favero G, Masse F, et al. Gastro-protective protein-silica nanoparticles formulation for oral drug delivery: in vitro release, cytotoxicity and mitochondrial activity. Eur J Pharm Biopharm. 2020;151:171–180.
  • Abeer M, Rewatkar P, Qu Z, et al. Silica nanoparticles: a promising platform for enhanced oral delivery of macromolecules. J Control Release. 2020;326:544–555.
  • Ren T, Wang Q, Xu Y, et al. Enhanced oral absorption and anticancer efficacy of cabazitaxel by overcoming intestinal mucus and epithelium barriers using surface polyethylene oxide (PEO) decorated positively charged polymer-lipid hybrid nanoparticles. J Control Release. 2018;269:423–438.
  • Beloqui A, Des Rieux A, Préat V. Mechanisms of transport of polymeric and lipidic nanoparticles across the intestinal barrier. Adv Drug Deliv Rev. 2016;106(Pt B):242–255.
  • Qin SY, Zhang AQ, Cheng SX, et al. Drug self-delivery systems for cancer therapy. Biomaterials. 2016;112:234–247.
  • Cai K, He X, Song Z, et al. Dimeric drug polymeric nanoparticles with exceptionally high drug loading and quantitative loading efficiency. J Am Chem Soc. 2015;137(10):3458–3461.
  • Gao L, Liu G, Ma J, et al. Drug nanocrystals: in vivo performances. J Control Release. 2012;160(3):418–430.
  • Pawar VK, Singh Y, Meher JG, et al. Engineered nanocrystal technology: in-vivo fate, targeting and applications in drug delivery. J Control Release. 2014;183(1):51–66.
  • Pardhi V, Verma T, Flora S, et al. Nanocrystals: an overview of fabrication, characterization and therapeutic applications in drug delivery. Curr Pharm Des. 2018;24(43):5129–5146.
  • Kojo Y, Kobayashi K, Matsunaga S, et al. Avoidance of food effect on oral absorption profile of itraconazole by self-micellizing solid dispersion approach. Drug Metab Pharmacokinet. 2017;32(5):273–276.
  • Meola T, Dening T, Prestidge C. Nanocrystal-silica-lipid hybrid particles for the improved oral delivery of ziprasidone in vitro. Eur J Pharm Biopharm. 2018;129:145–153.
  • Lei G, Liu G, Ma J, et al. Application of drug nanocrystal technologies on oral drug delivery of poorly soluble drugs. Pharm Res. 2013;30(2):307–324.
  • Junyaprasert VB, Morakul B. Nanocrystals for enhancement of oral bioavailability of poorly water-soluble drugs. Asian J Pharm. 2015;10(1):13–23.
  • Lu Y, Chen Y, Gemeinhart RA, et al. Developing nanocrystals for cancer treatment. Nanomedicine. 2015;10(16):2537–2552.
  • Havel HA. Where are the nanodrugs? An industry perspective on development of drug products containing nanomaterials. Aaps J. 2016;18(6):1–3.
  • Kwon H, Heo E, Kim Y, et al. Development and evaluation of poorly water-soluble celecoxib as solid dispersions containing nonionic surfactants using fluidized-bed granulation. Pharmaceutics. 2019;11(3):136.
  • Liu J, Tu L, Cheng M, et al. Mechanisms for oral absorption enhancement of drugs by nanocrystals. J Drug Deliv Sci Tec. 2020;56:101607.
  • Mohammad IS, Hu H, Yin L, et al. Drug nanocrystals: fabrication methods and promising therapeutic applications. Int J Pharm. 2019;562:187–202.
  • Jinno J, Kamada N, Miyake M, et al. Effect of particle size reduction on dissolution and oral absorption of a poorly water-soluble drug, cilostazol, in beagle dogs. J Control Release. 2006;111(1):56–64.
  • Dengning X, Fude C, Hongze P, et al. Effect of crystal size on the in vitro dissolution and oral absorption of nitrendipine in rats. Pharm Res. 2010;27(9):1965–1976.
  • Zhang J, Lv H, Jiang K, et al. Enhanced bioavailability after oral and pulmonary administration of baicalein nanocrystal. Int J Pharm. 2011;420(1):180–188.
  • Mou D, Chen H, Wan J, et al. Potent dried drug nanosuspensions for oral bioavailability enhancement of poorly soluble drugs with pH-dependent solubility. Int J Pharm. 2011;413(1–2):237–244.
  • Hao L, Wang X, Zhang D, et al. Studies on the preparation, characterization and pharmacokinetics of Amoitone B nanocrystals. Int J Pharm. 2012;433(1–2):157–164.
  • Jiang T, Han N, Zhao B, et al. Enhanced dissolution rate and oral bioavailability of simvastatin nanocrystal prepared by sonoprecipitation. Drug Dev Ind Pharm. 2012;38(10):1230–1239.
  • Huang Y, Luo X, You X, et al. The preparation and evaluation of water-soluble sklb610 nanosuspensions with improved bioavailability. AAPS PharmSciTech. 2013;14(3):1236–1243.
  • Fu Q, Sun J, Zhang D, et al. Nimodipine nanocrystals for oral bioavailability improvement: preparation, characterization and pharmacokinetic studies. Colloids Surf B Biointerfaces. 2013;109:161–166.
  • Srivalli KMR, Mishra B. Preparation and pharmacodynamic assessment of ezetimibe nanocrystals: effect of P-gp inhibitory stabilizer on particle size and oral absorption. Colloids Surf B Biointerfaces. 2015;135:756–764.
  • Guo M, Fu Q, Wu C, et al. Rod shaped nanocrystals exhibit superior in vitro dissolution and in vivo bioavailability over spherical like nanocrystals: a case study of lovastatin. Colloids Surf B Biointerfaces. 2015;128:410–418.
  • Du P, Jiang Q, Yang R, et al. Nanonization of andrographolide by a wet milling method: the effects of vitamin E TPGS and oral bioavailability enhancement. RSC Adv. 2016;10(1039):C6RA16002F.
  • Lei Y, Kong Y, Sui H, et al. Enhanced oral bioavailability of glycyrrhetinic acid via nanocrystal formulation. Drug Deliv Transl Res. 2016;6(5):1–7.
  • Chen T, Li Y, Wu W, et al. Enhanced dissolution, oral bioavailability and brain delivery by formulation schisantherin a into nanocrystals. Nanomedicine. 2016;2(12):503.
  • Fu Q, Ma M, Li M, et al. Improvement of oral bioavailability for nisoldipine using nanocrystals. Powder Technol. 2017;305:757–763.
  • He J, Han Y, Xu G, et al. Preparation and evaluation of celecoxib nanosuspensions for bioavailability enhancement. Rsc Adv. 2017;7(22):13053–13064.
  • Chang D, Ma Y, Cao G, et al. Improved oral bioavailability for lutein by nanocrystal technology: formulation development, in vitro and in vivo evaluation. Artif Cells Nanomed Biotechnol. 2018;46(5):1018–1024.
  • Wu Y, Loper A, Landis E, et al. The role of biopharmaceutics in the development of a clinical nanoparticle formulation of MK-0869: a Beagle dog model predicts improved bioavailability and diminished food effect on absorption in human. Int J Pharm. 2004;285(1–2):135–146.
  • Patel K, Patil A, Mehta M, et al. Oral delivery of paclitaxel nanocrystal (PNC) with a dual Pgp-CYP3A4 inhibitor: preparation, characterization and antitumor activity. Int J Pharm. 2014;472(1–2):214–223.
  • Guo Y, Wang Y, Xu L. Enhanced bioavailability of rebamipide nanocrystal tablets: formulation and in vitro/in vivo evaluation. Asian J Pharm. 2015;10(3):223–229.
  • He Y, Xia D-N, Li Q-X, et al. Enhancement of cellular uptake, transport and oral absorption of protease inhibitor saquinavir by nanocrystal formulation. Acta Pharmacol Sin. 2015;36(9):1151–1160.
  • Sharma S, Verma A, Teja B, et al. Development of stabilized Paclitaxel nanocrystals: in-vitro and in-vivo efficacy studies. Eur J Pharm Sci. 2015;69:51–60.
  • Sharma S, Verma A, Pandey G, et al. Investigating the role of Pluronic-g-Cationic polyelectrolyte as functional stabilizer for nanocrystals: impact on Paclitaxel oral bioavailability and tumor growth. Acta Biomater. 2015;26(3):169–183.
  • Song Y, Han J, Feng R, et al. The 12-3-12 cationic Gemini surfactant as a novel gastrointestinal bioadhesive material for improving the oral bioavailability of coenzyme Q10 naked nanocrystals. Drug Dev Ind Pharm. 2016;42(12):2044–2054.
  • Wei X, Wei S, L K G, et al. Dual-functional Brij-S20-modified nanocrystal formulation enhances the intestinal transport and oral bioavailability of berberine. Int J Nanomedicine. 2018;13:3781–3793.
  • Xu X, Chen G, Li Y, et al. Enhanced dissolution and oral bioavailability of cinacalcet hydrochloride nanocrystals with no food effect. Nanotechnology. 2019;30(5):055102.
  • Wang Y, Wang S, Xu Y, et al. <p>Etoposide Amorphous Nanopowder For Improved Oral Bioavailability: Formulation Development, Optimization, In Vitro And In Vivo evaluation. Int J Nanomedicine. 2020;15:7601–7613.
  • Yancai W, Ying Z, Ling Z, et al. Stability of nanosuspensions in drug delivery. J Control Release. 2016;172(3):1126–1141.
  • Yang H, Kim H, Jung S, et al. Pharmaceutical strategies for stabilizing drug nanocrystals. Curr Pharm Des. 2018;24(21):2362–2374.
  • Deng J, Huang L, Liu F. Understanding the structure and stability of paclitaxel nanocrystals. Int J Pharm. 2010;390(2):242–249.
  • Kathrin F, Schulz JD, Gauthier MA, et al., PEG nanocages as non-sheddable stabilizers for drug nanocrystals. Acs Nano. 6(2): 1667–1676. 2012. .
  • Wang N, Zhang Y, Liu H, et al. Toxicity reduction and efficacy promotion of doxorubicin in the treatment of breast tumors assisted by enhanced oral absorption of curcumin-loaded lipid-polyester mixed nanoparticles. Mol Pharm. 2020;17(12):4533–4547.
  • Miao L, Liang Y, Pan W, et al. Effect of supersaturation on the oral bioavailability of paclitaxel/polymer amorphous solid dispersion. Drug Deliv Transl Res. 2019;9(1):344–356.
  • Xia D, Quan P, Piao H, et al. Preparation of stable nitrendipine nanosuspensions using the precipitation–ultrasonication method for enhancement of dissolution and oral bioavailability. Eur J Pharm Sci. 2010;40(4):325–334.
  • Xia D, He Y, Li Q, et al. Transport mechanism of lipid covered saquinavir pure drug nanoparticles in intestinal epithelium. J Control Release. 2018;269:159–170.
  • Murgia X, Loretz B, Hartwig O, et al. The role of mucus on drug transport and its potential to affect therapeutic outcomes. Adv Drug Deliv Rev. 2018;124:82–97.
  • Allen A, Cunliffe WJ, Pearson JP, et al. The adherent gastric mucus gel barrier in man and changes in peptic ulceration. Journal of Internal Medicine. 1990;228(S732):83–90.
  • Bansil R, Turner BS. The biology of mucus: composition, synthesis and organization. Adv Drug Deliv Rev. 2017;124:3–15.
  • Pearson JP, Chater PI, Wilcox MD. The properties of the mucus barrier, a unique gel – how can nanoparticles cross it? Ther Deliv. 2016;7(4):229–244.
  • Boegh M, Nielsen H. Mucus as a barrier to drug delivery – understanding and mimicking the barrier properties. Basic Clin Pharmacol Toxicol. 2015;116(3):179–186.
  • Lai SK, Wang YY, Hanes J. Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv Drug Deliv Rev. 2009;61(2):158–171.
  • Weiss TH, Mills AL, Hornberger GM, et al. Effect of bacterial cell shape on transport of bacteria in porous media. Environ Sci Technol. 1995;29(7):1737–1740.
  • Yu M, Wang J, Yang Y, et al., Rotation-facilitated rapid transport of nanorods in mucosal tissues. Nano Lett. 16(11): 7176–7182. 2016.
  • Geng Y, Dalhaimer P, Cai S, et al. Shape effects of filaments versus spherical particles in flow and drug delivery. Nat Nanotechnol. 2007;2(4):249–255.
  • Guo M, Wei M, Li W, et al. Impacts of particle shapes on the oral delivery of drug nanocrystals: mucus permeation, transepithelial transport and bioavailability. J Control Release. 2019;307:64–75.
  • Roy B, Mondal A, Bera S, et al. Using Brownian motion to measure shape asymmetry in mesoscopic matter using optical tweezers. Soft Matter. 2016;12(23):5077–5080.
  • Jurney P, Agarwal R, Singh V, et al. Unique size and shape-dependent uptake behaviors of non-spherical nanoparticles by endothelial cells due to a shearing flow. J Control Release. 2017;245:170–176.
  • Soisuwan S, Teeranachaideekul V, Wongrakpanich A, et al. Impact of uncharged and charged stabilizers on in vitro drug performances of clarithromycin nanocrystals. Eur J Pharm Biopharm. 2019;137:68–76.
  • Zhang X, Cheng H, Dong W, et al. Design and intestinal mucus penetration mechanism of core-shell nanocomplex. J Control Release. 2018;272:29–38.
  • Abdulkarim M, Agulló N, Cattoz B, et al. Nanoparticle diffusion within intestinal mucus: three-dimensional response analysis dissecting the impact of particle surface charge, size and heterogeneity across polyelectrolyte, pegylated and viral particles. Eur J Pharm Biopharm. 2015;97:230–238.
  • Kim S, Seo K, Kim J, et al. The M responses in Mucosal VaccinationCell-Targeting Ligand Promotes Antigen Delivery and Induces Antigen-Specific Immune . J Immunol. 2010;185(10):5787–5795.
  • Islam M, Firdous J, Badruddoza A, et al. M cell targeting engineered biomaterials for effective vaccination. Biomaterials. 2019;192:75–94.
  • Fu Q, Sun J, Ai X, et al. Nimodipine nanocrystals for oral bioavailability improvement: role of mesenteric lymph transport in the oral absorption. Int J Pharm. 2013;448(1):290–297.
  • Shen C, Yang Y, Shen B, et al. Self-discriminating fluorescent hybrid nanocrystals: efficient and accurate tracking of translocation via oral delivery. Nanoscale. 2018;10(1):436–450.
  • Singh B, Maharjan S, Jiang T, et al. Combinatorial approach of antigen delivery using m cell-homing peptide and mucoadhesive vehicle to enhance the efficacy of oral vaccine. Mol Pharm. 2015;12(11):3816–3828.
  • Sass W, Dreyer H-P SJ. Rapid insorption of small particles in the gut. Am J Gastroenterol. 1990;85(3):255–260.
  • Neill MO, Guo J, Byrne C, et al. Mechanistic studies on the uptake and intracellular trafficking of novel cyclodextrin transfection complexes by intestinal epithelial cells. Int J Pharm. 2011;413(1–2):174–183.
  • Yu M, Yang Y, Zhu C, et al. Advances in the transepithelial transport of nanoparticles. Drug Discov Today. 2016;21(7):1155–1161.
  • Xu Z, Liu C, Wei J, et al. Effects of four types of hydroxyapatite nanoparticles with different nanocrystal morphologies and sizes on apoptosis in rat osteoblasts. J Appl Toxicol. 2012;32(6):429–435.
  • Zhang H, Hollis CP, Zhang Q, et al. Preparation and antitumor study of camptothecin nanocrystals. Int J Pharm. 2011;415(1–2):293–300.
  • Modi SR, Dantuluri AKR, Puri V, et al. Impact of Crystal Habit on Biopharmaceutical Performance of Celecoxib. Cryst Growth Des. 2013;13(7):2824–2832.
  • Sun R, Guo Y, Yin N, et al. Preparation of sterile long-acting injectable medroxyprogesterone acetate microcrystals based on anti-solvent precipitation and crystal habit control. Expert Opin Drug Deliv. 2019;16(10):1744–7593.
  • Saaby L, Brodin B, Critical A. View on in vitro analysis of p-glycoprotein (p-gp) transport kinetics. J Pharm Sci. 2017;106(9):2257–2264.
  • Liu Y, Huang L, Liu F. Paclitaxel nanocrystals for overcoming multidrug resistance in cancer. Mol Pharm. 2010;7(3):863–869.
  • Varma MVS, Panchagnula R. Enhanced oral paclitaxel absorption with vitamin E-TPGS: effect on solubility and permeability in vitro, in situ and in vivo. Eur J Pharm Sci. 2005;25(4–5):445–453.
  • Chen W, Miao YQ, Fan DJ, et al. Bioavailability study of berberine and the enhancing effects of tpgs on intestinal absorption in rats. AAPS PharmSciTech. 2011;12(2):705–711.
  • Collnot E-M, Baldes C, Schaefer UF, et al. Vitamin E TPGS P-glycoprotein inhibition mechanism: influence on conformational flexibility, intracellular ATP levels, and role of time and site of access. Mol Pharm. 2010;7(3):642–651.
  • Rege BD, Kao JPY, Polli JE. Effects of nonionic surfactants on membrane transporters in Caco-2 cell monolayers. Eur J Pharm Sci. 2002;16(4):237–246.
  • Ribeiro MENP, Moura CLD, Vieira MGS, et al. Solubilisation capacity of Brij surfactants. Int J Pharm. 2012;436(1–2):631–635.
  • Tang J, Wang Y, Wang D, et al. Key structure of Brij for overcoming multidrug resistance in cancer. Biomacromolecules. 2013;14(2):424–430.
  • Hua Y, Qing HY, Ip FCF, et al. Intestinal transport of bis(12)-hupyridone in Caco-2 cells and its improved permeability by the surfactant Brij-35. Biopharm Drug Dispos. 2011;32(3):140–150.
  • Collnot EM, Baldes C, Wempe MF, et al. Influence of vitamin E TPGS poly(ethylene glycol) chain length on apical efflux transporters in Caco-2 cell monolayers. J Control Release. 2006;111(1–2):35–40.
  • Popov A, Enlow E, Bourassa J, et al. Nanocrystals, compositions, and methods that aid particle transport in mucus. United States patent US 20130323179 A1; 2015 Jun 5.
  • Li X, Chen D, Le C, et al. Novel mucus-penetrating liposomes as a potential oral drug delivery system: preparation, in vitro characterization, and enhanced cellular uptake. Int J Nanomedicine. 2011;6:3151–3162.
  • Zhang X, Dong W, Cheng H, et al. Modulating intestinal mucus barrier for nanoparticles penetration by surfactants. Asian J Pharm Sci. 2019;14(5):543–551.
  • Wang X, Du M, Han H, et al. Boundary lubrication by associative mucin. Langmuir. 2015;31(16):4733–4740.
  • Chi-Yuan C, Jia-Yu W, Ravinath K, et al. Nature of interactions between PEO-PPO-PEO triblock copolymers and lipid membranes: (II) role of hydration dynamics revealed by dynamic nuclear polarization. Biomacromolecules. 2018;13(9):2624–2633.
  • Ueda K, Iwai T, Sunazuka Y, et al. Effect of molecular weight of hypromellose on mucin diffusion and oral absorption behavior of fenofibrate nanocrystal. Int J Pharm. 2019;564:39–47.
  • Goodwin DJ, Sepassi S, King SM, et al. Characterization of polymer adsorption onto drug nanoparticles using depletion measurements and small-angle neutron scattering. Mol Pharm. 2013;10(11):4146–4158.
  • Yoncheva K, Guembe L, Campanero MA, et al. Evaluation of bioadhesive potential and intestinal transport of pegylated poly(anhydride) nanoparticles. Int J Pharm. 2007;334(1–2):156–165.
  • Pridgen EM, Alexis F, Farokhzad OC. Polymeric nanoparticle drug delivery technologies for oral delivery applications. Expert Opin Drug Deliv. 2015;12(9):1459–1473.
  • Costabile G, Provenzano R, Azzalin A, et al. PEGylated mucus-penetrating nanocrystals for lung delivery of a new FtsZ inhibitor against Burkholderia cenocepacia infection. Nanomedicine. 2019;23:102113.
  • Justin T, Huckaby B, Samuel K, et al. PEGylation for enhancing nanoparticle diffusion in mucus. Adv Drug Deliv Rev. 2018;124:125–139.
  • Sakai-Kato K, Yoshida K, Izutsu K. Effect of surface charge on the size-dependent cellular internalization of liposomes. Chem Phys Lipids. 2019;224:104726.
  • Choi JS, Park JS. Effects of paclitaxel nanocrystals surface charge on cell internalization. Eur J Pharm Sci. 2016;93:90–96.
  • Kurakula M, El-Helw AM, Sobahi TR, et al. Chitosan based atorvastatin nanocrystals: effect of cationic charge on particle size, formulation stability, and in-vivo efficacy. Int J Nanomedicine. 2015;10:321–334.
  • Alama T, Kusamori K, Katsumi H, et al. Absorption-enhancing effects of gemini surfactant on the intestinal absorption of poorly absorbed hydrophilic drugs including peptide and protein drugs in rats. Int J Pharm. 2016;499(1–2):58–66.
  • Maisel K, Ensign L, Reddy M, et al. Effect of surface chemistry on nanoparticle interaction with gastrointestinal mucus and distribution in the gastrointestinal tract following oral and rectal administration in the mouse. J Control Release. 2015;197:48–57.
  • Yu Z, Fan W, Wang L, et al. Effect of Surface Charges on Oral Absorption of Intact Solid Lipid Nanoparticles. Mol Pharm. 2019;16(12):5013–5024.
  • Peng K, Shi Y, Labarbiera A. et al. Mucoadhesive ionic liquid gel patches for oral delivery. AACS Biomater Sci Eng. 2020; 2373–9878.
  • Shan W, Zhu X, Liu M, et al. Overcoming the diffusion barrier of mucus and absorption barrier of epithelium by self-assembled nanoparticles for oral delivery of insulin. Acs Nano. 2015;9(3):2345–2356.
  • Rabinow BE. Nanosuspensions in drug delivery. Nat Rev Drug Discov. 2004;3(9):785–796.
  • Li Z, Qiu L, Chen Q, et al. pH-sensitive nanoparticles of poly(l-histidine)–poly(lactide-co-glycolide)–tocopheryl polyethylene glycol succinate for anti-tumor drug delivery. Acta Biomater. 2015;11:137–150.
  • Liu Y, Wang Y, Zhao J. Design, optimization and in vitro-in vivo evaluation of smart nanocaged carrier delivery of multifunctional PEG-chitosan stabilized silybin nanocrystals. Int J Biol Macromol. 2019;124:667–680.
  • Xia D, Tao J, He Y, et al., Enhanced transport of nanocage stabilized pure nanodrug across intestinal epithelial barrier mimicking Listeria monocytogenes. Biomaterials. 37(37C): 320–332. 2015.
  • Roger E, Lagarce F, Garcion E, et al. Lipid nanocarriers improve paclitaxel transport throughout human intestinal epithelial cells by using vesicle-mediated transcytosis. J Control Release. 2009;140(2):174–181.
  • Li X, Wang X, Sha L, et al. Thermo-sensitive lipid bilayer coated mesoporous carbon nanoparticles for synergistic thermo-chemotherapy of tumor. ACS Appl Mater Interfaces. 2018;10(23):19386–19397.
  • Dumontel B, Canta M, Engelke H, et al. Enhanced biostability and cellular uptake of zinc oxide nanocrystals shielded with a phospholipid bilayer. J Mater Chem B. 2017;5(44):8799–8813.
  • Li T, Nowell CJ, Cipolla D, et al. Direct comparison of standard transmission electron microscopy and cryogenic-TEM in imaging nanocrystals inside liposomes. Mol Pharm. 2019;16(4):1775–1781.
  • Li T, Mudie ST, Cipolla D, et al. Solid state characterization of ciprofloxacin liposome nanocrystals. Mol Pharm. 2019;16(1):184–194.
  • Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov. 2005;4(2):145–160.
  • Aller SG, Yu J, Ward A, et al. Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding. Science. 2009;323(5922):1718–1722.
  • Allam A, Hamdallah S, Abdallah O. Chitosan-coated diacerein nanosuspensions as a platform for enhancing bioavailability and lowering side effects: preparation, characterization, and ex vivo/in vivo evaluation. Int J Nanomedicine. 2017;12:4733–4745.
  • Pm V, Em P, M R, et al. Microfluidic platform for combinatorial synthesis and optimization of targeted nanoparticles for cancer therapy. Acs Nano. 2011;7(12):10671–10680.
  • Ahmed A, Sherif H, Ossama A, et al. Chitosan-coated diacerein nanosuspensions as a platform for enhancing bioavailability and lowering side effects: preparation, characterization, and ex vivo/in vivo evaluation. Int J Nanomedicine. 2017;12:4733–4745.
  • Lu Y, Low P. Folate-mediated delivery of macromolecular anticancer therapeutic agents. Adv Drug Deliv Rev. 2002;54(5):675–693.
  • Li L, Liu Y, Wang J, et al. Preparation, in vitro and in vivo evaluation of bexarotene nanocrystals with surface modification by folate-chitosan conjugates. Drug Deliv. 2016;23(1):79–87.
  • Pi-Ping L, Wei W, Hua Y, et al. Porous quaternized chitosan nanoparticles containing paclitaxel nanocrystals improved therapeutic efficacy in non-small-cell lung cancer after oral administration. Biomacromolecules. 2011;12(12):4230–4239.
  • Quan P, Shi K, Piao H, et al. A novel surface modified nitrendipine nanocrystals with enhancement of bioavailability and stability. Int J Pharm. 2012;430(1–2):366–371.
  • Saha K, Rahimi M, Yazdani M, et al. Regulation of macrophage recognition through the interplay of nanoparticle surface functionality and protein corona. ACS Nano. 2016;10(4):4421.
  • Wang A, Yang T, Fan W, et al. Protein corona liposomes achieve efficient oral insulin delivery by overcoming mucus and epithelial barriers. Adv Healthc Mater. 2019;8(12):e1801123.
  • Zheng Y, Xing L, Chen L, et al. Tailored elasticity combined with biomimetic surface promotes nanoparticle transcytosis to overcome mucosal epithelial barrier. Biomaterials. 2020;262:120323.
  • Yin Y, Deng H, Wu K, et al. A multiaspect study on transcytosis mechanism of sorafenib nanogranules engineered by high-gravity antisolvent precipitation. J Control Release. 2020;323:600–612.
  • Wu L, Bai Y, Wang L, et al. Promoting apical-to-basolateral unidirectional transport of nanoformulations by manipulating the nutrient-absorption pathway. J Control Release. 2020;323:151–160.
  • Veiga N, Goldsmith M, Diesendruck Y, et al. Leukocyte-specific siRNA delivery revealing IRF8 as a potential anti-inflammatory target. J Control Release. 2019;313:33–41.
  • Banerjee A, Ibsen K, Brown T, et al. Ionic liquids for oral insulin delivery. Proc Natl Acad Sci U S A. 2018;115(28):7296–7301.
  • Al-Amin M, Bellato F, Mastrotto F, et al. Dexamethasone loaded liposomes by thin-film hydration and microfluidic procedures: formulation challenges. Int J Mol Sci. 2020;21(5):1611.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.