314
Views
5
CrossRef citations to date
0
Altmetric
Review

Oral delivery of solid lipid nanoparticles: underlining the physicochemical characteristics and physiological condition affecting the lipolysis rate

ORCID Icon, ORCID Icon, , , , , ORCID Icon & ORCID Icon show all
Pages 1707-1722 | Received 19 May 2021, Accepted 16 Sep 2021, Published online: 06 Oct 2021

References

  • Mazzaferro S, Bouchemal K, Ponchel G. Oral delivery of anticancer drugs I: general considerations. Drug Discov Today. 2013;18(1):25–34.
  • Bromberg L. Polymeric micelles in oral chemotherapy. J Control Release. 2008;128(2):99–112.
  • Desai PP, Date AA, Patravale VB. Overcoming poor oral bioavailability using nanoparticle formulations–opportunities and limitations. Drug Discov Today Technol. 2012;9(2):e87–e95.
  • Shahbazi M-A, Santos HA. Improving oral absorption via drug-loaded nanocarriers: absorption mechanisms, intestinal models and rational fabrication. Curr Drug Metab. 2013;14(1):28–56.
  • Thanki K, Gangwal RP, Sangamwar AT, et al. Oral delivery of anticancer drugs: challenges and opportunities. J Control Release. 2013;170(1):15–40.
  • Mazzaferro S, Bouchemal K, Ponchel G. Oral delivery of anticancer drugs III: formulation using drug delivery systems. Drug Discov Today. 2013;18(1):99–104.
  • Müller RH, Rühl D, Runge SA. Biodegradation of solid lipid nanoparticles as a function of lipase incubation time. Int J Pharm. 1996;144(1):115–121.
  • Silva A, Kumar A, Wild W, et al. Long-term stability, biocompatibility and oral delivery potential of risperidone-loaded solid lipid nanoparticles. Int J Pharm. 2012;436(1–2):798–805.
  • Salem HF, Kharshoum RM, Halawa AKA, et al. Preparation and optimization of tablets containing a self-nano-emulsifying drug delivery system loaded with rosuvastatin. J Liposome Res. 2018;28(2):149–160.
  • Lv Q, Shen C, Li X, et al. Mucoadhesive buccal films containing phospholipid-bile salts-mixed micelles as an effective carrier for Cucurbitacin B delivery. Drug Deliv. 2015;22(3):351–358.
  • Kalepu S, Manthina M, Padavala V. Oral lipid-based drug delivery systems – an overview. Acta Pharm Sin B. 2013;3(6):361–372.
  • Poovi G, Damodharan N. Lipid nanoparticles: a challenging approach for oral delivery of BCS Class-II drugs. Future J Pharm Sci. 2018;4(2):191–205.
  • Muller RH, Mader K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery - a review of the state of the art. Eur J Pharm Biopharm. 2000;50(1):161–177.
  • Mehnert W, Mader K. Solid lipid nanoparticles Production, characterization and applications. Adv Drug Deliv Rev. 2001;47(2–3):165–196.
  • Muller RH, Dingler A, Weyhers H, et al. Solid Lipid Nanoparticles (SLN) ąein neuartiger Wirkstoff-Carrier fuČr Kosmetika und Pharmazeutika. III. LangzeitstabilitaČt, Gefrierund SpruČhtrocknung, Anwendung in Kosmetika und Pharmazeutika. Pharm Ind.
  • Rainer H. Müller., KarstenMader., Sven Gohla. Solid lipid nanoparticles (SLN) for controlled drug delivery–a review of the state of the art. Eur J Pharm Biopharm. 2000;50:177.
  • Pinto J, Müller R. Pellets as carriers of solid lipid nanoparticles (SLN) for oral administration of drugs. Pharmazie. 1999;54(7):506–509.
  • Silva AC, González-Mira E, García ML, et al. Preparation, characterization and biocompatibility studies on risperidone-loaded solid lipid nanoparticles (SLN): high pressure homogenization versus ultrasound. Colloids Surf B Biointerfaces. 2011;86(1):158–165.
  • Triplett MD, Rathman JF. Optimization of β-carotene loaded solid lipid nanoparticles preparation using a high shear homogenization technique. J Nanoparticle Res. 2009;11(3):601–614.
  • Y Li, L Dong, A Jia, X Chang, et al. Preparation and characterization of solid lipid nanoparticles loaded traditional Chinese medicine. Int J Biol. 2006;38(3–5):296–299.
  • Chattopadhyay P, Shekunov B, Yim D, et al. Production of solid lipid nanoparticle suspensions using supercritical fluid extraction of emulsions (SFEE) for pulmonary delivery using the AERx system. Adv Drug Deliv Rev. 2007;59(6):444–453.
  • Lala RR, Shinde AS, Nandvikar NY. Solid lipid nanoparticles: a promising approach for combinational drug therapy in cancer. Int J Appl Pharm. 2018;10(5):17–22.
  • Das S, Chaudhury A. Recent advances in lipid nanoparticle formulations with solid matrix for oral drug delivery. Aaps Pharmscitech. 2011;12(1):62–76.
  • Jannin V, Dellera E, Chevrier S, et al. In vitro lipolysis tests on lipid nanoparticles: comparison between lipase/co-lipase and pancreatic extract. Drug Dev Ind Pharm. 2015;41(10):1582–1588.
  • Noack A, Oidtmann J, Kutza J, et al. In vitro digestion of curcuminoid-loaded lipid nanoparticles. J Nanopart Res. 2012;14(9):1113.
  • Battaglia L, Gallarate M, Panciani PP, et al. Techniques for the preparation of solid lipid nano and microparticles. Appl Nanotechnol Drug Del. 2014;1:51–75.
  • Ma Y, He H, Xia F, et al. In vivo fate of lipid-silybin conjugate nanoparticles: implications on enhanced oral bioavailability. Nanomedicine. 2017;13(8):2643–2654.
  • Neupane YR, Sabir MD, Ahmad N, et al. Lipid drug conjugate nanoparticle as a novel lipid nanocarrier for the oral delivery of decitabine: ex vivo gut permeation studies. Nanotechnology. 2013;24(41):415102.
  • Anton N, Benoit JP, Saulnier P. Design and production of nanoparticles formulated from nano-emulsion templates-a review. J Control Release. 2008;128(3):185–199.
  • Loxley A. Solid lipid nanoparticles for the delivery of pharmaceutical actives. Drug Deliv Technol. 2009;9(8):1–5.
  • Battaglia L, Ugazio E. Lipid nano-and microparticles: an overview of patent-related research. J Nanomater.2019(2):1-22.
  • Wang L, Luo Q, Lin T, et al. PEGylated nanostructured lipid carriers (PEG-NLC) as a novel drug delivery system for biochanin A. Drug Dev Ind Pharm. 2015;41(7):1204–1212.
  • Luan J, Zheng F, Yang X, et al. Nanostructured lipid carriers for oral delivery of baicalin: in vitro and in vivo evaluation. Colloids Surf A Physicochem Eng Asp. 2015;466:154–159.
  • Granja A, Vieira AC, Chaves LL, et al. Folate-targeted nanostructured lipid carriers for enhanced oral delivery of epigallocatechin-3-gallate. Food Chem. 2017;237:803–810.
  • Ling Tan JS, Roberts CJ, Billa N. Mucoadhesive chitosan-coated nanostructured lipid carriers for oral delivery of amphotericin B. Pharm Dev Technol. 2019;24(4):504–512.
  • Elmowafy M, Ibrahim HM, Ahmed MA, et al. Atorvastatin-loaded nanostructured lipid carriers (NLCs): strategy to overcome oral delivery drawbacks. Drug Deliv. 2017;24(1):932–941.
  • Fathi HA, Allam A, Elsabahy M, et al. Nanostructured lipid carriers for improved oral delivery and prolonged antihyperlipidemic effect of simvastatin. Colloids Surf B Biointerfaces. 2018;162:236–245.
  • Velmurugan R, Selvamuthukumar S. Development and optimization of ifosfamide nanostructured lipid carriers for oral delivery using response surface methodology. Appl Nanosci. 2016;6(2):159–173.
  • Zhou X, Zhang X, Ye Y, et al. Nanostructured lipid carriers used for oral delivery of oridonin: an effect of ligand modification on absorption. Int J Pharm. 2015;479(2):391–398.
  • Khan S, Baboota S, Ali J, et al. Chlorogenic acid stabilized nanostructured lipid carriers (NLC) of atorvastatin: formulation, design and in vivo evaluation. Drug Dev Ind Pharm. 2016;42(2):209–220.
  • Mendes AI, Silva AC, Catita JAM, et al. Miconazole-loaded nanostructured lipid carriers (NLC) for local delivery to the oral mucosa: improving antifungal activity. Colloids Surf B Biointerfaces. 2013;111:755–763.
  • Chen -C-C, Tsai T-H, Huang Z-R, et al. Effects of lipophilic emulsifiers on the oral administration of lovastatin from nanostructured lipid carriers: physicochemical characterization and pharmacokinetics. Eur J Pharm Biopharm. 2010;74(3):474–482.
  • Sun B, Luo C, Li L, et al. Core-matched encapsulation of an oleate prodrug into nanostructured lipid carriers with high drug loading capability to facilitate the oral delivery of docetaxel. Colloids Surf B Biointerfaces. 2016;143:47–55.
  • Zhuang CY, Li N, Wang M, et al. Preparation and characterization of vinpocetine loaded nanostructured lipid carriers (NLC) for improved oral bioavailability. Int J Pharm. 2010;394(1–2):179–185.
  • Fang G, Tang B, Chao Y, et al. Cysteine-Functionalized nanostructured lipid carriers for oral delivery of Docetaxel: a permeability and pharmacokinetic study. Mol Pharm. 2015;12(7):2384–2395.
  • Shah NV, Seth AK, Balaraman R, et al. Nanostructured lipid carriers for oral bioavailability enhancement of raloxifene: design and in vivo study. J Adv Res. 2016;7(3):423–434.
  • Tran TH, Ramasamy T, Truong DH, et al. Preparation and characterization of fenofibrate-loaded nanostructured lipid carriers for oral bioavailability enhancement. AAPS Pharmscitech. 2014;15(6):1509–1515.
  • Khan S, Shaharyar M, Fazil M, et al. Tacrolimus-loaded nanostructured lipid carriers for oral delivery–Optimization of production and characterization. Eur J Pharm Biopharm. 2016;108:277–288.
  • Chen Y, Yuan L, Zhou L, et al. Effect of cell-penetrating peptide-coated nanostructured lipid carriers on the oral absorption of tripterine. Int J Nanomed. 2012;7:4581–4591.
  • Zhang C, Peng F, Liu W, et al. Nanostructured lipid carriers as a novel oral delivery system for triptolide: induced changes in pharmacokinetics profile associated with reduced toxicity in male rats. Int J Nanomed. 2014;9:1049–1063.
  • Zhang T, Chen J, Zhang Y, et al. Characterization and evaluation of nanostructured lipid carrier as a vehicle for oral delivery of etoposide. Eur J Pharm Sci. 2011;43(3):174–179.
  • Chanburee S, Tiyaboonchai W. Mucoadhesive nanostructured lipid carriers (NLCs) as potential carriers for improving oral delivery of curcumin. Drug Dev Ind Pharm. 2017;43(3):432–440.
  • Date AA, Vador N, Jagtap A, et al. Lipid nanocarriers (GeluPearl) containing amphiphilic lipid Gelucire 50/13 as a novel stabilizer: fabrication, characterization and evaluation for oral drug delivery. Nanotechnology. 2011;22(27):275102.
  • Ramalingam P, Ko YT. Improved oral delivery of resveratrol from N-trimethyl chitosan-g-palmitic acid surface-modified solid lipid nanoparticles. Colloids Surf B Biointerfaces. 2016;139:52–61.
  • Pandita D, Kumar S, Poonia N, et al. Solid lipid nanoparticles enhance oral bioavailability of resveratrol, a natural polyphenol. Food Res Int. 2014;62:1165–1174.
  • Wang T, Ma X, Lei Y, et al. Solid lipid nanoparticles coated with cross-linked polymeric double layer for oral delivery of curcumin. Colloids Surf B Biointerfaces. 2016;148:1–11.
  • Sarmento B, Martins S, Ferreira D, et al. Oral insulin delivery by means of solid lipid nanoparticles. Int J Nanomedicine. 2007;2(4):743–749.
  • Fonte P, Nogueira T, Gehm C, et al. Chitosan-coated solid lipid nanoparticles enhance the oral absorption of insulin. Drug Deliv Transl Res. 2011;1(4):299–308.
  • Luo Y, Chen D, Ren L, et al. Solid lipid nanoparticles for enhancing vinpocetine’s oral bioavailability. J Control Release. 2006;114(1):53–59.
  • Müller RH, Runge S, Ravelli V, et al. Oral bioavailability of cyclosporine: solid lipid nanoparticles (SLN®) versus drug nanocrystals. Int J Pharm. 2006;317(1):82–89.
  • Hu L, Tang X, Cui F. Solid lipid nanoparticles (SLNs) to improve oral bioavailability of poorly soluble drugs. J Pharm Pharmacol. 2004;56(12):1527–1535.
  • Priano L, Esposti D, Esposti R, et al. Solid lipid nanoparticles incorporating melatonin as new model for sustained oral and transdermal delivery systems. J Nanosci Nanotechnol. 2007;7(10):3596–3601.
  • Hu L, Xing Q, Meng J, et al. Preparation and enhanced oral bioavailability of cryptotanshinone-loaded solid lipid nanoparticles. AAPS PharmSciTech. 2010;11(2):582–587.
  • Cho HJ, Park JW, Yoon IS, et al. Surface-modified solid lipid nanoparticles for oral delivery of docetaxel: enhanced intestinal absorption and lymphatic uptake. Int J Nanomed. 2014;9:495–504.
  • Padhye SG, Nagarsenker MS. Simvastatin solid lipid nanoparticles for oral delivery: formulation development and in vivo evaluation. Indian J Pharm Sci. 2013;75(5):591–598.
  • Dudhipala N, Veerabrahma K, Mendes AI, et al. Candesartan cilexetil loaded solid lipid nanoparticles for oral delivery: characterization, pharmacokinetic and pharmacodynamic evaluation. Drug Deliv. 2016;23(2):395–404.
  • Zhang C, Gu C, Peng F, et al. Preparation and optimization of triptolide-loaded solid lipid nanoparticles for oral delivery with reduced gastric irritation. Molecules. 2013;18(11):13340–13356.
  • Baek J-S, Cho C-W. Surface modification of solid lipid nanoparticles for oral delivery of curcumin: improvement of bioavailability through enhanced cellular uptake, and lymphatic uptake. Eur J Pharm Biopharm. 2017;117:132–140.
  • Yang S, Zhu J, Lu Y, et al. Body distribution of camptothecin solid lipid nanoparticles after oral administration. Pharm Res. 1999;16(5):751–757.
  • Ravi PR, Aditya N, Kathuria H, et al. Lipid nanoparticles for oral delivery of raloxifene: optimization, stability, in vivo evaluation and uptake mechanism. Eur J Pharm Biopharm. 2014;87(1):114–124.
  • Wang T, Luo Y. Biological fate of ingested lipid-based nanoparticles: current understanding and future directions. Nanoscale. 2019;11(23):11048–11063.
  • Chaudhary S, Garg T, Murthy RS, et al. Recent approaches of lipid-based delivery system for lymphatic targeting via oral route. J Drug Target. 2014;22(10):871–882.
  • Bonnaire L, Sandra S, Helgason T, et al. Influence of lipid physical state on the in vitro digestibility of emulsified lipids. J Agric Food Chem. 2008;56(10):3791–3797.
  • Pignol D, Ayvazian L, Kerfelec B, et al. Critical role of micelles in pancreatic lipase activation revealed by small angle neutron scattering. J Biol Chem. 2000;275(6):4220–4224.
  • Shangguan M, Qi J, Lu Y, et al. Comparison of the oral bioavailability of silymarin-loaded lipid nanoparticles with their artificial lipolysate counterparts: implications on the contribution of integral structure. Int J Pharm. 2015;489(1–2):195–202.
  • Ban C, Jo M, Lim S, et al. Control of the gastrointestinal digestion of solid lipid nanoparticles using PEGylated emulsifiers. Food Chem. 2018;239:442–452.
  • Jannin V, Blas L, Chevrier S, et al. Evaluation of the digestibility of solid lipid nanoparticles of glyceryl dibehenate produced by two techniques: ultrasonication and spray-flash evaporation. Eur J Pharm Sci. 2018;111:91–95.
  • Müllertz A, Ogbonna A, Ren S, et al. New perspectives on lipid and surfactant based drug delivery systems for oral delivery of poorly soluble drugs. J Pharm Pharmacol. 2010;62(11):1622–1636.
  • Larsen AT, Sassene P, Müllertz A. In vitro lipolysis models as a tool for the characterization of oral lipid and surfactant based drug delivery systems. Int J Pharm. 2011;417(1–2):245–255.
  • Bannunah AM, Vllasaliu D, Lord J, et al. Mechanisms of nanoparticle internalization and transport across an intestinal epithelial cell model: effect of size and surface charge. Mol Pharm. 2014;11(12):4363–4373.
  • Madureira AR, Campos DA, Oliveira A, et al. Insights into the protective role of solid lipid nanoparticles on rosmarinic acid bioactivity during exposure to simulated gastrointestinal conditions. Coll Surf B: Biointerfac. 2016;139:277–284.
  • Rai M, Zacchino S, Derita M. Essential oils and nanotechnology for treatment of microbial diseases. CRC Press; 2017.
  • Bahari LAS, Hamishehkar H. The impact of variables on particle size of solid lipid nanoparticles and nanostructured lipid carriers; a comparative literature review. Adv Pharm Bull. 2016;6(2):143.
  • Kalepu S, Manthina M, Padavala V. Oral lipid-based drug delivery systems–an overview. Acta Pharm Sin B. 2013;3(6):361–372.
  • Lingayat VJ, Zarekar NS, Shendge RS. Solid lipid nanoparticles: a review. Nanosci Nanotechnol Res. 2017;2:67–72.
  • Schmidts T, Dobler D, Guldan A-C, et al. Multiple W/O/W emulsions—Using the required HLB for emulsifier evaluation. Colloids Surf A Physicochem Eng Asp. 2010;372(1–3):48–54.
  • Poonia N, Kharb R, Lather V, et al. Nanostructured lipid carriers: versatile oral delivery vehicle. Future Sci OA. 2016;2(3):FSO135.
  • Strickley RG. Solubilizing excipients in oral and injectable formulations. Pharm Res. 2004;21(2):201–230.
  • Olbrich C, Kayser O, Müller RH. Enzymatic degradation of Dynasan 114 SLN–effect of surfactants and particle size. J Nanopart Res. 2002;4(1–2):121–129.
  • Olbrich C, Müller R. Enzymatic degradation of SLN—effect of surfactant and surfactant mixtures. Int J Pharm. 1999;180(1):31–39.
  • Doktorovova S, Shegokar R, Souto EB2017. Role of excipients in formulation development and biocompatibility of lipid nanoparticles (SLNs/NLCs). In Nanostructures for novel therapy (pp. 811-843). Elsevier,
  • Kovacevic A, Savic S, Vuleta G, et al. Polyhydroxy surfactants for the formulation of lipid nanoparticles (SLN and NLC): effects on size, physical stability and particle matrix structure. Int J Pharm. 2011;406(1–2):163–172.
  • Keck CM, Kovačević A, Müller RH, et al. Formulation of solid lipid nanoparticles (SLN): the value of different alkyl polyglucoside surfactants. Int J Pharm. 2014;474(1–2):33–41.
  • Das S, Ng WK, Tan RB. Sucrose ester stabilized solid lipid nanoparticles and nanostructured lipid carriers: i. Effect of formulation variables on the physicochemical properties, drug release and stability of clotrimazole-loaded nanoparticles. Nanotechnology. 2014;25(10):105101.
  • Salminen H, Aulbach S, Leuenberger BH, et al. Influence of surfactant composition on physical and oxidative stability of Quillaja saponin-stabilized lipid particles with encapsulated ω-3 fish oil. Colloids Surf B Biointerfaces. 2014;122:46–55.
  • Salminen H, Gömmel C, Leuenberger BH, et al. Influence of encapsulated functional lipids on crystal structure and chemical stability in solid lipid nanoparticles: towards bioactive-based design of delivery systems. Food Chem. 2016;190:928–937.
  • Patil-Gadhe A, Pokharkar V. Montelukast-loaded nanostructured lipid carriers: part I Oral bioavailability improvement. Eur J Pharm Biopharm. 2014;88(1):160–168.
  • Doktorovová S, Kovačević Ab, Garcia ML, et al. Preclinical safety of solid lipid nanoparticles and nanostructured lipid carriers: current evidence from in vitro and in vivo evaluation. Eur J Pharm Biopharm. 2016;108:235–252.
  • Jansook P, Fülöp Z, Ritthidej GC. Amphotericin B loaded solid lipid nanoparticles (SLNs) and nanostructured lipid carrier (NLCs): physicochemical and solid-solution state characterizations. Drug Dev Ind Pharm. 2019;45(4):560–567.
  • Khosa A, Reddi S, Saha RN. Nanostructured lipid carriers for site-specific drug delivery. Biomed Pharmacother. 2018;103:598–613.
  • Silva AM, Martins-Gomes C, Coutinho T, et al. Soft cationic nanoparticles for drug delivery: production and cytotoxicity of solid lipid nanoparticles (SLNs). Appl Sci. 2019;9(20):4438.
  • Doktorovova S, Souto EB, Silva AM. Nanotoxicology applied to solid lipid nanoparticles and nanostructured lipid carriers–a systematic review of in vitro data. Eur J Pharm Biopharm. 2014;87(1):1–18.
  • Dash A, Singh S, Tolman J. Pharmaceutics: basic principles and application to pharmacy practice. Academic Press; 2013. books.google.com
  • Rieger M. Surfactants in cosmetics. 2017. Routledge.
  • Rosenblatt KM, Bunjes H. Poly (vinyl alcohol) as emulsifier stabilizes solid triglyceride drug carrier nanoparticles in the α-modification. Mol Pharm. 2009;6(1):105–120.
  • Cirri M, Maestrini L, Maestrelli F, et al. Design, characterization and in vivo evaluation of nanostructured lipid carriers (NLC) as a new drug delivery system for hydrochlorothiazide oral administration in pediatric therapy. Drug Deliv. 2018;25(1):1910–1921.
  • Makoni PA, Wa Kasongo K, Walker RB. Short term stability testing of Efavirenz-Loaded Solid Lipid Nanoparticle (SLN) and Nanostructured Lipid Carrier (NLC) dispersions. Pharmaceutics. 2019;11(8):397.
  • Thatipamula RP, Palem CR, Gannu R, et al. Formulation and in vitro characterization of domperidone loaded solid lipid nanoparticles and nanostructured lipid carriers. Daru. 2011;19(1):23.
  • Uprit S, Kumar Sahu R, Roy A, et al. Preparation and characterization of minoxidil loaded nanostructured lipid carrier gel for effective treatment of alopecia. Saudi Pharm J. 2013;21(4):379–385.
  • Veronese FM, Pasut G. PEGylation, successful approach to drug delivery. Drug Discov Today. 2005;10(21):1451–1458.
  • Jokerst JV, Lobovkina T, Zare RN, et al. Nanoparticle PEGylation for imaging and therapy. Nanomedicine. 2011;6(4):715–728.
  • Yuan H, Chen C-Y, Chai G-H, et al. Improved transport and absorption through gastrointestinal tract by PEGylated solid lipid nanoparticles. Mol Pharm. 2013;10(5):1865–1873.
  • Löbenberg R, Amidon GL. Modern bioavailability, bioequivalence and biopharmaceutics classification system. New scientific approaches to international regulatory standards. Eur J Pharm Biopharm. 2000;50(1):3–12.
  • Sandri G, Bonferoni MC, Ferrari F, et al. The role of particle size in drug release and absorption, in particulate products. Springer, Cham, 2014. p. 323–341.
  • Khadka P, Ro J, Kim H, et al. Pharmaceutical particle technologies: an approach to improve drug solubility, dissolution and bioavailability. J. Pharm. Sci.2014;9(6):304–316.
  • Kim JT, Barua S, Kim H, et al. Absorption study of genistein using solid lipid microparticles and nanoparticles: control of oral bioavailability by particle sizes.  Biomolecules & therapeutics. 2017;25(4):452.
  • Mahmoudian M, Valizadeh H, Zakeri-Milani P. Bortezomib-loaded solid lipid nanoparticles: preparation, characterization, and intestinal permeability investigation. Drug Dev Ind Pharm. 2018;44(10):1598–1605.
  • Riethorst D, Mols R, Duchateau G, et al. Characterization of human duodenal fluids in fasted and fed state conditions. J Pharm Sci. 2016;105(2):673–681.
  • Amara S, Bourlieu C, Humbert L, et al. Variations in gastrointestinal lipases, pH and bile acid levels with food intake, age and diseases: possible impact on oral lipid-based drug delivery systems. Adv Drug Deliv Rev. 2019;142:3–15.
  • Qi J, Zhuang J, Lu Y, et al. In vivo fate of lipid-based nanoparticles. Drug Discov Today Technol. 2017;22(1):166–172.
  • Dening TJ, Joyce P, Prestidge CA. Improving correlations between drug solubilization and in vitro lipolysis by monitoring the phase partitioning of lipolytic species for lipid-based formulations. J Pharm Sci. 2019;108(1):295–304.
  • Yu Z, Fan W, Wang L, et al. Slowing down lipolysis significantly enhances the oral absorption of intact solid lipid nanoparticles. Biomater Sci. 2019;7(10):4273–4282.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.