645
Views
3
CrossRef citations to date
0
Altmetric
Review

Nose-to-brain drug delivery for the treatment of Alzheimer’s disease: current advancements and challenges

, , , , , & ORCID Icon show all
Pages 87-102 | Received 29 Oct 2021, Accepted 12 Jan 2022, Published online: 28 Jan 2022

References

  • WHO. Dementia; 2021 [ cited 2021 Oct 12]. https://www.who.int/news-room/fact-sheets/detail/dementia#:~:text=Worldwide%2C%20around%2050%20million%20people,60%E2%80%9370%25%20of%20cases
  • 2020 alzheimer’s disease facts and figures. 2020;16(3):391–460. https://alz-journals.onlinelibrary.wiley.com/doi/abs/10.1002/alz.12068.
  • Agrawal M, Saraf S, Saraf S, et al. Nose-to-brain drug delivery: an update on clinical challenges and progress towards approval of anti-Alzheimer drugs. J Control Release. 2018 Jul 10;281:139–177.
  • Agrawal M, Saraf S, Saraf S, et al. Recent advancements in the field of nanotechnology for the delivery of anti-Alzheimer drug in the brain region. Expert Opin Drug Deliv. 2018 Jun;15(6):589–617.
  • Agrawal M, Prathyusha E, Ahmed H, et al. Biomaterials in treatment of alzheimer’s disease. Neurochem Int. 2021 May 01;145:105008. 2021.
  • Dubey SK, Lakshmi KK, Krishna KV, et al. Insulin mediated novel therapies for the treatment of alzheimer’s disease. Life Sci. 2020 May 15;249:117540.
  • Dubey SK, Ram MS, Krishna KV, et al. Recent expansions on cellular models to uncover the scientific barriers towards drug development for alzheimer’s disease. Cell Mol Neurobiol. 2019 Mar;39(2):181–209.
  • Alexander A, Agrawal M, Uddin A, et al. Recent expansions of novel strategies towards the drug targeting into the brain. Int J Nanomedicine. 2019;14:5895–5909.
  • USFDA. FDA grants accelerated approval for alzheimer’s drug. U.S. Food & Drug Administration; 2021 [ cited 2021 Dec 28]. https://www.fda.gov/news-events/press-announcements/fda-grants-accelerated-approval-alzheimers-drug
  • Alzforum. GV-971. In: Cure ANfA, ed. Therapeutics. USA 2021; [ cited 2021 Dec 29]. https://www.alzforum.org/therapeutics/gv-971
  • Abolhasanzadeh Z, Ashrafi H, Badr P, et al. Traditional neurotherapeutics approach intended for direct nose to brain delivery. J Ethnopharmacol. 2017 Sep 14;209:116–123.
  • Agrawal M, Saraf S, Saraf S, et al. Recent strategies and advances in the fabrication of nano lipid carriers and their application towards brain targeting. J Control Release. 2020 May 10; 321:372–415. 2020.
  • Akel H, Ismail R, Csóka I. Progress and perspectives of brain-targeting lipid-based nanosystems via the nasal route in alzheimer’s disease. Eur J Pharm Biopharm. 2020 Mar;148:38–53.
  • Alexander A, Saraf S. Nose-to-brain drug delivery approach: a key to easily accessing the brain for the treatment of alzheimer’s disease. Neural Regen Res. 2018 Dec;13(12):2102–2104.
  • Agrawal M, Saraf S, Saraf S, et al. Stimuli-responsive In situ gelling system for nose-to-brain drug delivery. J Control Release. 2020 Nov 10; 327:235–265. 2020.
  • Pires PC, Santos AO. Nanosystems in nose-to-brain drug delivery: a review of non-clinical brain targeting studies. J Control Release. 2018 Jan 28;270:89–100.
  • Hanson LR, Frey WH 2nd. Intranasal delivery bypasses the blood-brain barrier to target therapeutic agents to the central nervous system and treat neurodegenerative disease. BMC Neurosci. 2008 Dec 10;9(Suppl 3):S5. Suppl 3.
  • Mittal D, Ali A, Md S, et al. Insights into direct nose to brain delivery: current status and future perspective. Drug Deliv. 2014 Mar;21(2):75–86.
  • Battaglia L, Panciani PP, Muntoni E, et al. Lipid nanoparticles for intranasal administration: application to nose-to-brain delivery. Expert Opin Drug Deliv. 2018 Apr;15(4):369–378.
  • Long Y, Yang Q, Xiang Y, et al. Nose to brain drug delivery - A promising strategy for active components from herbal medicine for treating cerebral ischemia reperfusion. Pharmacol Res. 2020 Sep 01; 159:104795. 2020.
  • Pardeshi CV, Belgamwar VS. Direct nose to brain drug delivery via integrated nerve pathways bypassing the blood-brain barrier: an excellent platform for brain targeting. Expert Opin Drug Deliv. 2013 Jul;10(7):957–972.
  • Grassin-Delyle S, Buenestado A, Naline E, et al. Intranasal drug delivery: an efficient and non-invasive route for systemic administration: focus on opioids. Pharmacol Ther. 2012 Jun;134(3):366–379.
  • St John JA, Walkden H, Nazareth L, et al. Burkholderia pseudomallei rapidly infects the brain stem and spinal cord via the trigeminal nerve after intranasal inoculation. Infect Immun. 2016 Sep;84(9):2681–2688.
  • Bourganis V, Kammona O, Alexopoulos A, et al. Recent advances in carrier mediated nose-to-brain delivery of pharmaceutics. Eur J Pharm Biopharm. 2018 Jul;128:337–362.
  • Kozlovskaya L, Abou-Kaoud M, Stepensky D. Quantitative analysis of drug delivery to the brain via nasal route. J Control Release. 2014 Sep 10;189:133–140.
  • Dhuria SV, Hanson LR, Frey WH 2nd. Intranasal delivery to the central nervous system: mechanisms and experimental considerations. J Pharm Sci. 2010 Apr;99(4):1654–1673.
  • Bustamante-Marin XM, Ostrowski LE. Cilia and mucociliary clearance. Cold Spring Harb Perspect Biol. 2017 Apr 3;9(4). DOI:https://doi.org/10.1101/cshperspect.a028241.
  • Movia D, Bruni-Favier S, Prina-Mello A. In vitro alternatives to acute inhalation toxicity studies in animal models-a perspective. Front Bioeng Biotechnol. 2020;8:549.
  • Bonferoni MC, Rossi S, Sandri G, et al. Nanoemulsions for “Nose-to-Brain” drug delivery. Pharmaceutics. 2019 Feb 17;11(2). DOI:https://doi.org/10.3390/pharmaceutics11020084.
  • Lochhead JJ, Thorne RG. Intranasal delivery of biologics to the central nervous system. Adv Drug Deliv Rev. 2012 May 15;64(7):614–628.
  • Bourganis V, Kammona O, Alexopoulos A, et al. Recent advances in carrier mediated nose-to-brain delivery of pharmaceutics. Eur J Pharm Biopharm. 2018 Jul 01;128:337–362. 2018.
  • Keller L-A, Merkel O, Popp A. Intranasal drug delivery: opportunities and toxicologic challenges during drug development. Drug Deliv Transl Res. 2021 Jan 25. 2021. DOI:https://doi.org/10.1007/s13346-020-00891-5.
  • Casettari L, Illum L. Chitosan in nasal delivery systems for therapeutic drugs. J Control Release. 2014;190:189–200. 2014.
  • Wang Z, Xiong G, Tsang WC, et al. Nose-to-brain delivery. J Pharmacol Exp Ther. 2019;370(3):593.
  • Ruigrok MJ, de Lange EC. Emerging insights for translational pharmacokinetic and pharmacokinetic-pharmacodynamic studies: towards prediction of nose-to-brain transport in humans. AAPS J. 2015;17(3):493–505.
  • Selvaraj K, Gowthamarajan K, Karri V. Nose to brain transport pathways an overview: potential of nanostructured lipid carriers in nose to brain targeting. Artif Cells Nanomed Biotechnol. 2018 Dec;46(8):2088–2095.
  • Rassu G, Soddu E, Posadino AM, et al. Nose-to-brain delivery of BACE1 siRNA loaded in solid lipid nanoparticles for alzheimer’s therapy. Colloids Surf B Biointerfaces. 2017;152:296–301. 2017.
  • Rodriguez M, Lapierre J, Ojha CR, et al. Intranasal drug delivery of small interfering RNA targeting Beclin1 encapsulated with polyethylenimine (PEI) in mouse brain to achieve HIV attenuation. Sci Rep. 2017;7(1):1–10. 2017.
  • Meister S, Zlatev I, Stab J, et al. Nanoparticulate flurbiprofen reduces amyloid-β42 generation in an in vitro blood-brain barrier model. Alzheimers Res Ther. 2013;5(6):51. 2013.
  • Bhise SB, Yadav AV, Avachat AM, et al. Bioavailability of intranasal drug delivery system. Asian J Pharm (AJP). 2014;2(4).
  • Hassane FS, Saleh AF, Abes R, et al. Cell penetrating peptides: overview and applications to the delivery of oligonucleotides. Cell Mol Life Sci. 2010;67(5):715–726.
  • Kanazawa T. Brain delivery of small interfering ribonucleic acid and drugs through intranasal administration with nano-sized polymer micelles. Med. Devices Evid Res. 2015. 2015;8: 57–64.
  • Kim I-D, Sawicki E, Lee H-K, et al. Robust neuroprotective effects of intranasally delivered iNOS siRNA encapsulated in gelatin nanoparticles in the postischemic brain. Nanomedicine. 2016 Jul 01; 12(5):1219–1229. 2016.
  • Kanazawa T, Kaneko M, Niide T, et al. Enhancement of nose-to-brain delivery of hydrophilic macromolecules with stearate- or polyethylene glycol-modified arginine-rich peptide. Int J Pharm. 2017;530(1):195–200.
  • Agrawal M, Saraf S, and Saraf S, et al. Stimuli-responsive in situ gelling system for nose-to-brain drug delivery. J Control Release. 2020;327:235–265.
  • Calderon-Garcidueñas AL, Duyckaerts C. Alzheimer disease. Handb Clin Neurol. 2018;145:325–337.
  • Citron M, Oltersdorf T, Haass C, et al. Mutation of the β-amyloid precursor protein in familial alzheimer’s disease increases β-protein production. Nature. 1992;360(6405):672–674.
  • Zhang H, Zhao Y, Yu M, et al. Reassembly of native components with donepezil to execute dual-missions in alzheimer’s disease therapy. J Control Release. 2019;296:14–28.
  • Pires PC, Santos AO. Nanosystems in nose-to-brain drug delivery: a review of non-clinical brain targeting studies. J Control Release. 2018;270:89–100.
  • IFF DS, Dos Santos TQ, Placido RV, et al. The liquid crystalline phase behaviour of a nasal formulation modifies the brain disposition of donepezil in rats in the treatment of alzheimer’s disease. Colloids Surf B Biointerfaces. 2021;203:111721.
  • Akter K, Lanza EA, Martin SA, et al. Diabetes mellitus and alzheimer’s disease: shared pathology and treatment? Br J Clin Pharmacol. 2011 Mar;71(3):365–376.
  • Kosaraju J, Gali CC, Khatwal RB, et al. Saxagliptin: a dipeptidyl peptidase-4 inhibitor ameliorates streptozotocin induced alzheimer’s disease. Neuropharmacology. 2013 Sep;72:291–300.
  • Kosaraju J, Murthy V, Khatwal RB, et al. Vildagliptin: an anti-diabetes agent ameliorates cognitive deficits and pathology observed in streptozotocin-induced alzheimer’s disease. J Pharm Pharmacol. 2013 Dec;65(12):1773–1784.
  • Isik AT, Soysal P, Yay A, et al. The effects of sitagliptin, a DPP-4 inhibitor, on cognitive functions in elderly diabetic patients with or without alzheimer’s disease. Diabetes Res Clin Pract. 2017 Jan;123:192–198.
  • Wang X, Chi N, Tang X. Preparation of estradiol chitosan nanoparticles for improving nasal absorption and brain targeting. Eur J Pharm Biopharm. 2008 Nov;70(3):735–740.
  • Wilson B, Alobaid BNM, Geetha KM, et al. Chitosan nanoparticles to enhance nasal absorption and brain targeting of sitagliptin to treat alzheimer’s disease. J Drug Delivery Sci Technol. 2021;61:102176.
  • Ugwoke MI, Verbeke N, Kinget R. The biopharmaceutical aspects of nasal mucoadhesive drug delivery. J Pharm Pharmacol. 2001 Jan 01;53(1):3–22. 2001.
  • Jiang L, Gao L, Wang X, et al. The application of mucoadhesive polymers in nasal drug delivery. Drug Dev Ind Pharm. 2010;36(3):323–336.
  • Tanaka A, Furubayashi T, Tomisaki M, et al. Nasal drug absorption from powder formulations: the effect of three types of hydroxypropyl cellulose (HPC). Eur J Pharm Sci. 2017;96:284–289.
  • Alsarra IA, Hamed AY, Mahrous GM, et al. Mucoadhesive polymeric hydrogels for nasal delivery of acyclovir. Drug Dev Ind Pharm. 2009;35(3):352–362.
  • Brannigan RP, Khutoryanskiy VV. Progress and current trends in the synthesis of novel polymers with enhanced mucoadhesive properties. Macromol Biosci. 2019 Oct 01;19(10):1900194. 2019.
  • Abd El-Hameed M, Kellaway I. Preparation and in vitro characterisation of mucoadhesive polymeric microspheres as intra-nasal delivery systems. Eur J Pharm Biopharm. 1997;44(1):53–60.
  • Tas C, Ozkan CK, Savaser A, et al. Nasal absorption of metoclopramide from different Carbopol® 981 based formulations: in vitro, ex vivo and in vivo evaluation. Eur J Pharm Biopharm. 2006;64(2):246–254.
  • Smart JD. The basics and underlying mechanisms of mucoadhesion. Adv Drug Deliv Rev. 2005;57(11):1556–1568.
  • Leitner VM, Walker GF, Bernkop-Schnürch A. Thiolated polymers: evidence for the formation of disulphide bonds with mucus glycoproteins. Eur J Pharm Biopharm. 2003;56(2):207–214.
  • Illum L. Nasal drug delivery - recent developments and future prospects. J Control Release. 2012;161(2):254–263. 2012.
  • Balakrishnan P, Park E-K, Song C-K, et al. Carbopol-incorporated thermoreversible gel for intranasal drug delivery. Molecules. 2015;20(3):4124–4135.
  • Fakhari A, Corcoran M, Schwarz A. Thermogelling properties of purified poloxamer 407. Heliyon. 2017;3(8):e00390.
  • Katona G, Sipos B, Budai-Szűcs M, et al. Development of in situ gelling meloxicam-human serum albumin nanoparticle formulation for nose-to-brain application. Pharmaceutics. 2021;13(5):646.
  • Porfiryeva NN, Nasibullin SF, Abdullina SG, et al. Acrylated Eudragit® E PO as a novel polymeric excipient with enhanced mucoadhesive properties for application in nasal drug delivery. Int J Pharm. 2019;562:241–248.
  • Blanco-Silvente L, Castells X, Saez M, et al. Discontinuation, efficacy, and safety of cholinesterase inhibitors for alzheimer’s disease: a meta-analysis and meta-regression of 43 randomized clinical trials enrolling 16 106 patients. Int J Neuropsychopharmacol. 2017;20(7):519–528.
  • Loy C, Schneider L. Galantamine for alzheimer’s disease and mild cognitive impairment. Cochrane Database Syst Rev. 2006;(1). DOI: https://doi.org/10.1002/14651858.CD001747.pub3.
  • Tirucherai GS, Yang C, Mitra AK. Prodrugs in nasal drug delivery. Expert Opin Biol Ther. 2001;1(1):49–66.
  • Bakker C, van der Aart J, Hart EP, et al. Safety, pharmacokinetics, and pharmacodynamics of Gln‐1062, a prodrug of galantamine. Alzheimer's Dementia. 2020;6(1):e12093.
  • Dahlin M, Björk E. Nasal administration of a physostigmine analogue (NXX-066) for alzheimer’s disease to rats. Int J Pharm. 2001;212(2):267–274.
  • Jung BH, Chung BC, Chung S-J, et al. Prolonged delivery of nicotine in rats via nasal administration of proliposomes. J Control Release. 2000;66(1):73–79.
  • Warnken ZN, Smyth HD, Watts AB, et al. Formulation and device design to increase nose to brain drug delivery. J Drug Delivery Sci Technol. 2016;35:213–222.
  • Scherließ R. Nasal formulations for drug administration and characterization of nasal preparations in drug delivery. Ther Deliv. 2020;11(3):183–191.
  • Rao NV, Ko H, Lee J, et al. Recent progress and advances in stimuli-responsive polymers for cancer therapy. Front Bioeng Biotechnol. 2018;6:110.
  • Craft S, Baker LD, Montine TJ, et al. Intranasal insulin therapy for Alzheimer's disease and amnestic mild cognitive impairment: a pilot clinical trial. Arch Neurol. 2012 Jan;69(1):29–38.
  • Djupesland PG. Intranasal insulin improves cognition and modulates beta-amyloid in early AD. Neurology. 2008 Sep 9;71(11):864.
  • Sélam JL. Inhaled insulin: promises and concerns. J Diabetes Sci Technol. 2008 Mar;2(2):311–315.
  • Rapoport A, Winner P. Nasal delivery of antimigraine drugs: clinical rationale and evidence base. Headache. 2006 Nov;46(Suppl s4):S192–201.
  • Erdő F, Bors LA, Farkas D, et al. Evaluation of intranasal delivery route of drug administration for brain targeting. Brain Res Bull. 2018 Oct; 143: 155–170.
  • Chatterjee B, Gorain B, Mohananaidu K, et al. Targeted drug delivery to the brain via intranasal nanoemulsion: available proof of concept and existing challenges. Int J Pharm. 2019 Jun 30;565:258–268.
  • Chatterjee B, Gorain B, Mohananaidu K, et al. Targeted drug delivery to the brain via intranasal nanoemulsion: available proof of concept and existing challenges. Int J Pharm. 2019;565:258–268. 2019.
  • Vitorino C, Silva S, Bicker J, et al. Antidepressants and nose-to-brain delivery: drivers, restraints, opportunities and challenges. Drug Discov Today. 2019;24(9):1911–1923.
  • Hong -S-S, Oh KT, Choi H-G, et al. Liposomal formulations for nose-to-brain delivery: recent advances and future perspectives. Pharmaceutics. 2019;11(10):540.
  • Keller L-A, Merkel O, Popp A. Intranasal drug delivery: opportunities and toxicologic challenges during drug development. Drug Deliv Transl Res. 2021;1–23.
  • Gangane PS, Ghormare NV, Mahapatra DK, et al. Gellan gum assisted fabrication and characterization of Donepezil Hydrochloride Mucoadhesive intranasal microspheres. Int J Curr Res Rev. 2020;12(19):105–115.
  • Yalcin A, Soddu E, Turunc Bayrakdar E, et al. Neuroprotective effects of engineered polymeric nasal microspheres containing Hydroxypropyl-beta-cyclodextrin on beta-Amyloid (1-42)-induced toxicity. J Pharm Sci. 2016 Aug;105(8):2372–2380.
  • Gao Y, Almalki WH, Afzal O, et al. Systematic development of lectin conjugated microspheres for nose-to-brain delivery of rivastigmine for the treatment of alzheimer’s disease. Biomed Pharmacother. 2021 Sep;141:111829.
  • Sheng Y, Hu J, Shi J, et al. Stimuli-responsive carriers for controlled intracellular drug release. Curr Med Chem. 2019;26(13):2377–2388.
  • Wenyuan Chen RL, Zhu S, Jinqiu M, et al. Nasal timosaponin BII dually sensitive in situ hydrogels for the prevention of alzheimer’s disease induced by lipopolysaccharides. Int J Pharm. 2020;578:119115.
  • Abouhussein DMN, Khattab A, Bayoumi NA, et al. Brain targeted rivastigmine mucoadhesive thermosensitive in situ gel: optimization, in vitro evaluation, radiolabeling, in vivo pharmacokinetics and biodistribution. J Drug Delivery Sci Technol. 2018;43:129–140.
  • Qian S, Wong YC, Zuo Z. Development, characterization and application of in situ gel systems for intranasal delivery of tacrine. Int J Pharm. 2014 Jul 1;468(1–2):272–282.
  • Salatin S, Barar J, Barzegar-Jalali M, et al. Thermosensitive in situ nanocomposite of rivastigmine hydrogen tartrate as an intranasal delivery system: development, characterization, ex vivo permeation and cellular studies. Colloids Surf B Biointerfaces. 2017 Nov 1;159:629–638.
  • Patil RP, Pawara DD, Gudewar CS, et al. Nanostructured cubosomes in an in situ nasal gel system: an alternative approach for the controlled delivery of donepezil HCl to brain. J Liposome Res. 2019 Sep;29(3):264–273.
  • Strambeanu N, Demetrovici L, Dragos D. Natural Sources of Nanoparticles. In: Lungu M, Neculae A, Bunoiu M, et al., editors. Nanoparticles’ Promises and Risks: characterization, Manipulation, and Potential Hazards to Humanity and the Environment. Cham: Springer International Publishing; 2015. p. 9–19.
  • Cragg GM, Newman DJ. Natural products: a continuing source of novel drug leads. Biochim Biophys Acta Gen Subj. 2013 Jun 01;1830(6):3670–3695. 2013.
  • Guerrini L, Alvarez-Puebla RA, Pazos-Perez N. Surface modifications of nanoparticles for stability in biological fluids. Materials (Basel). 2018 Jul 6;11(7). DOI:https://doi.org/10.3390/ma11071154.
  • Charoo NA, Rahman Z, and Khan MA. Chapter 11 - Nanoparticles for improvement in oral bioavailability. In: Grumezescu AM, editor. Nanoarchitectonics in Biomedicine. The Netherlands: William Andrew Publishing; 2019. p. 371–410.
  • Lv S, Wu Y, Cai K, et al. High drug loading and sub-quantitative loading efficiency of polymeric micelles driven by donor–receptor coordination interactions. J Am Chem Soc. 2018 Jan 31; 140(4):1235–1238. 2018.
  • Chenthamara D, Subramaniam S, Ramakrishnan SG, et al. Therapeutic efficacy of nanoparticles and routes of administration. Biomater Res. 2019 Nov 21; 23(1):20. 2019.
  • Luo Y, Yang H, Zhou Y-F HB. Dual and multi-targeted nanoparticles for site-specific brain drug delivery. J Control Release. 2020 Jan 10;317:195–215. 2020.
  • Begines B, Ortiz T, Pérez-Aranda M, et al. Polymeric nanoparticles for drug delivery: recent developments and future prospects. Nanomaterials (Basel). 2020;10(7):1403.
  • Essa D, Kondiah PPD, Choonara YE, et al. The design of Poly(lactide-co-glycolide) nanocarriers for medical applications. Front Bioeng Biotechnol. 2020;8:48.
  • Kobylinska L, Patereha I, Finiuk N, et al. Comb-like PEG-containing polymeric composition as low toxic drug nanocarrier. Cancer Nanotechnol. 2018 Dec 20; 9(1):11. 2018.
  • Yanat M, Schroën K. Preparation methods and applications of chitosan nanoparticles; with an outlook toward reinforcement of biodegradable packaging. React Funct Polym. 2021 Apr 01;161:104849. 2021.
  • Łukasiewicz S, Mikołajczyk A, Błasiak E, et al. Polycaprolactone nanoparticles as promising candidates for nanocarriers in novel nanomedicines. Pharmaceutics. 2021;13(2):191.
  • Kong M, Peng X, Cui H, et al. pH-responsive polymeric nanoparticles with tunable sizes for targeted drug delivery. RSC Adv. 2020;10(9):4860–4868.
  • de Oliveira Junior ER, Santos LCR, Salomao MA, et al. Nose-to-brain drug delivery mediated by polymeric nanoparticles: influence of PEG surface coating. Drug Deliv Transl Res. 2020 Dec;10(6):1688–1699.
  • Hanafy AS, Farid RM, Helmy MW, et al. Pharmacological, toxicological and neuronal localization assessment of galantamine/chitosan complex nanoparticles in rats: future potential contribution in alzheimer’s disease management. Drug Deliv. 2016 Oct;23(8):3111–3122.
  • Meng Q, Wang A, Hua H, et al. Intranasal delivery of Huperzine A to the brain using lactoferrin-conjugated N-trimethylated chitosan surface-modified PLGA nanoparticles for treatment of alzheimer’s disease. Int J Nanomedicine. 2018;13:705–718.
  • Ghasemiyeh P, Mohammadi-Samani S. Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: applications, advantages and disadvantages. Res Pharm Sci. 2018;13(4):288–303.
  • Alexander A, Agrawal M, Saraf S, et al. Formulation strategies of nano lipid carrier for effective brain targeting of Anti-AD drugs. Current Pharmaceutical Design. 2020;26(27):80–3269.
  • Dhaliwal HK, Fan Y, Kim J, et al. Intranasal delivery and transfection of mRNA therapeutics in the brain using cationic liposomes. Mol Pharm. 2020;17(6):1996–2005.
  • Zhang H. Thin-film hydration followed by extrusion method for liposome preparation. Methods Mol Biol. 2017;1522:17–22.
  • Maja L, Željko K, Mateja P. Sustainable technologies for liposome preparation. J Supercrit Fluids. 2020 Nov 01;165:104984. 2020.
  • Jaafar-Maalej C, Diab R, Andrieu V, et al. Ethanol injection method for hydrophilic and lipophilic drug-loaded liposome preparation. J Liposome Res. 2010 Sep;20(3):228–243.
  • Reza JNM, Tafaghodi M, S.A.A.Gh ST. Evaluation of the clearance characteristics of liposomes in the human nose by gamma-scintigraphy. Iranian Journal of Pharmaceutical Research. 2005;4:3–11.
  • Corace G, Angeloni C, Malaguti M, et al. Multifunctional liposomes for nasal delivery of the anti-Alzheimer drug tacrine hydrochloride. J Liposome Res. 2014 Dec;24(4):323–335.
  • Zheng X, Shao X, Zhang C, et al. Intranasal H102 peptide-loaded liposomes for brain delivery to treat alzheimer’s disease. Pharm Res. 2015 Dec;32(12):3837–3849.
  • Anand A, Arya M, Kaithwas G, et al. Sucrose stearate as a biosurfactant for development of rivastigmine containing nanostructured lipid carriers and assessment of its activity against dementia in C. elegans model. Journal of Drug Delivery Science and Technology. 2019;49:219–226.
  • Rajput AP, Butani SB. Resveratrol anchored nanostructured lipid carrier loaded in situ gel via nasal route: formulation, optimization and in vivo characterization. J Drug Delivery Sci Technol. 2019;51:214–223.
  • Kulkarni JA, Chen S, Tam YYC. Scalable production of lipid nanoparticles containing Amphotericin B. Langmuir. 2021 Jun 22;37(24):7312–7319.
  • WA B, MJ D, Ml N. Brain uptake of the glucagon-like peptide-1 antagonist exendin (9-39) after intranasal administration. J Pharmacol Exp Ther. 2004;309(2):469–475.
  • Falcone JA, Salameh TS, Yi X, et al. Intranasal administration as a route for drug delivery to the brain: evidence for a unique pathway for albumin. J Pharmacol Exp Ther. 2014;351(1):54–60. 2014.
  • Nonaka N, Farr SA, Nakamachi T, et al. Intranasal administration of PACAP: uptake by brain and regional brain targeting with cyclodextrins. Peptides. 2012;36(2):168–175. 2012.
  • Meredith ME, Salameh TS, Banks WA. Intranasal delivery of proteins and peptides in the treatment of neurodegenerative diseases. AAPS J. 2015;17(4):780–787.
  • Huang Y-Y, Fang N, Luo H-R, et al. RP1, a RAGE antagonist peptide, can improve memory impairment and reduce Aβ plaque load in the APP/PS1 mouse model of alzheimer’s disease. Neuropharmacology. 2020;180:108304.
  • Cristiano C, Volpicelli F, Lippiello P, et al. Neutralization of IL‐17 rescues amyloid‐β‐induced neuroinflammation and memory impairment. Br J Pharmacol. 2019;176(18):3544–3557.
  • Miya Shaik M, Tamargo I, Abubakar M, et al. The role of microRNAs in alzheimer’s disease and their therapeutic potentials. Genes (Basel). 2018;9(4):174. 2018.
  • Rusca N, and Monticelli S. MiR-146a in immunity and disease. Mol Biol Int. 2011;25(8):2011.
  • Ayers D, Scerri C. Non-coding RNA influences in dementia. Noncoding RNA Res. 2018;3(4):188–194.
  • Mai H, Fan W, Wang Y, et al. Intranasal administration of miR-146a agomir rescued the pathological process and cognitive impairment in an AD mouse model. Mol Ther Nucleic Acids. 2019;18:681–695.
  • John Hoekman SR, Aurora SK, Shrewsbury SB. The upper nasal space—a novel delivery route ideal for central nervous system drugs. US Neurol. 2020;16(1):25–31.
  • Islam SU, Shehzad A, Ahmed MB, et al. Intranasal delivery of nanoformulations: a potential way of treatment for neurological disorders. Molecules. 2020 Apr 21;25(8). DOI:https://doi.org/10.3390/molecules25081929.
  • Costa CP, Moreira JN, Sousa Lobo JM, et al. Intranasal delivery of nanostructured lipid carriers, solid lipid nanoparticles and nanoemulsions: a current overview of in vivo studies. Acta Pharm Sin B. 2021 Apr 01;11(4):925–940. 2021.
  • Quitterer U, AbdAlla S. Improvements of symptoms of Alzheimer`s disease by inhibition of the angiotensin system. Pharmacol Res. 2020 Apr 01;154:104230. 2020.
  • Kulkarni P, Rawtani D, Barot T. Design, development and in-vitro/in-vivo evaluation of intranasally delivered Rivastigmine and N-Acetyl Cysteine loaded bifunctional niosomes for applications in combinative treatment of alzheimer’s disease. Eur J Pharm Biopharm. 2021 Jun 01;163:1–15. 2021.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.