500
Views
7
CrossRef citations to date
0
Altmetric
Review

Topical drug delivery to the retina: obstacles and routes to success

Pages 9-21 | Received 06 Aug 2021, Accepted 09 Dec 2021, Published online: 31 Dec 2021

References

  • Bourne R, Steinmetz JD, Flaxman S. Trends in prevalence of blindness and distance and near vision impairment over 30 years: an analysis for the global burden of disease study. Lancet Glob Health. 2021;9(2):e130–e143.
  • Steinmetz JD, Bourne RRA, Briant PS. Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020: the right to sight: an analysis for the global burden of disease study. Lancet Glob Health. 2021;9(2):e144–e160.
  • Edelhauser HF, Rowe-Rendleman CL, Robinson MR, et al. Ophthalmic drug delivery systems for the treatment of retinal diseases: basic research to clinical applications. Invest Ophthalmol Vis Sci. 2010;51(11):5403–5420.
  • Ranta VP, Mannermaa E, Lummepuro K, et al. Barrier analysis of periocular drug delivery to the posterior segment. J Control Release. 2010;148(1):42–48.
  • Ramsay E, Del Amo EM, Toropainen E, et al. Corneal and conjunctival drug permeability: systematic comparison and pharmacokinetic impact in the eye. Eur J Pharm Sci. 2018;119:83–89.
  • Toropainen E, Del AEM, Vellonen K-S, et al. Biopharmaceutics of topical ophthalmic suspensions: importance of viscosity and particle size in ocular absorption of indomethacin. Pharmaceutics. 2021;13(4):452.
  • Fayyaz A, Vellonen K-S, Ranta V-P, et al. Ocular pharmacokinetics of atenolol, timolol and betaxolol cocktail: tissue exposures in the rabbit eye. Eur J Pharm Biopharm. 2021;166:155–162.
  • Chaudhari P, Ghate VM, Lewis SA. Supramolecular cyclodextrin complex: diversity, safety, and applications in ocular therapeutics. Exp Eye Res. 2019;189:107829.
  • Li Q, Weng J, Wong SN, et al. Nanoparticulate drug delivery to the retina. Mol Pharm. 2021;18(2):506–521.
  • Nayak K, Misra M. A review on recent drug delivery systems for posterior segment of eye. Biomed Pharmacother. 2018;107:1564–1582.
  • Rodrigues GA, Lutz D, Shen J, et al. Topical drug delivery to the posterior segment of the eye: addressing the challenge of preclinical to clinical translation. Pharm Res. 2018;35(12):245.
  • Wang L, Zhou MB, Zhang H, et al. The emerging role of topical ocular drugs to target the posterior eye. Ophthalmol Ther. 2021;10(3):465–494 .
  • Tadayoni R. The quest for topical treatments for the posterior segment in DMO. Ophthalmol Times Europe. 2021;17(4):10–12. .
  • Campochiaro PA, Shah SM, Hafiz G, et al. Topical mecamylamine for diabetic macular edema. Am J Ophthalmol. 2010;149(5):839–851, e839/1.
  • Friedman SM, Almukhtar TH, Baker CW, et al. Topical nepafenec in eyes with noncentral diabetic macular edema. Retina. 2015;35(5):944–956.
  • Zarling JA, Brunt VE, Vallerga AK, et al. Nitroxide pharmaceutical development for age-related degeneration and disease. Front Genet. 2015;6:325/1–325/9.
  • Cabral DGTA, Daich VM, Georgiou M, et al. Treatments for dry age-related macular degeneration: therapeutic avenues, clinical trials and future directions. Br J Ophthalmol. 2021. DOI:https://doi.org/10.1136/bjophthalmol-2020-318452
  • Lorenz K, Scheller Y, Bell K, et al. A prospective, randomised, placebo-controlled, double-masked, three-armed, multicentre phase II/III trial for the study of a topical treatment of Ischaemic central retinal vein occlusion to prevent neovascular glaucoma – the STRONG study: study protocol for a randomised controlled trial. Trials. 2017;18(1):128.
  • Cloutier F, Lawrence M, Goody R, et al. Antiangiogenic activity of Aganirsen in nonhuman primate and rodent models of retinal neovascular disease after topical administration. Invest Ophthalmol Vis Sci. 2012;53(3):1195–1203.
  • Kaur S, Yangzes S, Singh S, et al. Efficacy and safety of topical difluprednate in persistent diabetic macular edema. Int Ophthalmol. 2016;36(3):335–340.
  • Nakano S, Yamamoto T, Kirii E, et al. Steroid eye drop treatment (difluprednate ophthalmic emulsion) is effective in reducing refractory diabetic macular edema. Graefes Arc Clin Exp Ophthalmol. 2010;248(6):805–810.
  • Goto SN, Yamamoto T, Kirii E, et al. Treatment of diffuse diabetic macular oedema using steroid eye drops. Acta Ophthalmol. 2012;90(7):628–632.
  • Ohira A, Hara K, Johannesson G, et al. Topical dexamethasone -cyclodextrin nanoparticle eye drops increase visual acuity and decrease macular thickness in diabetic macular oedema. Acta Ophthalmol. 2015;93(7):610–615.
  • Tanito M, Hara K, Takai Y, et al. Topical dexamethasone-cyclodextrin microparticle eye drops for diabetic macular edema. Invest Ophthalmol Vis Sci. 2011;52(11):7944–7948.
  • Loftsson T, Stefansson E. Aqueous eye drops containing drug/cyclodextrin nanoparticles deliver therapeutic drug concentrations to both anterior and posterior segment. Acta Ophthalmol. 2021;80(2):144–150.
  • Gholizadeh S, Wang Z, Chen X, et al. Advanced nanodelivery platforms for topical ophthalmic drug delivery. Drug Discov Today. 2021;26(6):1437–1449.
  • Sripetch S, Loftsson T. Topical drug delivery to the posterior segment of the eye: thermodynamic considerations. Int J Pharm. 2021;597:120332.
  • Lanier OL, Manfre MG, Bailey C, et al. Review of approaches for increasing ophthalmic bioavailability for eye drop formulations. Aaps Pharmscitech. 2021;22(3).
  • Cabrera FJ, Wang DC, Reddy K, et al. Challenges and opportunities for drug delivery to the posterior of the eye. Drug Discov Today. 2019;24(8):1679–1684.
  • Kesav NP, Young CEC, Ertel MK, et al. Sustained-release drug delivery systems for the treatment of glaucoma. Int J Ophthalmol. 2021;14(1):148–159.
  • de Oliveira IF, Barbosa EJ, Peters MCC, et al. Cutting-edge advances in therapy for the posterior segment of the eye: solid lipid nanoparticles and nanostructured lipid carriers. Int. J. Pharm. (Amsterdam, Netharlands). 2020;589:119831.
  • Kim YC, Shin MD, Hackett SF, et al. Gelling hypotonic polymer solution for extended topical drug delivery to the eye. Nat Biomed Eng. 2020;4(11):1053–1062.
  • Khiev D, Mohamed ZA, Vichare R, et al. Emerging nano-formulations and nanomedicines applications for ocular drug delivery. Nanomaterials. 2021;11(1):173.
  • Varela-Fernandez R, Diaz-Tome V, Luaces-Rodriguez A, et al. Drug delivery to the posterior segment of the eye: biopharmaceutic and pharmacokinetic considerations. Pharmaceutics. 2020;12(3):269.
  • Rahic O, Tucak A, Omerovic N, et al. Novel drug delivery systems fighting glaucoma: formulation obstacles and solutions. Pharmaceutics. 2021;13(1). DOI:https://doi.org/10.3390/pharmaceutics13070924
  • Thareja A, Hughes H, Alvarez-Lorenzo C, et al. Penetration enhancers for topical drug delivery to the ocular posterior segment-A systematic review. Pharmaceutics. 2021;13(2):276.
  • Pandey M, Choudhury H, Abd Aziz AB, et al. Potential of stimuli-responsive in situ gel system for sustained ocular drug delivery: recent progress and contemporary research. Polymers (Basel, Switzerland). 2021;13(8):1340.
  • Wroblewska KB, Jadach B, Muszalska-Kolos I. Progress in drug formulation design and delivery of medicinal substances used in ophthalmology. Int. J. Pharm. (Amsterdam, Netharlands). 2021;607:121012.
  • Mofidfar M, Abdi B, Ahadian S, et al. Drug delivery to the anterior segment of the eye: a review of current and future treatment strategies. Int J Pharm. 2021;607:121012.
  • Zhou W, Stojanovic A, Bhattacharya S. Comparison of corneal epithelial and stromal thickness distributions between eyes with keratoconus and healthy eyes with corneal astigmatism ≥2.0 D. PLOS One. 2014;9(1):e85994.
  • Beuerman RW, Pedroza L. Ultrastructure of the human cornea. Microsc Res Tech. 1996;33(4):320–335.
  • Rabinovich-Guilatt L, Couvreur P, Lambert G, et al. Cationic vectors in ocular drug delivery. J Drug Target. 2004;12(9–10):623–633.
  • Prausnitz MR, Noonan JS. Permeability of cornea, sclera, and conjunctiva: a literature analysis for drug delivery to the eye. J Pharm Sci. 1998;87(12):1479–1488.
  • Schoenwald RD, Ward RL. Relationship between steroid permeability across excised rabbit cornea and octanol-water partition coefficients. J Pharm Sci. 1978;67(6):786–788.
  • Schoenwald RD, Huang HS. Corneal penetration behavior of β-blocking agents I: physicochemical factors. J Pharm Sci. 1983;72(11):1266–1272.
  • Shirasaki Y. Molecular design for enhancement of ocular penetration. J Pharm Sci. 2008;97(7):2462–2496.
  • Nichols BA. Conjunctiva. Microsc Res Tech. 1996;33(4):296–319.
  • Ramsay E, Ruponen M, Picardat T, et al. Impact of chemical structure on conjunctival drug permeability: adopting porcine conjunctiva and cassette dosing for construction of in silico model. J Pharm Sci. 2017;106(9):2463–2471.
  • Balla A, Auriola S, Vellonen K-S, et al. Partitioning and spatial distribution of drugs in ocular surface tissues. Pharmaceutics. 2021;13(5):658.
  • Hämäläinen KM, Kontturi K, Auriola S, et al. Estimation of pore size and pore density of biomembranes from permeability measurements of polyethylene glycols using an effusion-like approach. J Control Release. 1997;49(2–3):97–104.
  • Hämäläinen KM, Kananen K, Auriola S, et al. Characterization of paracellular and aqueous penetration routes in cornea, conjunctiva, and sclera. Invest Ophthalmol Vis Sci. 1997;38(3):627–634.
  • Vellonen K-S, Hellinen L, Mannermaa E, et al. Expression, activity and pharmacokinetic impact of ocular transporters. Adv Drug Deliv Rev. 2018;126:3–22.
  • Willcox MDP, Argueso P, Georgiev GA, et al. TFOS DEWS II tear film report. Ocul Surf. 2017;15(3):366–403.
  • Ruponen M, Urtti A. Undefined role of mucus as a barrier in ocular drug delivery. Eur J Pharm Biopharm. 2015;96:442–446.
  • Loftsson T, Sigurdsson HH, Hreinsdóttir D, et al. Dexamethasone delivery to posterior segment of the eye. J Incl Phenom Macroc Chem. 2007;57:585–589.
  • Ramsay E, Hagstrom M, Vellonen KS, et al. Role of retinal pigment epithelium permeability in drug transfer between posterior eye segment and systemic blood circulation. Eur J Pharm Biopharm. 2019;143:18–23.
  • Balachandran RK, Barocas VH. Computer modeling of drug delivery to the posterior eye: effect of active transport and loss to choroidal blood flow. Pharm Res. 2008;25(11):2685–2696.
  • Gaudana R, Ananthula HK, Parenky A, et al. Ocular drug delivery. AAPS J. 2010;12(3):348–360.
  • Loftsson T. Essential pharmacokinetics: a primer for pharmaceutical scientists. Amsterdam, The Netherlands: Elsevier Science; 2015. p. 178.
  • Himawan E, Ekstrom P, Buzgo M, et al. Drug delivery to retinal photoreceptors. Drug Discov Today. 2019;24(8):1637–1643.
  • Behar-Cohen F, Gelize E, Jonet L, et al. Anatomie de la rétine. Med Sci (Paris). 2020;36(6–7):594–599.
  • Campbell JP, Zhang M, Hwang TS, et al. Detailed vascular anatomy of the human retina by projection-resolved optical coherence tomography angiography. Sci Rep. 2017;7:42201.
  • Agrahari V, Mandal A, Agrahari V, et al. A comprehensive insight on ocular pharmacokinetics. Drug Delivery Transl Res. 2016;6(6):735–754.
  • Yellepeddi VK, Palakurthi S. Recent advances in topical ocular drug delivery. J Ocul Pharmacol Ther. 2016;32(2):67–82.
  • Goel M, Picciani RG, Lee RK, et al. Aqueous humor dynamics: a review. Open Ophthalmol J. 2010;4:52–59.
  • Friedrich S, Cheng Y-L, Saville B. Drug distribution in the vitreous humor of the human eye: the effects of intravitreal injection position and volume. Curr Eye Res. 1997;16(7):663–669.
  • Ashton P. Retinal drug delivery. In: Jaffe GJ, Ashton P, Pearson PA, editors. Intraocular drug delivery. New york (NY): Taylor & Francis; 2006. p. 1–25.
  • Amidon GL, Lennernas H, Shah VP, et al. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro and in vivo bioavailability. Pharm Res. 1995;12(3):413–420.
  • Shah VP, Amidon GL, Amidon GL, et al. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability, Pharm Res 12, 413-420, 1995-backstory of BCS. AAPS J. 2014;16(5):894–898.
  • Butler JM, Dressman JB. The developability classification system: application of biopharmaceutics concepts to formulation development. J Pharm Sci. 2010;99(12):4940–4954.
  • Bocci G, Benet LZ, Oprea TI. Can BDDCS illuminate targets in drug design? Drug Discov Today. 2019;24(12):2299–2306.
  • Wu CY, Benet LZ. Predicting drug disposition via application of BCS: transport/absorption/elimination interplay and development of a biopharmaceutics drug disposition classification system. Pharm Res. 2005;22(1):11–23.
  • Lipinski CA, Lombardo F, Dominy BW, et al. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2001;46(1–3):3–26.
  • Choy Y-B, Prausnitz MR. The rule of five for non-oral routes of drug delivery: ophthalmic, inhalation and transdermal. Pharm Res. 2011;28(5):943–948.
  • Jakubiak P, Reutlinger M, Mattei P, et al. Understanding molecular drivers of melanin binding to support rational design of small molecule ophthalmic drugs. J Med Chem. 2018;61(22):10106–10115.
  • Lee VHL, Li VHK. Prodrugs for improved ocular drug delivery. Adv Drug Deliv Rev. 1989;3(1):1–38.
  • Jarvinen T, Jarvinen K. Prodrugs for improved ocular drug delivery. Adv Drug Deliv Rev. 1996;19(2):203–224.
  • Ahmed I, Patton TF. Disposition of timolol and inulin in the rabbit eye following corneal versus non-corneal absorption. Int J Pharm. 1987;38(1–3):9–21.
  • Worakul N, Robinson JR. Ocular pharmacokinetics/pharmacodynamics. Eur J Pharm Biopharm. 1997;44(1):71–83.
  • Gadek T, Lee D. Topical drug delivery to the back of the eye. In: Kompella UB, Edelhauser HF, editors. Drug product development for the back of the eye. Boston: Springer US; 2011. p. 111–124.
  • Gu Y, Xu C, Wang Y, et al. Multifunctional nanocomposites based on liposomes and layered double hydroxides conjugated with glycylsarcosine for efficient topical drug delivery to the posterior segment of the eye. Mol Pharm. 2019;16(7):2845–2857.
  • Del Amo EM, Rimpela A-K, Heikkinen E, et al. Pharmacokinetic aspects of retinal drug delivery. Prog Retinal Eye Res. 2017;57:134–185.
  • Sigford DK, Reddy S, Schaal S, et al. Global reported endophthalmitis risk following intravitreal injections of anti-VEGF: a literature review and analysis. Clin Ophthalmol. 2015;9:773–781.
  • Dafer RM, Schneck M, Friberg TR, et al. Intravitreal ranibizumab and bevacizumab: a review of risk. Semin Ophthalmol. 2007;22(3):201–204.
  • Moffatt K, Wang YJ, Singh TRR, et al. Microneedles for enhanced transdermal and intraocular drug delivery. Curr Opin Pharmacol. 2017;36:14–21.
  • Panda A, Matadh VA, Suresh S, et al. Non-dermal applications of microneedle drug delivery systems. Drug Delivery Transl Res. 2021; Ahead of Print.
  • Thakur Singh RR, Tekko I, McAvoy K, et al. Minimally invasive microneedles for ocular drug delivery. Expert Opin Drug Delivery. 2017;14(4):525–537.
  • Hancock SE, Wan C-R, Fisher NE, et al. Biomechanics of suprachoroidal drug delivery: from benchtop to clinical investigation in ocular therapies. Expert Opin Drug Delivery. 2021; Ahead of Print.
  • Yiu G, Chung SH, Mollhoff IN, et al. Suprachoroidal and subretinal injections of AAV using transscleral microneedles for retinal gene delivery in nonhuman primates. Mol Ther Methods Clin Dev. 2020;16:179–191.
  • Elnahry AG, Abdel-Kader AA, Habib AE, et al. Review on recent trials evaluating the effect of intravitreal injections of anti-VEGF agents on the macular perfusion of diabetic patients with diabetic macular edema. Rev Recent Clin Trials. 2020;15(3):188–198.
  • Nobre-Cardoso J, Champion E, Darugar A, et al. Treatment of non-infectious uveitic macular edema with the intravitreal dexamethasone implant. Ocul Immunol Inflammation. 2017;25(4):447–454.
  • Lee A, Shirley M. Ranibizumab: a review in retinopathy of prematurity. Paediatr Drugs. 2021;23(1):111–117.
  • Dutra MM, Alkabes M, Nucci P. Effectiveness of the dexamethasone intravitreal implant for treatment of patients with diabetic macular oedema. Eur Endocrinol. 2014;10(2):111–116.
  • Massa H, Georgoudis P, Panos GD. Dexamethasone intravitreal implant (OZURDEX(®)) for macular edema secondary to noninfectious uveitis: a review of the literature. Ther Deliv. 2019;10(6):343–351.
  • Hoy SM. Aflibercept: a review in macular oedema secondary to branch retinal vein occlusion. Drugs Aging. 2017;34(5):393–400.
  • Chauhan S, Jain N, Nagaich U. Nanodiamonds with powerful ability for drug delivery and biomedical applications: recent updates on in vivo study and patents. J Pharm Anal. 2020;10(1):1–12.
  • Yang T-C, Chang C-Y, Yarmishyn AA, et al. Carboxylated nanodiamond-mediated CRISPR-Cas9 delivery of human retinoschisis mutation into human iPSCs and mouse retina. Acta Biomater. 2020;101:484–494.
  • Demetzos C. Dendrimers as drug carriers. A new approach to increase the potential of bioactive natural products. Nat Prod Commun. 2006;1(7):593–600.
  • Soiberman U, Kambhampati SP, Wu T, et al. Subconjunctival injectable dendrimer-dexamethasone gel for the treatment of corneal inflammation. Biomaterials. 2017;125:38–53.
  • Dubald M, Bourgeois S, Andrieu V, et al. Ophthalmic drug delivery systems for antibiotherapy-A review. Pharmaceutics. 2018;10(1):10.
  • Ding SL. Recent developments in ophthalmic drug delivery. Pharm Sci Technol Today. 1998;1(8):328–335.
  • Steven P, Scherer D, Krosser S, et al. Semifluorinated alkane eye drops for treatment of dry eye disease-A prospective, multicenter noninterventional study. J Ocul Pharmacol Ther. 2015;31(8):498–503.
  • Agarwal P, Scherer D, Gunther B, et al. Semifluorinated alkane based systems for enhanced corneal penetration of poorly soluble drugs. Int J Pharm. 2018;538(1–2):119–129.
  • Sheppard J, Garg S, Lievens C, et al. Iontophoretic dexamethasone phosphate compared to topical prednisolone acetate 1% for noninfectious anterior segment uveitis. Am J Ophthalmol. 2020;211:76–86.
  • Gratieri T, Santer V, Kalia YN. Basic principles and current status of transcorneal and transscleral iontophoresis. Expert Opin Drug Delivery. 2017;14(9):1091–1102.
  • Perez VL, Wirostko B, Korenfeld M, et al. Ophthalmic drug delivery using iontophoresis: recent clinical applications. J Ocul Pharmacol Ther. 2020;36(2):75–87.
  • Shah HR, Reichel E, Busbee BG. A novel lidocaine hydrochloride ophthalmic gel for topical ocular anesthesia. Local Reg Anesth. 2010;3:57–63.
  • Kaufman HE, Haw WH. Ganciclovir ophthalmic gel 0.15%: safety and efficacy of a new treatment for herpes simplex keratitis. Curr Eye Res. 2012;37(7):654–660.
  • Hosseini K, Walters T, DaVanzo R, et al. A randomized double-masked study to compare the ocular safety, tolerability, and efficacy of bromfenac 0.075% compared with vehicle in cataract surgery subjects. Clin Ophthalmol. 2016;10:2311–2317.
  • Gui L, Zhang X-H, Qiao Z-Y, et al. Cell-penetrating peptides and polymers for improved drug delivery. ChemNanoMat. 2020;6(8):1138–1148.
  • de Cogan F, Hill LJ, Lynch A, et al. Topical delivery of anti-VEGF drugs to the ocular posterior segment using cell-penetrating peptides. Invest Ophthalmol Visual Sci. 2017;58(5):2578–2590.
  • Siccardi M, Martin P, Smith D, et al. Towards a rational design of solid drug nanoparticles with optimized pharmacological properties. J Interdiscip Nanomed. 2016;1(3):110–123.
  • Schopf LR, Popov AM, Enlow EM, et al. Topical ocular drug delivery to the back of the eye by mucus-penetrating particles. Trans Vision Sci Technol. 2015;4(3):11.
  • Zielinska A, Carreiro F, Oliveira AM, et al. Polymeric nanoparticles: production, characterization, toxicology and ecotoxicology. Molecules. 2020;25(16):3731.
  • Patra JK, Das G, Fraceto LF, et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol. 2018;16:71/1–71/33.
  • Fresta M, Fontana G, Bucolo C, et al. Ocular tolerability and in vivo bioavailability of poly(ethylene glycol) (PEG)-coated poly(ethyl 2-cyanoacrylate) nanosphere-encapsulated Acyclovir. J Pharm Sci. 2001;90(3):288–297.
  • Sanchez-Lopez E, Egea MA, Cano A, et al. PEGylated PLGA nanospheres optimized by design of experiments for ocular administration of dexibuprofen-in vitro, ex vivo and in vivo characterization. Colloids Surf B Biointerfaces. 2016;145:241–250.
  • Sanchez-Lopez E, Esteruelas G, Ortiz A, et al. Dexibuprofen biodegradable nanoparticles: one step closer towards a better ocular interaction study. Nanomaterials. 2020;10(4):720.
  • Cheng T, Li J, Cheng Y, et al. Triamcinolone acetonide-chitosan coated liposomes efficiently treated retinal edema as eye drops. Exp Eye Res. 2019;188:107805.
  • Davis BM, Normando EM, Guo L, et al. Topical delivery of avastin to the posterior segment of the eye in vivo using Annexin A5-associated liposomes. Small. 2014;10(8):1575–1584.
  • Navarro-Partida J, Altamirano-Vallejo JC, Gonzalez-de La Rosa A, et al. Safety and tolerability of topical ophthalmic triamcinolone acetonide-loaded liposomes formulation and evaluation of its biologic activity in patients with diabetic macular edema. Pharmaceutics. 2021;13(3):322.
  • Kaur IP, Kakkar S. Nanotherapy for posterior eye diseases. J Control Release. 2014;193:100–112.
  • Kassaee SN, Mahboobian MM. Besifloxacin-loaded ocular nanoemulsions: design, formulation and efficacy evaluation. Drug Delivery Transl Res. 2021: p. Ahead of Print. doi:https://doi.org/10.1007/s13346-021-00902-z
  • Weng Y-H, Ma X-W, Che J, et al. Nanomicelle-assisted targeted ocular delivery with enhanced antiinflammatory efficacy in vivo. Adv Sci (Weinh). 2018;5(1):1700455.
  • Ajmeera D, Manda S, Janapareddi K, et al. Development of nanoemulsion to improve the ocular bioavailability and patient compliance in postoperative treatment using indomethacin. Int J Appl Pharm. 2020;12(3):99–107.
  • Durak S, Rad ME, Yetisgin AA, et al. Niosomal drug delivery systems for ocular disease-recent advances and future prospects. Nanomaterials. 2020;10(6):1191.
  • Verma A, Sharma G, Jain A, et al. Systematic optimization of cationic surface engineered mucoadhesive vesicles employing Design of Experiment (DoE): a preclinical investigation. Int J Biol Macromol. 2019;133:1142–1155.
  • Fathalla D, Fouad EA, Soliman GM. Latanoprost niosomes as a sustained release ocular delivery system for the management of glaucoma. Drug Dev Ind Pharm. 2020;46(5):806–813.
  • Kakkar S, Singh M, Mohan Karuppayil S, et al. Lipo-PEG nano-ocular formulation successfully encapsulates hydrophilic fluconazole and traverses corneal and non-corneal path to reach posterior eye segment. J Drug Targeting. 2021;29:631–650. Ahead of Print.
  • Tatke A, Dudhipala N, Janga KY, et al. In situ gel of triamcinolone acetonide-loaded solid lipid nanoparticles for improved topical ocular delivery: tear kinetics and ocular disposition studies. Nanomaterials. 2019;9(1):33/1–33/17.
  • Chetoni P, Burgalassi S, Monti D, et al. Solid lipid nanoparticles as promising tool for intraocular tobramycin delivery: pharmacokinetic studies on rabbits. Eur J Pharm Biopharm. 2016;109:214–223.
  • Le Merdy M, Fan J, Bolger MB, et al. Application of mechanistic ocular absorption modeling and simulation to understand the impact of formulation properties on ophthalmic bioavailability in rabbits: a case study using Dexamethasone suspension. AAPS J. 2019;21(4):1–11.
  • Schoenwald RD, Stewart P. Effect of particle size on ophthalmic bioavailability of dexamethasone suspensions in rabbits. J Pharm Sci. 1980;69(4):391–394.
  • Vooturi S, Bourne D, Panda JJ, et al. Effect of particle size and viscosity of suspensions on topical ocular bioavailability of Budesonide, a Corticosteroid. J Ocul Pharmacol Ther. 2020;36(6):404–409.
  • Jansook P, Loftsson HMH,T, Stefánsson E. Cyclodextrin-based formulation of carbonic anhydrase inhibitors for ocular delivery – a review. Int J Pharm. 2021;606:120955.
  • Kallab M, Schuetzenberger K, Hommer N, et al. Bio-distribution and pharmacokinetics of topically administered γ-cyclodextrin based eye drops in rabbits. Pharmaceuticals. 2021;14(5):480.
  • Lorenzo-Soler L, Olafsdottir OB, Stefansson E, et al. Angiotensin receptor blockers in cyclodextrin nanoparticle eye drops: ocular pharmacokinetics and pharmacologic effect on intraocular pressure. Acta Ophthalmol. 2021;99(4):376–382.
  • Johannsdottir S, Jansook P, Stefansson E, et al. Topical drug delivery to the posterior segment of the eye: the effect of benzalkonium chloride on topical dexamethasone penetration into the eye in vivo. J Drug Delivery Sci Technol. 2018;48:125–127.
  • Johannsdottir S, Jansook P, Stefansson E, et al. Topical drug delivery to the posterior segment of the eye: dexamethasone concentrations in various eye tissues after topical administration for up to 15 days to rabbits. J Drug Delivery Sci Technol. 2018;45:449–454.
  • Alvarez-Lorenzo C, Yanez F, Concheiro A. Ocular drug delivery from molecularly-imprinted contact lenses. J Drug Delivery Sci Technol. 2010;20(4):237–248.
  • Franco P, De Marco I. Contact lenses as ophthalmic drug delivery systems: a review. Polymers (Basel, Switzerland). 2021;13(7):1102.
  • Garcia DVI, Alvarez-Lorenzo C. Atropine in topical formulations for the management of anterior and posterior segment ocular diseases. Expert Opin Drug Deliv. 2021;18(9);1245–1260.
  • Schultz C, Breaux J, Schentag J, et al. Drug delivery to the posterior segment of the eye through hydrogel contact lenses. Clin Exp Optom. 2011;94(2):212–218.
  • Shikamura Y, Yamazaki Y, Matsunaga T, et al. Hydrogel ring for topical drug delivery to the ocular posterior segment. Curr Eye Res. 2016;41(5):653–661.
  • Macoul KL, Pavan-Langston D. Pilocarpine ocusert system for sustained control of ocular hypertension. Arch Ophthalmol. 1975;93(8):587–590.
  • Khan MA, Warchol MP, Romberg VG. Ocufit SR(R) for controlled release ocular drug delivery. Invest Ophthalmol Vis Sci. 1996;37(3):3846.
  • Hubbell HR, Noonan JS, Lee SB, et al. Scleral permeability of diclofenac released from an Ocufit SR (R) drug delivery insert. Invest Ophthalmol Vis Sci. 1999;40(4):S85–S85.
  • Best AL, Labetoulle M, Legrand M, et al. Punctal and canalicular plugs: indications, efficacy and safety. Journal Francais D Ophtalmologie. 2019;42(3):E95–E104.
  • Tyson SL, Campbell P, Biggins J, et al. Punctum and canalicular anatomy for hydrogel-based intracanalicular insert technology. Ther Delivery. 2020;11(3):173–182.
  • Donnenfeld ED, Holland EJ, Solomon KD. Safety and efficacy of nepafenac punctal plug delivery system in controlling postoperative ocular pain and inflammation after cataract surgery. J Cataract Refract Surg. 2021;47(2):158–164.
  • Lee A, Blair HA. Dexamethasone intracanalicular insert: a review in treating post-surgical ocular pain and inflammation. Drugs. 2020;80(11):1101–1108.
  • Peng CC, Bengani LC, Jung HJ, et al. Emulsions and microemulsions for ocular drug delivery. J Drug Delivery Sci Technol. 2011;21(1):111–121.
  • Loftsson T, Stefansson E. Cyclodextrins in eye drop formulations: enhanced topical delivery of corticosteroids to the eye. Acta Ophthalmologica Scandinavica. 2002;80(2):144–150.
  • Loftsson T, Stefansson E. Cyclodextrins in ocular drug delivery: theoretical basis with dexamethasone as a sample drug. J Drug Delivery Sci Technol. 2007;17(1):3–9.
  • Popov A. Mucus-penetrating particles and the role of ocular mucus as a barrier to micro- and nanosuspensions. J Ocul Pharmacol Ther. 2020;36(6):366–375.
  • Mandal A, Cholkar K, Khurana V, et al. Topical formulation of self-assembled antiviral Prodrug Nanomicelles for targeted retinal delivery. Mol Pharm. 2017;14(6):2056–2069.
  • Prokai-Tatrai K, Nguyen V, De La Cruz DL, et al. Retina-targeted delivery of 17β-estradiol by the topically applied DHED prodrug. Pharmaceutics. 2020;12(5):456.
  • Roy Chowdhury U, Kudgus RA, Rinkoski TA, et al. Pharmacological and pharmacokinetic profile of the novel ocular hypotensive prodrug CKLP1 in Dutch-belted pigmented rabbits. PLoS One. 2020;15(4):e0231841.
  • Ranta VP, Urtti A. Transscleral drug delivery to the posterior eye: prospects of pharmacokinetic modeling. Adv Drug Deliv Rev. 2006;58(11):1164–1181.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.