220
Views
3
CrossRef citations to date
0
Altmetric
Review

An insight into the role of liposomal therapeutics in the reversion of multiple sclerosis

, , , , &
Pages 1795-1813 | Received 27 Jun 2021, Accepted 03 Nov 2021, Published online: 10 Jan 2022

References

  • Nylander A, Hafler DA. Multiple sclerosis. J Clin Invest. 2012;122(4):1180–1188.
  • Nicholas R, Rashid W. Multiple sclerosis. BMJ Clin Evid. 2012;2012: 1202.
  • Lassmann H, Brück W, Lucchinetti CF. The immunopathology of multiple sclerosis: an overview. Brain Pathol. 2007;17(2):210–218.
  • Compston A, Coles A. Multiple sclerosis. Lancet. 2002;359(9313):1221–1231.
  • Noseworthy JH, Lucchinetti C, Rodriguez M, et al. Multiple sclerosis. New Engl J Med. 2000 Sep 28;343:13.
  • Diaz-Olavarrieta C, Cummings JL, Velazquez J, et al. Neuropsychiatric manifestations of multiple sclerosis. J Neuropsychiatry Clin Neurosci. 1999;11(1):51–57.
  • Dendrou CA, Fugger L, Friese MA. Immunopathology of multiple sclerosis. Nat Rev Immunol. 2015;15(9):545–558.
  • Fox EJ. Immunopathology of multiple sclerosis. Neurology. 2004;63(12 Suppl 6):S3–7.
  • Hemmer B, Nessler S, Zhou D, et al. Immunopathogenesis and immunotherapy of multiple sclerosis. Nat Clin Pract Neurol. 2006;2(4):201–211.
  • Cappellano G, Comi C, Chiocchetti A, et al. Exploiting PLGA-based biocompatible nanoparticles for next-generation tolerogenic vaccines against autoimmune disease. Int J Mol Sci. 2019;20(1):204.
  • Anderson ME, Siahaan TJ. Targeting ICAM-1/LFA-1 interaction for controlling autoimmune diseases: designing peptide and small molecule inhibitors. Peptides. 2003;24(3):487–501.
  • Falcone M, Rajan AJ, Bloom BR, et al. A critical role for IL-4 in regulating disease severity in experimental allergic encephalomyelitis as demonstrated in IL-4-deficient C57BL/6 mice and BALB/c mice. J Immunol. 1998;160(10):4822–4830.
  • Hemmer B, Kerschensteiner M, Korn T. Role of the innate and adaptive immune responses in the course of multiple sclerosis. Lancet Neurol. 2015;14(4):406–419.
  • Ajami B, Bennett JL, Krieger C, et al. Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool. Nat Neurosci. 2011;14(9):1142.
  • Jenkins MK, Schwartz RH. Antigen presentation by chemically modified splenocytes induces antigen-specific T cell unresponsiveness in vitro and in vivo. J Exp Med. 1987;165(2):302–319.
  • Steinman RM, Hawiger D, Nussenzweig MC. Tolerogenic dendritic cells. Annu Rev Immunol. 2003;21(1):685–711.
  • Getts DR, McCarthy DP, Miller SD. Exploiting apoptosis for therapeutic tolerance induction. J Immunol. 2013;191(11):5341–5346.
  • Kuklina EM. Molecular mechanisms of T-cell anergy. Biochem. 2013;78(2):144–156.
  • Getts DR, Turley DM, Smith CE, et al. Tolerance induced by apoptotic antigen-coupled leukocytes is induced by PD-L1+ and IL-10–producing splenic macrophages and maintained by T regulatory cells. J Immunol. 2011;187(5):2405–2417.
  • Pearson RM, Casey LM, Hughes KR, et al. In vivo reprogramming of immune cells: technologies for induction of antigen-specific tolerance. Adv Drug Deliv Rev. 2017;114:240–255.
  • Hogquist KA, Baldwin TA, Jameson SC. Central tolerance: learning self-control in the thymus. Nat Rev Immunol. 2005;5(10):772–782.
  • Miller SD, Tan LJ, Pope L, et al. Antigen-specific tolerance as a therapy for experimental autoimmune encephalomyelitis. Int Rev Immunol. 1992;9(3):203–222.
  • Theofilopoulos AN, Kono DH, Baccala R. The multiple pathways to autoimmunity. Nat Immunol. 2017;18(7):716.
  • Mackay IR. Tolerance and autoimmunity. Bmj. 2000;321(7253):93–96.
  • Bouaziz DJ, Le BH, Saussine A, et al. IL-10 producing regulatory B cells in mice and humans: state of the art. Curr Mol Med. 2012;12(5):519–527.
  • Grant CR, Liberal R, Mieli-Vergani G, et al. Regulatory T-cells in autoimmune diseases: challenges, controversies and—yet—unanswered questions. Autoimmun Rev. 2015;14(2):105–116.
  • Tischner D, Weishaupt A, van Den Brandt J, et al. Polyclonal expansion of regulatory T cells interferes with effector cell migration in a model of multiple sclerosis. Brain. 2006;129(10):2635–2647.
  • Bettelli E, Nicholson LB, Kuchroo VK. IL-10, a key effector regulatory cytokine in experimental autoimmune encephalomyelitis. J Autoimmun. 2003;20(4):265.
  • Dominguez-Villar M, Hafler DA. Regulatory T cells in autoimmune disease. Nat Immunol. 2018;19(7):665–673.
  • Fillatreau S, Sweenie CH, McGeachy MJ, et al. B cells regulate autoimmunity by provision of IL-10. Nat Immunol. 2002;3(10):944.
  • Keegan M, König F, McClelland R, et al. Relation between humoral pathological changes in multiple sclerosis and response to therapeutic plasma exchange. Lancet. 2005;366(9485):579–582.
  • Wekerle H. B cells in multiple sclerosis. Autoimmunity. 2017;50(1):57–60.
  • Li R, Patterson KR, Bar-Or A. Reassessing B cell contributions in multiple sclerosis. Nat Immunol. 2018;19(7):696–707.
  • Kuo R, Saito E, Miller SD, et al. Peptide-conjugated nanoparticles reduce positive co-stimulatory expression and T cell activity to induce tolerance. Mol Ther. 2017;25(7):1676–1685.
  • Sang Q-X, Muroski ME, Roycik MD, et al. Matrix metalloproteinase-9/gelatinase B is a putative therapeutic target of chronic obstructive pulmonary disease and multiple sclerosis. Curr Pharm Biotechnol. 2008;9(1):34–46.
  • Chaturvedi M, Figiel I, Sreedhar B, et al. Neuroprotection from tissue inhibitor of metalloproteinase-1 and its nanoparticles. Neurochem Int. 2012;61(7):1065–1071.
  • Yeste A, Takenaka MC, Mascanfroni ID, et al. Tolerogenic nanoparticles inhibit T cell–mediated autoimmunity through SOCS2. Sci Signal. 2016;9(433):ra61–ra61.
  • Sfg Z-P, Chiuso-Minicucci F, Tgd F, et al. Persistent Inflammation in the CNS during Chronic EAE Despite Local Absence of IL-17 Production. Teeling J, editor. Mediators Inflamm. 2013;2013:519627.
  • Gharagozloo M, Majewski S, Foldvari M. Therapeutic applications of nanomedicine in autoimmune diseases: from immunosuppression to tolerance induction. Nanomedicine Nanotechnology, Biol Med. 2015;11(4):1003–1018.
  • Yuan B, Zhao L, Fu F, et al. A novel nanoparticle containing MOG peptide with BTLA induces T cell tolerance and prevents multiple sclerosis. Mol Immunol. 2014;57(2):93–99.
  • Yeste A, Nadeau M, Burns EJ, et al. Nanoparticle-mediated codelivery of myelin antigen and a tolerogenic small molecule suppresses experimental autoimmune encephalomyelitis. Proc Natl Acad Sci. 2012;109(28):11270–11275.
  • Quintana FJ. Nanoparticles for the induction of antigen-specific Tregs. Immunotherapy. 2013;5(5):437–440.
  • Carambia A, Freund B, Schwinge D, et al. Nanoparticle-based autoantigen delivery to Treg-inducing liver sinusoidal endothelial cells enables control of autoimmunity in mice. J Hepatol. 2015;62(6):1349–1356.
  • You Q, Cheng L, Kedl RM, et al. Mechanism of T cell tolerance induction by murine hepatic Kupffer cells. Hepatology. 2008;48(3):978–990.
  • Turley DM, Miller SD. Peripheral tolerance induction using ethylenecarbodiimide-fixed APCs uses both direct and indirect mechanisms of antigen presentation for prevention of experimental autoimmune encephalomyelitis. J Immunol. 2007;178(4):2212–2220.
  • Thomson AW, Knolle PA. Antigen-presenting cell function in the tolerogenic liver environment. Nat Rev Immunol. 2010;10(11):753.
  • Knolle PA, Schmitt E, Jin S, et al. Induction of cytokine production in naive CD4+ T cells by antigen-presenting murine liver sinusoidal endothelial cells but failure to induce differentiation toward Th1 cells. Gastroenterology. 1999;116(6):1428–1440.
  • Rosenblum MD, Gratz IK, Paw JS, et al. Treating human autoimmunity: current practice and future prospects. Sci Transl Med. 2012;4(125):125sr1–125sr1.
  • Kipp M, Nyamoya S, Hochstrasser T, et al. Multiple sclerosis animal models: a clinical and histopathological perspective. Brain Pathol. 2017;27(2):123–137.
  • Constantinescu CS, Farooqi N, O’Brien K, et al. Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS). Br J Pharmacol. 2011;164(4):1079–1106.
  • Lassmann H, Bradl M. Multiple sclerosis: experimental models and reality. Acta Neuropathol. 2017;133(2):223–244.
  • Hernández-Pedro NY, Espinosa-Ramirez G, De La Cruz VP, et al. Initial immunopathogenesis of multiple sclerosis: innate immune response. Clin Dev Immunol. 2013;2013:413465.
  • Jacobs AH, Tavitian B, Inm C. Noninvasive molecular imaging of neuroinflammation. J Cereb Blood Flow Metab. 2012;32(7):1393–1415.
  • Cappellano G, Woldetsadik AD, Orilieri E, et al. Subcutaneous inverse vaccination with PLGA particles loaded with a MOG peptide and IL-10 decreases the severity of experimental autoimmune encephalomyelitis. Vaccine. 2014;32(43):5681–5689.
  • Göbel K, Ruck T, Meuth SG. Cytokine signaling in multiple sclerosis: lost in translation. Mult Scler J. 2018;24(4):432–439.
  • Fux M, van Rooijen N, Owens T. Macrophage-independent T cell infiltration to the site of injury-induced brain inflammation. J Neuroimmunol. 2008;203(1):64–72.
  • Farooqi N, Gran B, Constantinescu CS. Are current disease-modifying therapeutics in multiple sclerosis justified on the basis of studies in experimental autoimmune encephalomyelitis? J Neurochem. 2010;115(4):829–844.
  • Baxter AG. The origin and application of experimental autoimmune encephalomyelitis. Nat Rev Immunol. 2007;7(11):904.
  • Jahan-Abad AJ, Karima S, Shateri S, et al. Serum pro-inflammatory and anti-inflammatory cytokines and the pathogenesis of experimental autoimmune encephalomyelitis. Neuropathology. 2019;40(1): 84–92.
  • Robinson AP, Harp CT, Noronha A, et al. The experimental autoimmune encephalomyelitis (EAE) model of MS: utility for understanding disease pathophysiology and treatment. Handb Clin Neurol. 2014;122:173–189. Elsevier.
  • Miljkovic D, Stosic-Grujicic S, Markovic M, et al. Strain difference in susceptibility to experimental autoimmune encephalomyelitis between albino oxford and dark agouti rats correlates with disparity in production of IL-17, but not nitric oxide. J Neurosci Res. 2006;84(2):379–388.
  • Kasagi S, Wang D, Zhang P, et al. Combination of apoptotic T cell induction and self-peptide administration for therapy of experimental autoimmune encephalomyelitis. EBioMedicine. 2019;44:50–59.
  • Derdelinckx J, Mansilla MJ, De Laere M, et al. Clinical and immunological control of experimental autoimmune encephalomyelitis by tolerogenic dendritic cells loaded with MOG-encoding mRNA. J Neuroinflammation. 2019;16(1):167.
  • Brocke S, Gijbels K, Steinman L. Experimental autoimmune encephalomyelitis in the mouse. In: Cohen , I, and Miller, A. editor. Autoimmune Dis Model. Elsevier; 1994. p. 1–14.
  • Freedman MS. Disease-modifying drugs for multiple sclerosis: current and future aspects. Expert Opin Pharmacother. 2006;7(sup1):S1–S9.
  • Gold R, Linington C, Lassmann H. Understanding pathogenesis and therapy of multiple sclerosis via animal models: 70 years of merits and culprits in experimental autoimmune encephalomyelitis research. Brain. 2006;129(8):1953–1971.
  • Gran B, O’Brien K, Fitzgerald D, et al. Experimental autoimmune encephalomyelitis (EAE). In: Galoyan, A., and Besedovsky, H., editor. Handb Neurochem Mol Neurobiol. United States: Springer. 2007;356–377.
  • Gaillard PJ, Appeldoorn CCM, Rip J, et al. Enhanced brain delivery of liposomal methylprednisolone improved therapeutic efficacy in a model of neuroinflammation. J Control Release. 2012;164(3):364–369.
  • Floris S, Blezer ELA, Schreibelt G, et al. Blood–brain barrier permeability and monocyte infiltration in experimental allergic encephalomyelitis: a quantitative MRI study. Brain. 2004;127(3):616–627.
  • Reichardt HM, Gold R, Lühder F. Glucocorticoids in multiple sclerosis and experimental autoimmune encephalomyelitis. Expert Rev Neurother. 2006;6(11):1657–1670.
  • Bayas A. Improving adherence to injectable disease-modifying drugs in multiple sclerosis. Expert Opin Drug Deliv. 2013;10(3):285–287.
  • Dargahi N, Katsara M, Tselios T, et al. Multiple sclerosis: immunopathology and treatment update. Brain Sci. 2017;7(7):78.
  • Arnon R, Aharoni R. Neuroprotection and neurogeneration in MS and its animal model EAE effected by glatiramer acetate. J Neural Transm. 2009;116(11):1443–1449.
  • Schwartz M, Baruch K. Breaking peripheral immune tolerance to CNS antigens in neurodegenerative diseases: boosting autoimmunity to fight-off chronic neuroinflammation. J Autoimmun. 2014;54:8–14.
  • Nally FK, De Santi C, McCoy CE. Nanomodulation of macrophages in multiple sclerosis. Cells. 2019;8(6):543.
  • Teitelbaum D, Arnon R, Sela M. Immunomodulation of experimental autoimmune encephalomyelitis by oral administration of copolymer 1. Proc Natl Acad Sci. 1999;96(7):3842–3847.
  • Amedei A, Prisco D, D’elios MM. Multiple sclerosis: the role of cytokines in pathogenesis and in therapies. Int J Mol Sci. 2012;13(10):13438–13460.
  • Kayhan B, Aharoni R, Arnon R. Glatiramer acetate (Copaxone®) regulates nitric oxide and related cytokine secretion in experimental autoimmune encephalomyelitis. Immunol Lett. 2003;88(3):185–192.
  • Wesley S, Hafler DAMultiple Sclerosis. In: Rose , Noel R., and Mackay, Ian R., editors. Autoimmune Dis. United States: Elsevier; 2020. p. 961–986. DOI:https://doi.org/10.1016/B978-0-12-812102-3.00051-8.
  • Grigoriadis N, Van Pesch V. A basic overview of multiple sclerosis immunopathology. Eur J Neurol. 2015;22:3–13.
  • Turjeman K, Bavli Y, Kizelsztein P, et al. Nano-drugs based on nano sterically stabilized liposomes for the treatment of inflammatory neurodegenerative diseases. PLoS One. 2015;10(7):e0130442.
  • Nuzzo D, Picone P. Multiple sclerosis: focus on extracellular and artificial vesicles, nanoparticles as potential therapeutic approaches. Int J Mol Sci. 2021;22(16):8866.
  • Shishir MRI, Karim N, Gowd V, et al. Liposomal delivery of natural product: a promising approach in health research. Trends Food Sci Technol. 2019;85:177–200.
  • Bulbake U, Doppalapudi S, Kommineni N, et al. Liposomal formulations in clinical use: an updated review. Pharmaceutics. 2017;9(2):12.
  • Lai F, Fadda AM, Sinico C. Liposomes for brain delivery. Expert Opin Drug Deliv. 2013;10(7):1003–1022.
  • Pattni BS, Chupin VV, Torchilin VP. New developments in liposomal drug delivery. Chem Rev. 2015;115(19):10938–10966.
  • Kim J-S. Liposomal drug delivery system. J Pharm Investig. 2016;46(4):387–392.
  • Kumar P, Sharma G, Kumar R, et al. Enhanced brain delivery of dimethyl fumarate employing tocopherol-acetate-based nanolipidic carriers: evidence from pharmacokinetic, biodistribution, and cellular uptake studies. ACS Chem Neurosci. 2017;8(4):860–865.
  • Zhou Y, Peng Z, Es S, et al. Crossing the blood-brain barrier with nanoparticles. J Control Release. 2018;270:290–303.
  • Bellettato CM, Scarpa M. Possible strategies to cross the blood–brain barrier. Ital J Pediatr. 2018;44(2):127–133.
  • Wong KH, Riaz MK, Xie Y, et al. Review of current strategies for delivering Alzheimer’s disease drugs across the blood-brain barrier. Int J Mol Sci. 2019;20(2):381.
  • Grabrucker AM, Ruozi B, Belletti D, et al. Nanoparticle transport across the blood brain barrier. Tissue Barriers. 2016;4(1):e1153568.
  • Phelan AM, Lange DG. Ischemia/reperfusion-induced changes in membrane fluidity characteristics of brain capillary endothelial cells and its prevention by liposomal-incorporated superoxide dismutase. Biochim Biophys Acta (BBA)-Biomembranes. 1991;1067(1):97–102.
  • Salmaso S, Caliceti P. Stealth properties to improve therapeutic efficacy of drug nanocarriers. J Drug Deliv. 2013;2013:374252.
  • van Rooy I, Mastrobattista E, Storm G, et al. Comparison of five different targeting ligands to enhance accumulation of liposomes into the brain. J Control Release. 2011;150(1):30–36.
  • Lee HJ, Engelhardt B, Lesley J, et al. Targeting rat anti-mouse transferrin receptor monoclonal antibodies through blood-brain barrier in mouse. J Pharmacol Exp Ther. 2000;292(3):1048–1052.
  • Dos Santos Rodrigues B, Oue H, Banerjee A, et al. Dual functionalized liposome-mediated gene delivery across triple co-culture blood brain barrier model and specific in vivo neuronal transfection. J Control Release. 2018;286:264–278.
  • Ramsey JD, Flynn NH. Cell-penetrating peptides transport therapeutics into cells. Pharmacol Ther. 2015;154:78–86.
  • Hu W, Metselaar J, Ben L-H, et al. PEG minocycline-liposomes ameliorate CNS autoimmune disease. PLoS One. 2009;4(1):e4151.
  • Avnir Y, Turjeman K, Tulchinsky D, et al. Fabrication principles and their contribution to the superior in vivo therapeutic efficacy of nano-liposomes remote loaded with glucocorticoids. PLoS One. 2011;6:10.
  • Kizelsztein P, Ovadia H, Garbuzenko O, et al. Pegylated nanoliposomes remote-loaded with the antioxidant tempamine ameliorate experimental autoimmune encephalomyelitis. J Neuroimmunol. 2009;213(1–2):20–25.
  • Schiffelers RM, Banciu M, Metselaar JM, et al. Therapeutic application of long-circulating liposomal glucocorticoids in auto-immune diseases and cancer. J Liposome Res. 2006;16(3):185–194.
  • Lee D-H, Rötger C, Appeldoorn CCM, et al. Glutathione PEGylated liposomal methylprednisolone (2B3-201) attenuates CNS inflammation and degeneration in murine myelin oligodendrocyte glycoprotein induced experimental autoimmune encephalomyelitis. J Neuroimmunol. 2014;274(1–2):96–101.
  • Schmidt J, Metselaar JM, Wauben MHM, et al. Drug targeting by long-circulating liposomal glucocorticosteroids increases therapeutic efficacy in a model of multiple sclerosis. Brain. 2003;126(8):1895–1904.
  • Schmidt J, Metselaar JM, Gold R. Intravenous liposomal prednisolone downregulates in situ TNF-$α$ production by T-cells in experimental autoimmune encephalomyelitis. J Histochem Cytochem. 2003;51(9):1241–1244.
  • Schweingruber N, Haine A, Tiede K, et al. Liposomal encapsulation of glucocorticoids alters their mode of action in the treatment of experimental autoimmune encephalomyelitis. J Immunol. 2011;187(8):4310–4318.
  • Platt AM, Mowat AM. Mucosal macrophages and the regulation of immune responses in the intestine. Immunol Lett. 2008;119(1–2):22–31.
  • Crielaard BJ, Lammers T, Morgan ME, et al. Macrophages and liposomes in inflammatory disease: friends or foes? Int J Pharm. 2011;416(2):499–506.
  • Linker RA, Weller C, Lühder F, et al. Liposomal glucocorticosteroids in treatment of chronic autoimmune demyelination: long-term protective effects and enhanced efficacy of methylprednisolone formulations. Exp Neurol. 2008;211(2):397–406.
  • Xu Y, He Z, Li Z, et al. Irgm1 is required for the inflammatory function of M1 macrophage in early experimental autoimmune encephalomyelitis. J Leukoc Biol. 2017;101(2):507–517.
  • Wüst S, van Den Brandt J, Tischner D, et al. Peripheral T cells are the therapeutic targets of glucocorticoids in experimental autoimmune encephalomyelitis. J Immunol. 2008;180(12):8434–8443.
  • Citterio A, La Mantia L, Ciucci G, et al. Corticosteroids or ACTH for acute exacerbations in multiple sclerosis. Cochrane Database Syst Rev. 2000;4:CD001331. doi:https://doi.org/10.1002/14651858.CD001331
  • Jebali A, Karimabad MN, Ahmadi Z, et al. Attenuation of inflammatory response in the EAE model by PEGlated nanoliposome of pistachio oils. J Neuroimmunol. 2020;347:577352.
  • Olusanya TOB, Haj Ahmad RR, Ibegbu DM, et al. Liposomal drug delivery systems and anticancer drugs. Molecules. 2018;23(4):907.
  • Chenthamara D, Subramaniam S, Ramakrishnan SG, et al. Therapeutic efficacy of nanoparticles and routes of administration. Biomater Res. 2019;23(1):1–29.
  • Kanhai KMS, Zuiker R, Stavrakaki I, et al. Glutathione-PEGylated liposomal methylprednisolone in comparison to free methylprednisolone: slow release characteristics and prolonged lymphocyte depression in a first-in-human study. Br J Clin Pharmacol. 2018;84(5):1020–1028.
  • Chen W, Li H, Jia Y, et al. In vivo administration of plasmid DNA encoding recombinant immunotoxin DT390-IP-10 attenuates experimental autoimmune encephalomyelitis. J Autoimmun. 2007;28(1):30–40.
  • Cavaletti G, Cassetti A, Canta A, et al. Cationic liposomes target sites of acute neuroinflammation in experimental autoimmune encephalomyelitis. Mol Pharm. 2009;6(5):1363–1370.
  • Croxford JL, Triantaphyllopoulos K, Podhajcer OL, et al. Cytokine gene therapy in experimental allergic encephalomyelitis by injection of plasmid DNA-cationic liposome complex into the central nervous system. J Immunol. 1998;160(10):5181–5187.
  • Triantaphyllopoulos KA, Croxford JL, Baker D, et al. Cloning and expression of murine IFN$β$ and a TNF antagonist for gene therapy of experimental allergic encephalomyelitis. Gene Ther. 1998;5(2):253–263.
  • Jia J, Li H, Tai S, et al. Construction and preliminary investigation of a plasmid containing a novel immunotoxin DT390-IL-18 gene for the prevention of murine experimental autoimmune encephalomyelitis. DNA Cell Biol. 2008;27(5):279–285.
  • Jia Y, Li H, Chen W-J, et al. Primary study of the recombinant immunotoxin DT390-mRantes in EAE therapy. Xi bao yu fen zi mian yi xue za zhi= Chinese J Cell Mol Immu. 2007;23(3):236–239.
  • Lü ML, Li H, Liang WB, et al. Therapeutic effect of a new recombinant immunotoxin mMIP-1alpha-DT390 on experimental autoimmune encephalomyelitis. Nan fang yi ke da xue xue bao= J South Med Univ. 2007;27(6):775–778.
  • Filion MC, Phillips NC. Major limitations in the use of cationic liposomes for DNA delivery. Int J Pharm. 1998;162(1–2):159–170.
  • Litzinger DC. Limitations of cationic liposomes for antisense oligonucleotide delivery in vivo. J Liposome Res. 1997;7(1):51–61.
  • Liu C, Zhang L, Zhu W, et al. Barriers and strategies of cationic liposomes for cancer gene therapy. Mol Ther Clin Dev. 2020;18:751–764.
  • Strejan GH, Gilbert JJ, Louis JS. Effect of treatment with glutaraldehyde-fixed myelin basic protein—liposomes on active induction and passive transfer of experimental allergic encephalomyelitis in Lewis rats. Cell Immunol. 1988;116(1):250–256.
  • Louis JS, Chan EL, Singh B, et al. Suppression of experimental allergic encephalomyelitis in the Lewis rat, by administration of an acylated synthetic peptide of myelin basic protein. J Neuroimmunol. 1997;73(1–2):90–100.
  • Louis JS, Gilbert JJ, Moscarello MA, et al. Chronic-relapsing experimental allergic encephalomyelitis in strain-13 Guinea pigs: cell-mediated immunity and IgG isoelectric focusing in myelin basic protein-liposome-treated and untreated animals. J Neuroimmunol. 1989;21(2–3):137–147.
  • Avrilionis K, Boggs JM. Suppression of experimental allergic encephalomyelitis by the encephalitogenic peptide, in solution or bound to liposomes. J Neuroimmunol. 1991;35(1–3):201–210.
  • Stein CS, Louis JS, Strejan GH. Myelin-liposome protection against experimental autoimmune encephalomyelitis is associated with reduced neuroantigen-specific T-cell-mediated responses. Cell Immunol. 1993;146(1):80–95.
  • Stein CS, Louis JS, Gilbert JJ, et al. Treatment of spinal cord-induced experimental allergic encephalomyelitis in the Lewis rat with liposomes presenting central nervous system antigens. J Neuroimmunol. 1990;28(2):119–130.
  • Boggs JM, Goundalkar A, Doganoglu F, et al. Antigen-targeted liposome-encapsulated methotrexate specifically kills lymphocytes sensitized to the nonapeptide of myelin basic protein. J Neuroimmunol. 1987;17(1):35–48.
  • Belogurov JAA, Zargarova TA, Turobov VI, et al. Suppression of ongoing experimental allergic encephalomyelitis in DA rats by novel peptide drug, structural part of human myelin basic protein 46–62: brief definite report. Autoimmunity. 2009;42(4):362–364.
  • Willenborg DO, Higgins TJ. Liposomes containing myelin basic protein (BP) suppress but do not induce allergic encephalomyelitis in Lewis rats. Aust J Exp Biol Med Sci. 1981;59(2):135–141.
  • Boggs JM. Myelin basic protein: a multifunctional protein. Cell Mol Life Sci C. 2006;63(17):1945–1961.
  • Peschl P, Bradl M, Höftberger R, et al. Myelin oligodendrocyte glycoprotein: deciphering a target in inflammatory demyelinating diseases. Front Immunol. 2017;8:529.
  • Johns TG, Bernard CCA. The structure and function of myelin oligodendrocyte glycoprotein. J Neurochem. 1999;72(1):1–9.
  • Belogurov AA Jr, Stepanov AV, Smirnov IV, et al. Liposome-encapsulated peptides protect against experimental allergic encephalitis. FASEB J. 2013;27(1):222–231.
  • Stepanov AV, Belogurov AA, Mamedov AE, et al. Therapeutic effect of mbp immunodominant peptides encapsulated in nanovehicles in the development of experimental autoimmune encephalomyelitis in DA rats. Russ J Bioorganic Chem. 2012;38(3):266–273.
  • Jones LA, Chin LT, Kruisbeek AM. Acquisition of self-tolerance in T cells is achieved by different mechanisms, operating both inside and outside the thymus. Thymus. 1990;16(3–4):195–206.
  • Strejan GH, Gilbert JJ, Louis JS. Suppression of chronic-relapsing experimental allergic encephalomyelitis in strain-13 Guinea pigs by administration of liposome-associated myelin basic protein. J Neuroimmunol. 1984;7:27–41.
  • Kenison JE, Jhaveri A, Li Z, et al. Tolerogenic nanoparticles suppress central nervous system inflammation. Proc Natl Acad Sci. 2020;117(50):32017–32028.
  • Shimizu K, Agata K, Takasugi S, et al. New strategy for MS treatment with autoantigen-modified liposomes and their therapeutic effect. J Control Release. 2021;335:389–397.
  • Fadok VA, Bratton DL, Rose DM, et al. A receptor for phosphatidylserine-specific clearance of apoptotic cells. Nature. 2000;405(6782):85–90.
  • Hoffmann PR, Kench JA, Vondracek A, et al. Interaction between phosphatidylserine and the phosphatidylserine receptor inhibits immune responses in vivo. J Immunol. 2005;174(3):1393–1404.
  • Bogie JFJ, Jorissen W, Mailleux J, et al. Myelin alters the inflammatory phenotype of macrophages by activating PPARs. Acta Neuropathol Commun. 2013;1(1):43.
  • Strejan GH, Louis JS. Suppression of experimental allergic encephalomyelitis by MBP-coupled lymphoid cells and by MBP-liposomes: a comparison. Cell Immunol. 1990;127(2):284–298.
  • Rodriguez-Fernandez S, Pujol-Autonell I, Brianso F, et al. Phosphatidylserine-liposomes promote tolerogenic features on dendritic cells in human type 1 diabetes by apoptotic mimicry. Front Immunol. 2018;9:253.
  • Ramakrishnan R, Balu-Iyer SV. Effect of biophysical properties of phosphatidylserine particle on immune tolerance induction toward factor VIII in a hemophilia A mouse model. J Pharm Sci. 2016;105(10):3039–3045.
  • Pujol-Autonell I, Mansilla M-J, Rodriguez-Fernandez S, et al. Liposome-based immunotherapy against autoimmune diseases: therapeutic effect on multiple sclerosis. Nanomedicine. 2017;12(11):1231–1242.
  • Strejan GH, Percy DH, Louis JS. Suppression of experimental allergic encephalomyelitis in lewis rats treated with myelin basic protein-liposome complexes: clinical, histopathological, and cell-mediated immunity correlates. Cell Immunol. 1984;84(1):171–184.
  • Lutterotti A, Hayward-Koennecke H, Sospedra M, et al. Antigen-specific immune tolerance in multiple sclerosis—promising approaches and how to bring them to patients. Front Immunol. 2021;12:763.
  • Zhang Q, Dai X, Zhang H, et al. Recent advances in development of nanomedicines for multiple sclerosis diagnosis. Biomed Mater. 2021;16(2): 024101 .
  • Lomakin Y, Belogurov A, Glagoleva I, et al. Administration of myelin basic protein peptides encapsulated in mannosylated liposomes normalizes level of serum TNF-$\alpha{$}and IL-2 and chemoattractants ccl2 and ccl4 in multiple sclerosis patients. Mediators Inflamm. 2016;2016(4): 1–8. doi:https://doi.org/10.1155/2016/2847232.
  • Ivanova VV, Khaiboullina SF, Gomzikova MO, et al. Divergent immunomodulation capacity of individual Myelin Peptides—components of liposomal Therapeutic against Multiple sclerosis. Front Immunol. 2017;8:1335.
  • Belogurov A, Zakharov K, Lomakin Y, et al. CD206-targeted liposomal myelin basic protein peptides in patients with multiple sclerosis resistant to first-line disease-modifying therapies: a first-in-human, proof-of-concept dose-escalation study. Neurotherapeutics. 2016;13(4):895–904.
  • Van Rooijen N. Liposomes for targeting of antigens and drugs: immunoadjuvant activity and liposome-mediated depletion of macrophages. J Drug Target. 2008;16(7–8):529–534.
  • Huitinga I, Van Rooijen N, De Groot CJ, et al. Suppression of experimental allergic encephalomyelitis in Lewis rats after elimination of macrophages. J Exp Med. 1990;172(4):1025–1033.
  • Van Rooijen NT. The liposome-mediated macrophage ‘suicide’technique. J Immunol Methods. 1989;124(1):1–6.
  • Huitinga I, Ruuls SR, Jung S, et al. Macrophages in T cell line-mediated, demyelinating, and chronic relapsing experimental autoimmune encephalomyelitis in Lewis rats. Clin Exp Immunol. 1995;100(2):344–351.
  • Tran EH, Hoekstra K, van Rooijen N, et al. Immune invasion of the central nervous system parenchyma and experimental allergic encephalomyelitis, but not leukocyte extravasation from blood, are prevented in macrophage-depleted mice. J Immunol. 1998;161(7):3767–3775.
  • Wang L, Li Z, Ciric B, et al. Selective depletion of CD11c+ CD11b+ dendritic cells partially abrogates tolerogenic effects of intravenous MOG in murine EAE. Eur J Immunol. 2016;46(10):2454–2466.
  • Schiedner G, Hertel S, Johnston M, et al. Selective depletion or blockade of Kupffer cells leads to enhanced and prolonged hepatic transgene expression using high-capacity adenoviral vectors. Mol Ther. 2003;7(1):35–43.
  • Alzuguren P, Hervas-Stubbs S, Gonzalez-Aseguinolaza G, et al. Transient depletion of specific immune cell populations to improve adenovirus-mediated transgene expression in the liver. Liver Int. 2015;35(4):1274–1289.
  • Vanderkerken K, Bouwens L, Van Rooijen N, et al. The role of kupffer cells in the differentiation process of hepatic natural killer cells. Hepatology. 1995;22(1):283–290.
  • Soderquest K, Powell N, Luci C, et al. Monocytes control natural killer cell differentiation to effector phenotypes. Blood J Am Soc Hematol. 2011;117(17):4511–4518.
  • Allen TM, Cullis PR. Drug delivery systems: entering the mainstream. Science (80-). 2004;303(5665):1818–1822.
  • Zhang L, Gu FX, Chan JM, et al. Nanoparticles in medicine: therapeutic applications and developments. Clin Pharmacol Ther. 2008;83(5):761–769.
  • Sawant RR, Torchilin VP. Challenges in development of targeted liposomal therapeutics. AAPS J. 2012;14(2):303–315.
  • Hua S, De Matos MBC, Metselaar JM, et al. Current trends and challenges in the clinical translation of nanoparticulate nanomedicines: pathways for translational development and commercialization. Front Pharmacol. 2018;9:790.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.