352
Views
3
CrossRef citations to date
0
Altmetric
Review

Therapeutic nanocarriers comprising extracellular matrix-inspired peptides and polysaccharides

ORCID Icon, &
Pages 1723-1740 | Received 18 Jun 2021, Accepted 30 Sep 2021, Published online: 25 Oct 2021

References

  • Bonnans C, Chou J, Werb Z. Remodelling the extracellular matrix in development and disease [Review]. Nat Rev Mol Cell Biol. 2014 Dec; 15,786–801.
  • Harel R, Tanzer ML. extracellular-matrix .3. Evolution of the extracellular-matrix in invertebrates. FASEB J. 1993 Sep;7(12):1115–1123.
  • Exposito JY, Cluzel C, Garrone R, et al. Evolution of collagens [Review]. Anat Rec. 2002 Nov;268(3):302–316.
  • Alberts B, Johnson A, Lewis J, et al. Molecular Biology of the Cell, Sixth Edition [Book]. New York, NY. Garland Science, Taylor and Francis Group. 2015. p. 1–1342.
  • Hynes RO, Naba A. Overview of the matrisome-an inventory of extracellular matrix constituents and functions. Cold Spring Harb Perspect Biol. 2012 Jan;4(1):a004903–a004903.
  • Aamodt JM, Grainger DW. Extracellular matrix-based biomaterial scaffolds and the host response. Biomaterials. 2016 Apr;86:68–82.
  • Barallobre-Barreiro J, Loeys B, Mayr M, et al. Extracellular matrix in vascular disease, Part 2/4 JACC focus seminar. J Am Coll Cardiol. 2020 May 5;75(17):2189–2203.
  • Theocharis AD, Skandalis SS, Gialeli C, et al. Extracellular matrix structure [Review]. Adv Drug Deliv Rev. 2016;97:4–27.
  • Clause KC, Barker TH. Extracellular matrix signaling in morphogenesis and repair. Curr Opin Biotechnol. 2013 Oct;24(5):830–833.
  • Lu PF, Takai K, Weaver VM, et al. Extracellular matrix degradation and remodeling in development and disease [article]. Cold Spring Harb Perspect Biol. 2011 Dec;3(12):24.
  • Bateman JF, Boot-Handford RP, Lamande SR. Genetic diseases of connective tissues: cellular and extracellular effects of ECM mutations. Nat Rev Genet. 2009 Mar;10(3):173–183.
  • Iozzo RV, Gubbiotti MA. Extracellular matrix: the driving force of mammalian diseases. Matrix Biol. 2018 Oct;71-72:1–9.
  • Myllyharju J, Kivirikko KI. Collagens and collagen-related diseases [Review]. Ann Med. 2001 Feb;33(1):7–21.
  • Frantz C, Stewart KM, Weaver VM. The extracellular matrix at a glance [Article]. J Cell Sci. 2010 Dec;123(24):4195–4200.
  • Rao JS. Molecular mechanisms of glioma invasiveness: the role of proteases [Review]. Nat Rev Cancer. 2003 Jul;3(7):489–501.
  • Jarvelainen H, Sainio A, Koulu M, et al. Extracellular matrix molecules: potential targets in pharmacotherapy [Review]. Pharmacol Rev. 2009 Jun;61(2):198–223.
  • Nagase H, Visse R, Murphy G. Structure and function of matrix metalloproteinases and TIMPs [Review]. Cardiovasc Res. 2006 Feb;69(3):562–573.
  • Frykberg RG, Banks J. Challenges in the treatment of chronic wounds. Adv Wound Care. 2015 Sep 1;4(9):560–582.
  • Xue ML, Jackson CJ. Extracellular matrix reorganization during wound healing and its impact on abnormal scarring [Review]. Adv Wound Care. 2015 Mar;4(3):119–136.
  • Schaefer L, Reinhardt DP. Special issue: extracellular matrix: therapeutic tools and targets in cancer treatment. Adv Drug Deliv Rev. 2016 Feb;1(97):1–3.
  • Petros RA, DeSimone JM. Strategies in the design of nanoparticles for therapeutic applications [Review]. Nat Rev Drug Discov. 2010 Aug;9(8):615–627.
  • Allen TM, Cullis PR. Drug delivery systems: entering the mainstream [Article]. Science. 2004 Mar;303(5665):1818–1822.
  • Chung MIS, Miao M, Stahl RJ, et al. Sequences and domain structures of mammalian, avian, amphibian and teleost tropoelastins: clues to the evolutionary history of elastins. Matrix Biol. 2006 Oct;25(8):492–504.
  • Urry DW, Okamoto K, Harris RD, et al. synthetic, cross-linked polypentapeptide of tropoelastin - anisotropic, fibrillar elastomer. Biochemistry. 1976;15(18):4083–4089.
  • McDaniel JR, Callahan DJ, Chilkoti A. Drug delivery to solid tumors by elastin-like polypeptides. Adv Drug Deliv Rev. 2010 Dec 30;62(15):1456–1467.
  • Urry DW. Physical chemistry of biological free energy transduction as demonstrated by elastic protein-based polymers [Review]. J Phys Chem B. 1997 Dec;101(51):11007–11028.
  • Hartzell EJ, Lieser RM, Sullivan MO, et al. Modular hepatitis B virus-like particle platform for biosensing and drug delivery. Acs Nano. 2020 Oct 27;14(10):12642–12651.
  • Jenkins IC, Milligan JJ, Chilkoti A. Genetically encoded elastin-like polypeptides for drug delivery. Adv Healthc Mater. 2021 Jul;10(13):2100209.
  • MacEwan SR, Chilkoti A. Controlled apoptosis by a thermally toggled nanoscale amplifier of cellular uptake. Nano Lett. 2014 Apr;14(4):2058–2064.
  • Peddi S, Roberts SK, MacKay JA. Nanotoxicology of an elastin-like polypeptide rapamycin formulation for breast cancer. Biomacromolecules. 2020 Mar;21(3):1091–1102.
  • MacEwan SR, Chilkoti A. Applications of elastin-like polypeptides in drug delivery. J Control Release. 2014 Sep;190:314–330.
  • Kelley EG, Albert JNL, Sullivan MO, et al. Stimuli-responsive copolymer solution and surface assemblies for biomedical applications. Chem Soc Rev. 2013;42(17):7057–7071.
  • Abdelghani M, Shao J, Le DHT, et al. Self-assembly or coassembly of multiresponsive histidine-containing elastin-like polypeptide block copolymers. Macromol Biosci. 2021;21(6):Jun.
  • Gonzalez-Valdivieso J, Girotti A, Munoz R, et al. Self-assembling ELR-based nanoparticles as smart drug-delivery systems modulating cellular growth via Akt. Biomacromolecules. 2019 May;20(5):1996–2007.
  • Pille J, Van Lith SAM, Van Hest JCM, et al. Self-assembling VHH-elastin-like peptides for photodynamic nanomedicine. Biomacromolecules. 2017 Apr;18(4):1302–1310.
  • Lieser RM, Chen W, Sullivan MO. Controlled epidermal growth factor receptor ligand display on cancer suicide enzymes via unnatural amino acid engineering for enhanced intracellular delivery in breast cancer cells. Bioconjug Chem. 2019 Feb;30(2):432–442.
  • Xu N, Fang W, Mu L, et al. Overexpression of wildtype EGFR is tumorigenic and denotes a therapeutic target in non-small cell lung cancer. Oncotarget. 2016 Jan 26;7(4):3884–3896.
  • Yarden Y, Pines G. The ERBB network: at last, cancer therapy meets systems biology. Nat Rev Cancer. 2012 Aug;12(8):553–563.
  • Costa SA, Mozhdehi D, Dzuricky MJ, et al. Active targeting of cancer cells by nanobody decorated polypeptide micelle with bio-orthogonally conjugated drug. Nano Lett. 2019 Jan;19(1):247–254.
  • MacKay JA, Chen MN, McDaniel JR, et al. Self-assembling chimeric polypeptide-doxorubicin conjugate nanoparticles that abolish tumours after a single injection [Article]. Nat Mater. 2009 Dec;8(12):993–999.
  • Yousefpour P, McDaniel JR, Prasad V, et al. Genetically encoding albumin binding into chemotherapeutic-loaded polypeptide nanoparticles enhances their antitumor efficacy. Nano Lett. 2018 Dec;18(12):7784–7793.
  • Bhattacharyya J, Bellucci JJ, Weitzhandler I, et al. A paclitaxel-loaded recombinant polypeptide nanoparticle outperforms Abraxane in multiple murine cancer models. Nat Commun. 2015 Aug;6(1). doi:https://doi.org/10.1038/ncomms8939.
  • Mastria EM, Cai LY, Kan MJ, et al. Nanoparticle formulation improves doxorubicin efficacy by enhancing host antitumor immunity. J Control Release. 2018 Jan 10;269:364–373.
  • Dodd RD, Scherer A, Huang W, et al. Tumor subtype determines therapeutic response to chimeric polypeptide nanoparticle-based chemotherapy in pten-deleted mouse models of sarcoma. Clin Cancer Res. 2020 Sep 15;26(18):5036–5047.
  • Park M, Vaikari VP, Dhandhukia JP, et al. Human granulocyte-macrophage colony-stimulating factor fused to elastin-like polypeptides assembles biologically-active nanoparticles. Bioconjug Chem. 2020 May;31(5):1551–1561.
  • Park M, Vaikari VP, Lam AT, et al. Anti-FLT3 nanoparticles for acute myeloid leukemia: preclinical pharmacology and pharmacokinetics. J Control Release. 2020 Aug 10;324:317–329.
  • Lee C, Choi M, MacKay JA. Live long and active: polypeptide-mediated assembly of antibody variable fragments. Adv Drug Deliv Rev. 2020 Dec;167:1–18.
  • PhaseBio Pharmaceuticals I. PhaseBio receives FDA orphan drug designation for Vasomera (PB1046) for the treatment of cardiomyopathy associated with dystrophinopathies [Web Page]. Online: PhaseBio Pharmaceuticals, Inc; 2015 [cited 2021 May 26]. Available from: https://investors.phasebio.com/news-releases/news-release-details/phasebio-receives-fda-orphan-drug-designation-vasomera-pb1046
  • PhaseBio Pharmaceuticals I. PhaseBio presents data from phase 1b/2a trial of pemziviptadil for the treatment of pulmonary arterial hypertension at 15th Pulmonary Vascular Research Institute virtual world congress [Web Page]. Online: PhaseBio Pharmaceuticals, Inc; 2021 [cited 2021 May 26]. Available from: https://investors.phasebio.com/news-releases/news-release-details/phasebio-presents-data-phase-1b2a-trial-pemziviptadil-treatment
  • Benza RL, Paul S, Chakinala M, et al., editors. Case study of long-term safety, tolerability, and hemodynamic response of Pb1046, a sustained-release analogue for vasoactive intestinal peptide (VIP), in an adult subject with pulmonary arterial hypertension (PAH). 2020 Annual World Congress of the Pulmonary Vascular Research Institute; 2020 March 26: Pulmonary Circulation.
  • Farber HW, Loscalzo J. Mechanisms of disease: pulmonary arterial hypertension [Review]. N Engl J Med. 2004 Oct;351(16):1655–1665.
  • Woodcock CSC, Chan SY. The search for disease-modifying therapies in pulmonary hypertension [Review]. J Cardiovasc Pharmacol Ther. 2019 Jul;24(4):334–354.
  • A study to assess the safety, tolerability, and hemodynamic response of PB1046 in subjects with PAH [Internet]. Online: clinicaltrials.gov; 2017 [cited 2021 May 27]. Available from: https://clinicaltrials.gov/ct2/show/NCT03315507?term=phasebio&draw=2&rank=8.
  • Inc. PP. A study to assess the safety, tolerability, and hemodynamic response of PB1046 in subjects with PAH [Web Page]. Online: clincialtrials.gov; 2017 [updated 2019 Oct 8th; cited 2021 May 27]. Available from: https://clinicaltrials.gov/ct2/show/study/NCT03315507?term=phasebio&draw=2&rank=8
  • Phase 2 study to assess safety, tolerability and efficacy of once weekly SC Pemziviptadil (PB1046) in subjects with symptomatic PAH (VIP) [Internet]. Online: clinicaltrials.gov; 2018 [cited 2021 May 27]. Available from: https://clinicaltrials.gov/ct2/show/NCT03556020?term=phasebio&draw=2&rank=6.
  • Long-term, open label extension study of Pemziviptadil (PB1046) in PAH subjects following completion of study PB1046-PT-CL-0004 (VIP extend) [Internet]. Online: clinicaltrials.gov; 2019 [cited 2021 May 27]. Available from: https://clinicaltrials.gov/ct2/show/NCT03795428?term=phasebio&draw=2&rank=5.
  • Pemziviptadil (PB1046), a long-acting, sustained release human VIP analogue, intended to provide clinical improvement to hospitalized COVID-19 patients at high risk for rapid clinical deterioration and acute respiratory distress syndrome (ARDS). (VANGARD) [Internet]. Online: clinicaltrials.gov; 2020 [cited 2021 May 27]. Available from: https://clinicaltrials.gov/ct2/show/NCT04433546?term=phasebio&draw=2&rank=1.
  • PhaseBio Pharmaceuticals I. PhaseBio provides Pemziviptadil (PB1046) program update [Web Page]. Online: PhaseBio Pharmaceuticals, Inc; 2020 [cited 2021 May 27]. Available from: https://investors.phasebio.com/news-releases/news-release-details/phasebio-provides-pemziviptadil-pb1046-program-update
  • PhaseBio Pharmaceuticals I. PhaseBio pharmaceuticals announces positive data for Type 2 diabetes treatments PE0139 and PB1023 [Web Page]. Online: PhaseBio Pharmaceuticals, Inc; 2015 [cited 2021 May 27]. Available from: https://investors.phasebio.com/news-releases/news-release-details/phasebio-pharmaceuticals-announces-positive-data-type-2-diabetes
  • PhaseBio Pharmaceuticals I. Pipeline [Web Page]. Online: PhaseBio Pharmaceuticals, Inc; 2021 [cited 2021 May 27]. Available from: https://phasebio.com/pipeline/#tab-id-2
  • Bertrand N, Wu J, Xu XY, et al. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology [Review]. Adv Drug Deliv Rev. 2014;66:2–25.
  • Shoulders MD, Raines RT. Collagen structure and stability. Annu Rev Biochem Palo Alto: Annual Reviews. 2009;78(1):929–958.
  • Persikov AV, Ramshaw JAM, Brodsky B. Collagen model peptides: sequence dependence of triple-helix stability. Biopolymers. 2000;55(6):436–450.
  • Parmar PA, St-Pierre JP, Chow LW, et al. Enhanced articular cartilage by human mesenchymal stem cells in enzymatically mediated transiently RGDS-functionalized collagen mimetic hydrogels. Acta Biomater. 2017 Mar;51:75–88.
  • Islam MM, Ravichandran R, Olsen D, et al. Self-assembled collagen-like-peptide implants as alternatives to human donor corneal transplantation. RSC Adv. 2016;6(61):55745–55749.
  • Krishna OD, Jha AK, Jia XQ, et al. Integrin-mediated adhesion and proliferation of human MSCs elicited by a hydroxyproline-lacking, collagen-like peptide [Article]. Biomaterials. 2011 Sep;32(27):6412–6424.
  • Tanrikulu IC, Forticaux A, Jin S, et al. Peptide tessellation yields micrometre-scale collagen triple helices. Nat Chem. 2016 Nov;8(11):1008–1014.
  • Sarkar B, O’Leary LER, Hartgerink JD. Self-assembly of fiber-forming collagen mimetic peptides controlled by triple-helical nucleation. J Am Chem Soc. 2014 Oct;136(41):14417–14424.
  • Wang AY, Mo X, Chen CS, et al. Facile modification of collagen directed by collagen mimetic peptides [Article]. J Am Chem Soc. 2005 Mar;127(12):4130–4131.
  • Li Y, Foss CA, Summerfield DD, et al. Targeting collagen strands by photo-triggered triple-helix hybridization [Article]. Proc Natl Acad Sci U S A. 2012 Sep;109(37):14767–14772.
  • Bennink LL, Li Y, Kim B, et al. Visualizing collagen proteolysis by peptide hybridization: from 3D cell culture to in vivo imaging [Article]. Biomaterials. 2018 Nov;183:67–76.
  • Chattopadhyay S, Guthrie KM, Teixeira L, et al. Anchoring a cytoactive factor in a wound bed promotes healing [Article]. J Tissue Eng Regen Med. 2016 Dec;10(12):1012–1020.
  • Arlotta KJ, San BH, Mu -H-H, et al. Localization of therapeutic Fab-CHP conjugates to sites of denatured collagen for the treatment of rheumatoid arthritis. Bioconjug Chem. 2020 Aug;31(8):1960–1970.
  • Evans CH, Kraus VB, Setton LA. Progress in intra-articular therapy [Review]. Nat Rev Rheumatol. 2014 Jan;10(1):11–22.
  • Thapa RK, Kiick KL, Sullivan MO. Encapsulation of collagen mimetic peptide-tethered vancomycin liposomes in collagen-based scaffolds for infection control in wounds. Acta Biomater. 2020 Feb;103:115–128.
  • Urello MA, Kiick KL, Sullivan MO. A CMP-based method for tunable, cell-mediated gene delivery from collagen scaffolds [Article]. J Mat Chem B. 2014;2(46):8174–8185.
  • Urello MA, Kiick KL, Sullivan MO. ECM turnover-stimulated gene delivery through collagen-mimetic peptide-plasmid integration in collagen [Article]. Acta Biomater. 2017 Oct;62:167–178.
  • Urello MA, Kiick KL, Sullivan MO. Integration of growth factor gene delivery with collagen-triggered wound repair cascades using collagen-mimetic peptides [Article]. Bioeng Transl Med. 2016 Jun;1(2):207–219.
  • Thapa RK, Margolis DJ, Kiick KL, et al. Enhanced wound healing via collagen-turnover-driven transfer of PDGF-BB gene in a murine wound model. ACS Appl Bio Mater. 2020 Jun 15;3(6):3500–3517.
  • Bastow ER, Byers S, Golub SB, et al. Hyaluronan synthesis and degradation in cartilage and bone. Cell Mol Life Sci. 2008 Feb;65(3):395–413.
  • Tiwari S, Bahadur P. Modified hyaluronic acid based materials for biomedical applications. Int J Biol Macromol. 2019 Jan;121:556–571.
  • Dosio F, Arpicco S, Stella B, et al. Hyaluronic acid for anticancer drug and nucleic acid delivery. Adv Drug Deliv Rev. 2016 Feb;1(97):204–236.
  • Toole BP. Hyaluronan: from extracellular glue to pericellular cue. Nat Rev Cancer. 2004 Jul;4(7):528–539.
  • Choi KY, Han HS, Lee ES, et al. Hyaluronic acid-based activatable nanomaterials for stimuli-responsive imaging and therapeutics: beyond CD44-mediated drug delivery. Adv Mater. 2019 Aug;31(34):1803549.
  • Zhou ML, Hou JR, Zhong ZR, et al. Targeted delivery of hyaluronic acid-coated solid lipid nanoparticles for rheumatoid arthritis therapy [Article]. Drug Deliv. 2018 Mar;25(1):716–722.
  • Zhou P-H, Qiu B, Deng R-H, et al. Chondroprotective effects of hyaluronic acid-chitosan nanoparticles containing plasmid DNA encoding cytokine response modifier A in a rat knee osteoarthritis model. Cell Physiol Biochem. 2018;47(3):1207–1216.
  • Ferrari M, Onuoha SC, Pitzalis C. Trojan horses and guided missiles: targeted therapies in the war on arthritis. Nat Rev Rheumatol. 2015 Jun;11(6):328–337.
  • Lam J, Truong NF, Segura T. Design of cell-matrix interactions in hyaluronic acid hydrogel scaffolds [Review]. Acta Biomater. 2014 Apr;10(4):1571–1580.
  • Wickens JM, Alsaab HO, Kesharwani P, et al. Recent advances in hyluronic acid-decorated nanocarriers for targeted cancer therapy. Drug Discov Today. 2017 Apr;22(4):665–680.
  • Zhou Y, Chang C, Liu Z, et al. Hyaluronic acid-functionalized hollow mesoporous silica nanoparticles as pH-sensitive nanocarriers for cancer chemo-photodynamic therapy. Langmuir. 2021 Mar 2;37(8):2619–2628.
  • Liang Y, Wang Y, Wang L, et al. Self-crosslinkable chitosan-hyaluronic acid dialdehyde nanoparticles for CD44-targeted siRNA delivery to treat bladder cancer. Bioact Mater. 2021 Feb;6(2):433–446.
  • Zhong S, Liu P, Ding J, et al. Hyaluronic acid-coated MTX-PEI nanoparticles for targeted rheumatoid arthritis therapy. Crystals. 2021 Apr;11(4):321.
  • Boussif O, Lezoualch F, Zanta MA, et al. a versatile vector for gene and oligonucleotide transfer into cells in culture and in-vivo - polyethylenimine. Proc Natl Acad Sci U S A. 1995 Aug 1;92(16):7297–7301.
  • Yuan Q, Zhao Y, Zhang Z, et al. On-demand antimicrobial agent release from functionalized conjugated oligomer-hyaluronic acid nanoparticles for tackling antimicrobial resistance. ACS Appl Mater Interfaces. 2021 Jan 13;13(1):257–265.
  • Luo TZ, Kiick KL. Noncovalent modulation of the inverse temperature transition and self-assembly of elastin-b-collagen-like peptide bioconjugates [Article]. J Am Chem Soc. 2015 Dec;137(49):15362–15365.
  • Dunshee LC, Sullivan MO, Kiick KL. Manipulation of the dually thermoresponsive behavior of peptide-based vesicles through modification of collagen-like peptide domains [Article]. Bioeng Transl Med. 2020 Jan;5(1):14.
  • Prhashanna A, Taylor PA, Qin J, et al. Effect of peptide sequence on the LCST-like transition of elastin-like peptides and elastin-like peptide-collagen-like peptide conjugates: simulations and experiments. Biomacromolecules. 2019 Mar;20(3):1178–1189.
  • Taylor PA, Huang H, Kiick KL, et al. Placement of tyrosine residues as a design element for tuning the phase transition of elastin-peptide-containing conjugates: experiments and simulations. Mol Syst Des Eng. 2020 Aug 1;5(7):1239–1254.
  • Qin JY, Luo TZ, Kiick KL. Self-assembly of stable nanoscale platelets from designed elastin-like peptide-collagen-like peptide bioconjugates [Article]. Biomacromolecules. 2019 Apr;20(4):1514–1521.
  • Qin J, Sloppy JD, Kiick KL. Fine structural tuning of the assembly of ECM peptide conjugates via slight sequence modifications. Sci Adv. 2020 Oct;6(41):eabd3033.
  • Luo TZ, David MA, Dunshee LC, et al. Thermoresponsive elastin-b-collagen-like peptide bioconjugate nanovesicles for targeted drug delivery to collagen-containing matrices [Article]. Biomacromolecules. 2017 Aug;18(8):2539–2551.
  • Barbour KE, Helmick CG, Boring M, et al. Vital signs: prevalence of doctor-diagnosed arthritis and arthritis-attributable activity limitation - United States, 2013-2015. Mmwr-Morbidity Mortality Weekly Rep. 2017 Mar 10;66(9):246–253.
  • Johnson VL, Hunter DJ. The epidemiology of osteoarthritis [Article]. Best Pract Res Clin Rheumatol. 2014 Feb;28(1):5–15.
  • Goldring SR, Goldring MB. Clinical aspects, pathology and pathophysiology of osteoarthritis. J Musculoskelet Neuronal Interact. 2006 Oct-Dec;6(4):376–378.
  • Breedveld FC. Osteoarthritis - the impact of a serious disease [Article; Proceedings Paper]. Rheumatology. 2004 Feb;43(90001):I4–I8.
  • Chaudhari K, Rizvi S, Syed BA. Rheumatoid arthritis: current and future trends. Nat Rev Drug Discov. 2016 May;15(5):305–306.
  • Cai X, Yuan S, Zeng Y, et al. New trends in pharmacological treatments for osteoarthritis. Front Pharmacol. 2021 Apr 15;12. DOI:https://doi.org/10.3389/fphar.2021.645842
  • Ghouri A, Conaghan PG. Update on novel pharmacological therapies for osteoarthritis. Ther Adv Musculoskelet Dis. 2019 Jul 23;11:1759720X1986449.
  • Shamji MF, Chen J, Friedman AH, et al. Synthesis and characterization of a thermally-responsive tumor necrosis factor antagonist [Article]. J Control Release. 2008 Aug;129(3):179–186.
  • Shamji MF, Betre H, Kraus VB, et al. Development and characterization of a fusion protein between thermally responsive elastin-like polypeptide and interleukin-1 receptor antagonist - Sustained release of a local antiinflammatory therapeutic [Article]. Arthritis Rheumatism. 2007 Nov;56(11):3650–3661.
  • Oo WM, Liu X, Hunter DJ. Pharmacodynamics, efficacy, safety and administration of intra-articular therapies for knee osteoarthritis. Expert Opin Drug Metab Toxicol. 2019;15(12):1021–1032.
  • Curtis JR, Singh JA. Use of biologics in rheumatoid arthritis: current and emerging paradigms of care. Clin Ther. 2011 Jun;33(6):679–707.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.