210
Views
10
CrossRef citations to date
0
Altmetric
Review

Recent advances in herbal combination nanomedicine for cancer: delivery technology and therapeutic outcomes

, , , ORCID Icon, ORCID Icon & ORCID Icon
Pages 1609-1625 | Received 15 Apr 2021, Accepted 12 Jul 2021, Published online: 04 Aug 2021

Reference

  • Klein CA. Parallel progression of primary tumours and metastases. Nat Rev Cancer. 2009;9(4):302.
  • Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. cell. 2011;144(5):646–674.
  • Hauner K, Maisch P, Retz M. Side effects of chemotherapy. Urologe A. 2017;56(4):472–479.
  • Mashreghi M, Azarpara H, Bazaz MR, et al. Angiogenesis biomarkers and their targeting ligands as potential targets for tumor angiogenesis. J Cell Physiol. 2018;233:2949–2965.
  • Ashrafizaveh S, Ashrafizadeh M, Zarrabi A, et al. Long non-coding RNAs in the doxorubicin resistance of cancer cells. Cancer Lett. 2021;508:104–114.
  • Cragg GM, Grothaus PG, Newman DJ. Impact of natural products on developing new anti-cancer agents. Chem Rev. 2009;109(7):3012–3043.
  • Sachan AK, Gupta A. A review on nanotized herbal drugs. Int J Pharm Sci Res. 2015;6:961.
  • Ghosh S, Dutta S, Sarkar A, et al. Targeted delivery of curcumin in breast cancer cells via hyaluronic acid modified mesoporous silica nanoparticle to enhance anticancer efficiency. Colloids Surf B. 2021;197:111404.
  • Shamsi-Goushki A, Mortazavi Z, Mirshekar MA, et al. <p>Comparative effects of curcumin versus nano-curcumin on insulin resistance, serum levels of apelin and lipid profile in type 2 diabetic rats. Diabet metab synd obes. 2020;13:2337. .
  • Khan J, Alexander A, Saraf S, et al. Recent advances and future prospects of phyto-phospholipid complexation technique for improving pharmacokinetic profile of plant actives. J Control Release. 2013;168(1):50–60. .
  • Bonifácio BV, Da Silva PB, Dos Santos Ramos MA, et al. Nanotechnology-based drug delivery systems and herbal medicines: a review. Int J Nanomedicine. 2014;9:1.
  • Farokhzad OC, Langer R. Impact of nanotechnology on drug delivery. ACS Nano. 2009;3(1):16–20.
  • Ashrafizadeh M, Zarrabi A, Hashemi F, et al. Polychemotherapy with curcumin and doxorubicin via biological nanoplatforms: enhancing antitumor activity. Pharmaceutics. 2020;12(11):1084. .
  • Ashrafizadeh M, Zarrabi A, Hushmandi K, et al. Progress in natural compounds/siRNA Co-delivery employing nanovehicles for cancer therapy. ACS Comb Sci. 2020;22(12):669–700. .
  • Majumder P. Nanoparticle-assisted herbal synergism an effective therapeutic approach for the targeted treatment of breast cancer: a novel prospective. Glob J Nanomed. 2017;2:555–595.
  • Ansari S, Farha Islam M, Islam F. Influence of nanotechnology on herbal drugs: a review. J Adv Pharm Technol Res. 2012;3(3):142. .
  • Hu C-MJ, Zhang L. Nanoparticle-based combination therapy toward overcoming drug resistance in cancer. Biochem Pharmacol. 2012;83(8):1104–1111.
  • Liao L, Liu J, Dreaden EC, et al. A convergent synthetic platform for single-nanoparticle combination cancer therapy: ratiometric loading and controlled release of cisplatin, doxorubicin, and camptothecin. J Am Chem Soc. 2014;136(16):5896–5899. .
  • Jain AK, Thanki K, Jain S. Co-encapsulation of tamoxifen and quercetin in polymeric nanoparticles: implications on oral bioavailability, antitumor efficacy, and drug-induced toxicity. Mol Pharm. 2013;10(9):3459–3474.
  • Zhang RX, Wong HL, Xue HY, et al. Nanomedicine of synergistic drug combinations for cancer therapy – strategies and perspectives. J Control Release. 2016;240:489–503.
  • Demain AL, Vaishnav P. Natural products for cancer chemotherapy. Microbiol Biotechnol. 2011;4(6):687–699.
  • Khan H, Mirzaei HR, Amiri A, et al. Glyco-nanoparticles: new drug delivery systems in cancer therapy. Semin Cancer Biol. 2019;69:24–42.
  • Langer R. Biomaterials in drug delivery and tissue engineering:  one Laboratory’s Experience. Acc Chem Res. 2000;33(2):94–101.
  • Chen Y, Zhu X, Zhang X, et al. Nanoparticles modified with tumor-targeting scFv deliver siRNA and miRNA for cancer therapy. Mol Ther. 2010;18(9):1650–1656. .
  • Verma H, Prasad SB, Yashwant SH. Herbal drug delivery system: a modern era prospective. Int J Curr Pharm Res. 2013;4:88–101.
  • Gerber H-P, Ferrara N. Pharmacology and pharmacodynamics of bevacizumab as monotherapy or in combination with cytotoxic therapy in preclinical studies. Cancer Res. 2005;65:671–680.
  • Hossen S, Hossain MK, Basher M, et al. Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: a review. J. Adv. Res. 2019;15:1–18.
  • Nurgali K, Jagoe RT, Abalo R. Adverse effects of cancer chemotherapy: anything new to improve tolerance and reduce sequelae? Front. Pharmacol. 2018;9:245.
  • Ogama N, Suzuki S, Umeshita K, et al. Appetite and adverse effects associated with radiation therapy in patients with head and neck cancer. Eur J Oncol Nurs. 2010;14(1):3–10. .
  • Williams J, Chen Y, Rubin P, et al. The biological basis of a comprehensive grading system for the adverse effects of cancer treatment. Semin Radiat Oncol. 2003;13(3):182–188. .
  • Mirzaei HR, Sahebkar A, Salehi R, et al. Boron neutron capture therapy: moving toward targeted cancer therapy. J Cancer Res Ther. 2016;12(2):520. .
  • Mirzaei S, Mohammadi AT, Gholami MH, et al. Nrf2 signaling pathway in cisplatin chemotherapy: potential involvement in organ protection and chemoresistance. Pharmacol Res. 2021;167:105575.
  • Hu C-MJ, Aryal S, Zhang L. Nanoparticle-assisted combination therapies for effective cancer treatment. Ther Deliv. 2010;1(2):323–334.
  • Moghadam ER, Ang HL, Asnaf SE, et al. Broad-spectrum preclinical antitumor activity of chrysin: current trends and future perspectives. Biomolecules. 2020;10(10):1374.
  • Kemp JA, Shim MS, Heo CY, et al. “Combo” nanomedicine: co-delivery of multi-modal therapeutics for efficient, targeted, and safe cancer therapy. Adv. Drug Delivery Rev. 2016;98:3–18.
  • Rastegar R, Akbari Javar H, Khoobi M, et al. Evaluation of a novel biocompatible magnetic nanomedicine based on beta-cyclodextrin, loaded doxorubicin-curcumin for overcoming chemoresistance in breast cancer. Artif Cells Nanomed Biotechnol. 2018;46(sup2):207–216.
  • Mardani R, Hamblin MR, Taghizadeh M, et al. Nanomicellar-curcumin exerts its therapeutic effects via affecting angiogenesis, apoptosis, and T cells in a mouse model of melanoma lung metastasis. Pathol Res Pract. 2020;216(9):153082.
  • Elgohary MM, Helmy MW, Mortada SM, et al. Dual-targeted nano-in-nano albumin carriers enhance the efficacy of combined chemo/herbal therapy of lung cancer. Nanomedicine. 2018;13(17):2221–2224.
  • Elgohary MM, Helmy MW, Abdelfattah E-ZA, et al. Targeting sialic acid residues on lung cancer cells by inhalable boronic acid-decorated albumin nanocomposites for combined chemo/herbal therapy. J Control Release. 2018;285:230–243.
  • Abdelaziz HM, Elzoghby AO, Helmy MW, et al. Liquid crystalline assembly for potential combinatorial chemo–herbal drug delivery to lung cancer cells. Int J Nanomedicine. 2019;4:499.
  • Türk G, Ateşşahin A, Sönmez M, et al. Improvement of cisplatin-induced injuries to sperm quality, the oxidant-antioxidant system, and the histologic structure of the rat testis by ellagic acid. Fertil Steril. 2008;89(5):1474–1481.
  • Abd Elwakil MM, Mabrouk MT, Helmy MW, et al. Inhalable lactoferrin–chondroitin nanocomposites for combined delivery of doxorubicin and ellagic acid to lung carcinoma. Nanomedicine. 2018;13(16):2015–2035.
  • Muralidharan P, Malapit M, Mallory E, et al. Inhalable nanoparticulate powders for respiratory delivery. Nanomedicine. 2015;11(5):1189–1199.
  • Sabra S, Abdelmoneem M, Abdelwakil M, et al. Self-assembled nanocarriers based on amphiphilic natural polymers for anti-cancer drug delivery applications. Curr Pharm Des. 2017;23:5213–5229.
  • Cao H, Wang Y, He X, et al. Codelivery of sorafenib and curcumin by directed self-assembled nanoparticles enhances therapeutic effect on hepatocellular carcinoma. Mol Pharm. 2015;12(3):922–931.
  • Xiao B, Si X, Han MK, et al. Co-delivery of camptothecin and curcumin by cationic polymeric nanoparticles for synergistic colon cancer combination chemotherapy. J Mater Chem. 2015;3(39):7724–7733.
  • Abdelmoneem MA, Abd Elwakil MM, Khattab S, et al. Lactoferrin-dual drug nanoconjugate: synergistic anti-tumor efficacy of docetaxel and the NF-κB inhibitor celastrol. Mater Sci Eng C. 2020;118:111422.
  • Senapati S, Mahanta AK, Kumar S, et al., Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct Target Ther. 3(1): 1–19. 2018.
  • Li JJ. Aromatase inhibitors for breast cancer: exemestane (Aromasin), anastrazole (Arimidex) and letrozole (Femara). Wiley Online Library; 2007. p. 31–38.
  • Clemons M, Danson S, Howell A. Tamoxifen (‘Nolvadex’): a review: antitumour treatment. Cancer Treat Rev. 2002;28(4):165–180.
  • Chi KN, Agarwal N, Bjartell A, et al. Apalutamide for metastatic, castration-sensitive prostate cancer. N Engl J Med. 2019;381(1):13–24.
  • Logman J, Heeg B, Botteman M, et al. Economic evaluation of zoledronic acid for the prevention of osteoporotic fractures in postmenopausal women with early-stage breast cancer receiving aromatase inhibitors in the UK. Ann Oncol. 2009;21(7):1529–1536.
  • Abbasalipourkabir R, Salehzadeh A, Abdullah R. Tamoxifen-loaded solid lipid nanoparticles-induced apoptosis in breast cancer cell lines. J Exp Nanosci. 2016;11(3):161–174.
  • Petinari L, Kohn LK, De Carvalho JE, et al. Cytotoxicity of tamoxifen in normal and tumoral cell lines and its ability to induce cellular transformation in vitro. Cell Biol Int. 2004;28(7):531–539.
  • Sandhu PS, Kumar R, Beg S, et al. Natural lipids enriched self-nano-emulsifying systems for effective co-delivery of tamoxifen and naringenin: systematic approach for improved breast cancer therapeutics. Nanomedicine. 2017;13(5):1703–1713.
  • Hajigholami S, Malekshahi ZV, Bodaghabadi N, et al. Nano packaged Tamoxifen and Curcumin; effective formulation against sensitive and resistant MCF-7 cells. Iran J Pharm Res. 2018;17:1.
  • Shao W, Brown M. Advances in estrogen receptor biology: prospects for improvements in targeted breast cancer therapy. Breast Cancer Res. 2003;6(1):1–14.
  • Hong Y, Chen S. Aromatase, estrone sulfatase, and 17β-hydroxysteroid dehydrogenase: structure–function studies and inhibitor development. Mol Cell Endocrinol. 2011;340(2):120–126.
  • Wang Y, Lee KW, Chan FL, et al. The red wine polyphenol resveratrol displays bilevel inhibition on aromatase in breast cancer cells. Toxicol Sci. 2006;92(1):71–77.
  • Elzoghby AO, El-Lakany SA, Helmy MW, et al. Shell-crosslinked zein nanocapsules for oral codelivery of exemestane and resveratrol in breast cancer therapy. Nanomedicine. 2017;12(24):2785–2805.
  • El-Lakany SA, Elgindy NA, Helmy MW, et al. Lactoferrin-decorated vs PEGylated zein nanospheres for combined aromatase inhibitor and herbal therapy of breast cancer. Expert Opin Drug Deliv. 2018;15(9):835–850.
  • Gaber M, Hany M, Mokhtar S, et al. Boronic-targeted albumin-shell oily-core nanocapsules for synergistic aromatase inhibitor/herbal breast cancer therapy. Mater Sci Eng. 2019;105:110099.
  • Arya A, Ahmad H, Tulsankar S, et al. Bioflavonoid hesperetin overcome bicalutamide induced toxicity by co-delivery in novel SNEDDS formulations: optimization, in vivo evaluation and uptake mechanism. Mater Sci Eng. 2017;71:954–964.
  • Danquah M, Li F, Duke CB, et al. Micellar delivery of bicalutamide and embelin for treating prostate cancer. Pharm Res. 2009;26(9):2081.
  • Kumar RJ, Barqawi A, Crawford ED Adverse events associated with hormonal therapy for prostate cancer. Rev Urol. 2005; 7:S37.
  • Oliver D, Ji H, Liu P, et al. Identification of novel cancer therapeutic targets using a designed and pooled shRNA library screen. Sci Rep. 2017;7(1):43023.
  • Kim HJ, Kim A, Miyata K, et al. Recent progress in development of siRNA delivery vehicles for cancer therapy. Adv Drug Deliv Rev. 2016;104:61–77.
  • Mirzaei S, Mahabady MK, Zabolian A, et al. Small interfering RNA (siRNA) to target genes and molecular pathways in glioblastoma therapy: current status with an emphasis on delivery systems. Life Sci. 2021;275:119368.
  • Abdelfattah N, Rajamanickam S, Panneerdoss S, et al. MiR-584-5p potentiates vincristine and radiation response by inducing spindle defects and DNA damage in medulloblastoma. Nature Communications. 2018;9(1):4541.
  • Ashrafizade M, Delfi M, Hashemi F, et al. Biomedical application of chitosan-based nanoscale delivery systems: potential usefulness in siRNA delivery for cancer therapy. Carbohydr Polym. 2021;260:117809.
  • Zhong X, Zhang D, Xiong M, et al. Current strategies in cancer gene therapy. In: Noncoding RNA for cancer gene therapy. Springer, 2016;209:51–60.
  • Salarinia R, Sahebkar A, Peyvandi M, et al. Epi-drugs and Epi-miRs: moving beyond current cancer therapies. Curr Cancer Drug Targets. 2016;16(9):773–788. .
  • Soutschek J, Akinc A, Bramlage B, et al. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature. 2004;432(7014):173. .
  • Kawabata K, Takakura Y, Hashida M. The fate of plasmid DNA after intravenous injection in mice: involvement of scavenger receptors in its hepatic uptake. Pharm Res. 1995;12(6):825–830.
  • Takakura Y, Nishikawa M, Yamashita F, et al. Development of gene drug delivery systems based on pharmacokinetic studies. Eur J Pharm Sci. 2001;13(1):71–76. .
  • Fessler AB, Dey A, Garmon CB, et al. Water-soluble isatoic anhydrides: a platform for RNA-SHAPE analysis and protein bioconjugation. Bioconjug Chem. 2018;29(9):3196–3202. .
  • Jose A, Labala S, Ninave KM, et al. Effective skin cancer treatment by topical co-delivery of curcumin and STAT3 siRNA using cationic liposomes. AAPS Pharm Sci Tech. 2018;19(1):166–175. .
  • Muddineti OS, Shah A, Rompicharla SVK, et al. Cholesterol-grafted chitosan micelles as a nanocarrier system for drug-siRNA co-delivery to the lung cancer cells. Int J Biol Macromol. 2018;118:857–863.
  • Mostofa AGM, Hossain MK, Basak D, et al. Thymoquinone as a potential adjuvant therapy for cancer treatment: evidence from preclinical studies. Front Pharmacol. 2017;8:295.
  • Xiao B, Viennois E, Chen Q, et al., Silencing of Intestinal Glycoprotein CD98 by orally targeted nanoparticles enhances chemosensitization of colon cancer. ACS Nano. 12(6): 5253–5265. 2018. .
  • Das SK, Menezes ME, Bhatia S, et al. Gene therapies for cancer: strategies, challenges and successes. J Cell Physiol. 2015;230(2):259–271. .
  • Anwar DM, Khattab S, Helmy MW, et al. Lactobionic/Folate dual-targeted Amphiphilic Maltodextrin-Based Micelles for Targeted Codelivery of Sulfasalazine and Resveratrol to Hepatocellular Carcinoma. Bioconjugate Chem. 2018;29(9):3026–3041. .
  • Kabary DM, Helmy MW, Elkhodairy KA, et al. Hyaluronate/lactoferrin layer-by-layer-coated lipid nanocarriers for targeted co-delivery of rapamycin and berberine to lung carcinoma. Colloids Surf B. 2018;169:183–194.
  • Kabary DM, Helmy MW, Abdelfattah E-ZA, et al. Inhalable multi-compartmental phospholipid enveloped lipid core nanocomposites for localized mTOR inhibitor/herbal combined therapy of lung carcinoma. Eur J Pharm Biopharm. 2018;130:152–164.
  • Sabra SA, Elzoghby AO, Sheweita SA, et al. Self-assembled amphiphilic zein-lactoferrin micelles for tumor targeted co-delivery of rapamycin and wogonin to breast cancer. Eur J Pharm Biopharm. 2018;128:156–169.
  • Nakamura O, Hitora T, Yamagami Y, et al. The combination of rapamycin and MAPK inhibitors enhances the growth inhibitory effect on Nara-H cells. Int J Mol Med. 2014;33(6):1491–1497. .
  • Gosslau A, Ho C-T, Li S. The role of rutin and diosmin, two citrus polyhydroxyflavones in disease prevention and treatment. Journal of Food Bioactives. 2019;5:43–56. .
  • Abdelmoneem MA, Mahmoud M, Zaky A, et al. Decorating protein nanospheres with lactoferrin enhances oral COX-2 inhibitor/herbal therapy of hepatocellular carcinoma. Nanomedicine. 2018;13(19):2377–2395. .
  • Parhi P, Mohanty C, Sahoo SK. Nanotechnology-based combinational drug delivery: an emerging approach for cancer therapy. Drug Discov Today. 2012;17(17–18):1044–1052.
  • Blandino G, Valerio M, Cioce M, et al. Metformin elicits anticancer effects through the sequential modulation of DICER and c-MYC. Nat Commun. 2012;3(1):865. .
  • Farajzadeh R, Pilehvar-Soltanahmadi Y, Dadashpour M, et al. Nano-encapsulated metformin-curcumin in PLGA/PEG inhibits synergistically growth and hTERT gene expression in human breast cancer cells. Artif Cells Nanomed Biotechnol. 2018;46(5):917–925. .
  • Afsharzadeh M, Hashemi M, Mokhtarzadeh A, et al. Recent advances in co-delivery systems based on polymeric nanoparticle for cancer treatment. Artif Cells Nanomed Biotechnol. 2018;46(6):1095–1110. .
  • Hussain A, Harish G, Prabhu SA, et al. Inhibitory effect of genistein on the invasive potential of human cervical cancer cells via modulation of matrix metalloproteinase-9 and tissue inhibitiors of matrix metalloproteinase-1 expression. Cancer Epidemiol. 2012;36(6):e387–e393. .
  • Kamel NM, Helmy MW, Abdelfattah E-Z, et al. Inhalable dual-targeted hybrid lipid nanocore-protein shell composites for combined delivery of genistein and all-trans retinoic acid to lung cancer cells. ACS Biomater Sci Eng. 2020;6(1):71-87.
  • Abdelmoneem MA, Elnaggar MA, Hammady RS, et al. Dual-targeted Lactoferrin Shell-Oily Core Nanocapsules for synergistic targeted/Herbal Therapy of Hepatocellular Carcinoma. ACS Biomater Sci Eng. 2019;11:26731–26744.
  • Lavanya V, Adil M, Ahmed N, et al. Small molecule inhibitors as emerging cancer therapeutics. Integr Cancer Sci Ther. 2014;1:39–46.
  • HemaIswarya S, Doble M. Potential synergism of natural products in the treatment of cancer. Phytother Res. 2006;20(4):239–249.
  • Abdelmoneem MA, Mahmoud M, Zaky A, et al. Dual-targeted casein micelles as green nanomedicine for synergistic phytotherapy of hepatocellular carcinoma. J Control Release. 2018;287:78–93.
  • Caddeo C, Pons R, Carbone C, et al. Physico-chemical characterization of succinyl chitosan-stabilized liposomes for the oral co-delivery of quercetin and resveratrol. Carbohydr Polym. 2017;157:1853–1861.
  • Lotfi-Attari J, Pilehvar-Soltanahmadi Y, Dadashpour M, et al. Co-delivery of curcumin and chrysin by polymeric nanoparticles inhibit synergistically growth and hTERT gene expression in human colorectal cancer cells. Nutr Cancer. 2017;69(8):1290–1299. .
  • Bagherian A, Mardani R, Roudi B, et al. Combination therapy with nanomicellar-curcumin and temozolomide for in vitro therapy of glioblastoma multiforme via Wnt signaling pathways. J Mol Neurosci. 2020;70(10):1471–1483. .
  • Tavakoli F, Jahanban-Esfahlan R, Seidi K, et al. Effects of nano-encapsulated curcumin-chrysin on telomerase, MMPs and TIMPs gene expression in mouse B16F10 melanoma tumour model. Artif Cells Nanomed Biotechnol. 2018;46(sup2):75–86. .
  • Proksch P, Edrada R, Ebel R. Drugs from the seas - current status and microbiological implications. Appl Microbiol Biotechnol. 2002;59(2–3):125–134.
  • El-Far SW, Helmy MW, Khattab S, et al. Phytosomal bilayer-enveloped casein micelles for codelivery of monascus yellow pigments and resveratrol to breast cancer. Nanomedicine. 2018;13(5):481–499. .
  • El-Far SW, Helmy MW, Khattab S, et al., Folate conjugated vs PEGylated phytosomal casein nanocarriers for codelivery of fungal- and herbal-derived anticancer drugs. Nanomedicine. 13(12): 1463–1480. 2018. .
  • Yeung KS, Gubili J, Mao JJ. Herb-drug interactions in Cancer care. Oncology. 2018;32:516–520.
  • Ulbrich K, Hola K, Subr V, et al. Targeted drug delivery with polymers and magnetic nanoparticles: covalent and noncovalent approaches, release control, and clinical studies. Chem.rev 2016;116(9):5338–5431. .
  • Lammers T, Kiessling F, Hennink WE, et al. Nanotheranostics and image-guided drug delivery: current concepts and future directions. Mol Pharm. 2010;7(6):1899–1912. .
  • Xie J, Lee S, Chen X. Nanoparticle-based theranostic agents. Adv. Drug Deliv. 2010;62(11):1064–1079.
  • Chakraborty A, Boer JC, Selomulya C, et al. Amino acid functionalized inorganic nanoparticles as cutting-edge therapeutic and diagnostic agents. Bioconjug Chem. 2018;29(3):657–671.
  • Yang H-M, Park CW, Woo M-A, et al. HER2/neu Antibody Conjugated Poly(amino acid)-coated iron oxide nanoparticles for breast cancer MR Imaging. Biomacromolecules. 2010;11(11):2866–2872. .
  • Levy M, Luciani N, Alloyeau D, et al. Long term in vivo biotransformation of iron oxide nanoparticles. Biomaterials. 2011;32(16):3988–3999. .
  • Mazuel F, Espinosa A, Luciani N, et al. Massive intracellular biodegradation of iron oxide nanoparticles evidenced magnetically at single-endosome and tissue levels. ACS Nano. 2016;10(8):7627–7638. .
  • Chakraborty A, Royce SG, Selomulya C, et al. A novel approach for non-invasive lung imaging and targeting lung immune cells. Int J Mol Sci. 2020;21(5):1613. .
  • Harmon B, Takano Y, Winterford C, et al. The role of apoptosis in the response of cells and tumours to mild hyperthermia. Int J Radiat Biol. 1991;59(2):489–501. .
  • Vorotnikova E, Ivkov R, Foreman A, et al. The magnitude and time-dependence of the apoptotic response of normal and malignant cells subjected to ionizing radiation versus hyperthermia. Int J Radiat Bio. 2006;82(8)::549–559.
  • Issels RD. Hyperthermia adds to chemotherapy. Eur J Cancer. 2008;44(17):2546–2554.
  • Patra S, Roy E, Karfa P, et al. Dual-responsive polymer coated superparamagnetic nanoparticle for targeted drug delivery and hyperthermia treatment. ACS Appl Mater Interfaces. 2015;7(17):9235–9246. .
  • Cui Y, Zhang M, Zeng F, et al. Dual-targeting magnetic PLGA nanoparticles for codelivery of paclitaxel and curcumin for brain tumor therapy. ACS Appl Mater Interfaces. 2016;8(47):32159–32169. .
  • Elhasany KA, Khattab S, Bekhit AA, et al. Combination of magnetic targeting with synergistic inhibition of NF-κB and glutathione via micellar drug nanomedicine enhances its anti-tumor efficacy. Eur J Pharm Biopharm. 2020;155:162–176.
  • Shanmugam V, Selvakumar S, Yeh C-S. Near-infrared light-responsive nanomaterials in cancer therapeutics. Chem Soc Rev. 2014;43(17):6254–6287.
  • Hu SH, Fang RH, Chen YW, et al. Photoresponsive Protein–Graphene–protein hybrid capsules with dual targeted heat-triggered drug delivery approach for enhanced tumor therapy. Adv Funct Mater. 2014;24(26):4144–4155. .
  • Alkilany AM, Thompson LB, Boulos SP, et al. Gold nanorods: their potential for photothermal therapeutics and drug delivery, tempered by the complexity of their biological interactions. Adv.Drug deliv. rev. 2012;64(2):190–199.
  • Wang Y, Yang T, Ke H, et al. Smart Albumin-Biomineralized nanocomposites for multimodal imaging and photothermal tumor ablation. Adv Mater. 2015;27(26):3874–3882.
  • Singh SP, Alvi SB, Pemmaraju DB, et al. NIR triggered liposome gold nanoparticles entrapping curcumin as in situ adjuvant for photothermal treatment of skin cancer. Int J Biol Macromol. 2018;110:375–382.
  • Park SY, Chae SY, Park JO, et al. Gold-conjugated resveratrol nanoparticles attenuate the invasion and MMP-9 and COX-2 expression in breast cancer cells. Oncol Rep. 2016;35(6):3248–3256.
  • Davoodvandi A, Darvish M, Borran S, et al. The therapeutic potential of resveratrol in a mouse model of melanoma lung metastasis. Int Immunopharmacol. 2020;88:106905.
  • Ali OM, Bekhit AA, Khattab S, et al. Synthesis of lactoferrin mesoporous silica nanoparticles for pemetrexed/ellagic acid synergistic breast cancer therapy. Colloids Surf. 2020;188:110824.
  • Abdelmoneem MA, Abd Elwakil MM, Khattab SN, et al. Lactoferrin-dual drug nanoconjugate: synergistic anti-tumor efficacy of docetaxel and the NF-κB inhibitor celastrol. Mater Sci Eng C. 2021;118:111422.
  • Metawea OR, Abdelmoneem MA, Haiba NS, et al. A novel ‘smart’ PNIPAM-based copolymer for breast cancer targeted therapy: synthesis, and characterization of dual pH/temperature-responsive lactoferrin-targeted PNIPAM-co-AA. Colloids Surf B. 2021;202:111694.
  • Drbohlavova J, Adam V, Kizek R, et al. Quantum Dots — characterization, preparation and usage in biological systems. Int J Mol Sci. 2009;10(2):656–673.
  • AbdElhamid AS, Zayed DG, Helmy MW, et al. Lactoferrin-tagged quantum dots-based theranostic nanocapsules for combined COX-2 inhibitor/herbal therapy of breast cancer. Nanomedicine. 2018;13(20):2637–2656.
  • Hashemi Goradel N, Ghiyami‐Hour F, Jahangiri S, et al. Nanoparticles as new tools for inhibition of cancer angiogenesis. J Cell Physiol. 2018;233(4):2902–2910.
  • Zayed DG, Ebrahim SM, Helmy MW, et al. Combining hydrophilic chemotherapy and hydrophobic phytotherapy via tumor-targeted albumin–QDs nano-hybrids: covalent coupling and phospholipid complexation approaches. J Nanobiotechnology. 2019;17(1):7.
  • Bhattacharyya S, Kudgus RA, Bhattacharya R, et al., Inorganic nanoparticles in cancer therapy. Pharm Res. 28(2): 237–259. 2011. .
  • Helmy KY, Patel SA, Nahas GR, et al. Cancer immunotherapy: accomplishments to date and future promise. Ther Deliv. 2013;4(10):1307–1320.
  • Chakraborty A, Boer JC, Selomulya C, et al. Amino acid functionalized inorganic nanoparticles as cutting-edge therapeutic and diagnostic agents. Bioconjugate Chem. 2017;29(3):657–671.
  • Rana Shafabakhsh MH. Targeting regulatory T cells by Curcumin: a potential. cell. 2001;7:683–694.
  • Lu Y, Miao L, Wang Y, et al. Curcumin micelles remodel tumor microenvironment and enhance vaccine activity in an advanced melanoma model. Mol.Ther 2016;24(2):364–374.
  • Postow MA. Managing immune checkpoint-blocking antibody side effects. ASCOEducational Book. 2015;35(35):76–83.
  • Mirzaei S, Gholami MH, Hashemi F, et al. Employing siRNA tool and its delivery platforms in suppressing cisplatin resistance: approaching to a new era of cancer chemotherapy. Life Sci. 2021;277:119430.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.