1,055
Views
6
CrossRef citations to date
0
Altmetric
Review

Current trends in PLGA based long-acting injectable products: The industry perspective

& ORCID Icon
Pages 559-576 | Received 18 Oct 2021, Accepted 06 May 2022, Published online: 22 May 2022

References

  • Shen X, Li T, Xie X, et al. PLGA-based drug delivery systems for remotely triggered cancer therapeutic and diagnostic applications. Front Bioeng Biotechnol. 2020;8:381.
  • Farley K, Zimbro KS. The provider perspective: identifying barriers to prescribing long acting injectables to persons with mental illness. 2019.
  • Ibrahim TM, El-Megrab NA, El-Nahas HM. Optimization of injectable PLGA in-situ forming implants of anti-psychotic risperidone via Box-Behnken design. J Drug Delivery Sci Technol. 2020;58:101803.
  • Liu M, Feng D, Liang X, et al. Old dog new tricks: PLGA microparticles as an adjuvant for insulin peptide fragment-induced immune tolerance against type 1 diabetes. Mol Pharm. 2020;17(9):3513–3525.
  • Yang H, Li J, Patel SK, et al. Design of poly (lactic-co-glycolic acid)(PLGA) nanoparticles for vaginal co-delivery of griffithsin and dapivirine and their synergistic effect for HIV prophylaxis. Pharmaceutics. 2019;11(4):184.
  • Lu X, Miao L, Gao W, et al. Engineered PLGA microparticles for long-term, pulsatile release of STING agonist for cancer immunotherapy. Sci Transl Med. 2020;12(556). doi: 10.1126/scitranslmed.aaz6606.
  • Sweeney EE, Balakrishnan PB, Powell AB, et al. PLGA nanodepots co-encapsulating prostratin and anti-CD25 enhance primary natural killer cell antiviral and antitumor function. Nano Res. 2020;13(3):736.
  • Kim SR, Ho MJ, Choi YW, et al. Improved drug loading and sustained release of entecavir‐loaded plga microsphere prepared by spray drying technique. Bull Korean Chem Soc. 2019;40(4):306–312.
  • Shi Y, Lu A, Wang X, et al. A review of existing strategies for designing long-acting parenteral formulations: focus on underlying mechanisms, and future perspectives. Acta Pharm Sin B. 2021;11(8):2396–2415.
  • O’Brien MN, Jiang W, Wang Y, et al. Challenges and opportunities in the development of complex generic long-acting injectable drug products. J Control Release. 2021 Jun 11;336:144–158.
  • Skidmore S, Hadar J, Garner J, et al. Complex sameness: separation of mixed poly(lactide-co-glycolide)s based on the lactide:glycolide ratio. J Control Release. 2019 Apr 28;300:174–184.
  • Garner J, Skidmore S, Park H, et al. Beyond Q1/Q2: the impact of manufacturing conditions and test methods on drug release from PLGA-based microparticle depot formulations. J Pharm Sci. 2018 Jan;107(1):353–361.
  • Park K, Skidmore S, Hadar J, et al. Injectable, long-acting PLGA formulations: Analyzing PLGA and understanding microparticle formation. J Control Release. 2019 Jun 28;304:125–134.
  • Abelha TF, Neumann PR, Holthof J, et al. Low molecular weight PEG–PLGA polymers provide a superior matrix for conjugated polymer nanoparticles in terms of physicochemical properties, biocompatibility and optical/photoacoustic performance. J Mat Chem B. 2019;7(33):5115–5124.
  • Mohammadpour F, Kamali H, Hadizadeh F, et al. The PLGA microspheres synthesized by a thermosensitive hydrogel emulsifier for sustained release of rispeRIDONE. J Pharm Innov. 2021;1–13 doi:10.1007/s12247-021-09544-7.
  • Yusop AH, Sarian MN, Januddi FS, et al. Structure, degradation, drug release and mechanical properties relationships of iron-based drug eluting scaffolds: the effects of PLGA. Mater Des. 2018;160:203–217.
  • Nkanga CI, Fisch A, Rad-Malekshahi M, et al. Clinically established biodegradable long acting injectables: an industry perspective. Adv Drug Deliv Rev. 2020 Dec;167:19–46.
  • Operti MC, Bernhardt A, Grimm S, et al. PLGA-based nanomedicines manufacturing: technologies overview and challenges in industrial scale-up. Int J Pharm. 2021 Aug 10;605:120807.
  • Wang J, Windbergs M. Influence of polymer composition and drug loading procedure on dual drug release from PLGA: PEG electrospun fibers. Eur J Pharm Sci. 2018;124:71–79.
  • Park K, Otte A, Sharifi F, et al. Potential roles of the glass transition temperature of PLGA microparticles in drug release kinetics. Mol Pharm. 2021 Jan 4 18(1):18–32.
  • Hua Y, Wang Z, Wang D, et al. Key factor study for generic long-acting PLGA microspheres based on a reverse engineering of vivitrol((R)). Molecules. 2021 Feb 25 26(5):1247.
  • Wang T, Xue P, Wang A, et al. Pore change during degradation of octreotide acetate-loaded PLGA microspheres: the effect of polymer blends. Eur J Pharm Sci. 2019;138:104990.
  • Hong JK, Schwendeman SP. Characterization of octreotide–PLGA binding by isothermal titration calorimetry. Biomacromolecules. 2020;21(10):4087–4093.
  • Butreddy A, Gaddam RP, Kommineni N, et al. PLGA/PLA-based long-acting injectable depot microspheres in clinical use: production and characterization overview for protein/peptide delivery. Int J Mol Sci. 2021;22(16):8884.
  • Otte A, Sharifi F, Park K. Interfacial tension effects on the properties of PLGA microparticles. Colloids Surf B Biointerfaces. 2020 Dec;196:111300.
  • Busatto C, Pesoa J, Helbling I, et al. Effect of particle size, polydispersity and polymer degradation on progesterone release from PLGA microparticles: experimental and mathematical modeling. Int J Pharm. 2018;536(1):360–369.
  • Wu Z, Zhao M, Zhang W, et al., Influence of drying processes on the structures, morphology and in vitro release profiles of risperidone-loaded PLGA microspheres. J Microencapsul. 36(1): 21–31. 2019.
  • Meng Q, Wang A, Hua H, et al. Intranasal delivery of huperzine a to the brain using lactoferrin-conjugated N-trimethylated chitosan surface-modified PLGA nanoparticles for treatment of Alzheimer’s disease. Int J Nanomedicine. 2018;13:705.
  • Mylonaki I, Allémann E, Delie F, et al. Imaging the porous structure in the core of degrading PLGA microparticles: the effect of molecular weight. J Control Release. 2018;286:231–239.
  • Tamani F, Hamoudi MC, Danede F, et al. Towards a better understanding of the release mechanisms of caffeine from PLGA microparticles. J Appl Polym Sci. 2020;137(25):48710.
  • Makino K, Nakajima T, Shikamura M, et al. Efficient intracellular delivery of rifampicin to alveolar macrophages using rifampicin-loaded PLGA microspheres: effects of molecular weight and composition of PLGA on release of rifampicin. Colloids Surf B Biointerfaces. 2004;36(1):35–42.
  • Ochi M, Wan B, Bao Q, et al. Influence of PLGA molecular weight distribution on leuprolide release from microspheres. Int J Pharm. 2021;599:120450.
  • Luan X, Bodmeier R. Influence of the poly (lactide-co-glycolide) type on the leuprolide release from in situ forming microparticle systems. J Control Release. 2006;110(2):266–272.
  • Wang Y, Qin B, Xia G, et al. FDA’s poly (lactic-co-glycolic acid) research program and regulatory outcomes. AAPS J. 2021 Jun 29;23(4):92.
  • Elmowafy EM, Tiboni M, Soliman ME. Biocompatibility, biodegradation and biomedical applications of poly (lactic acid)/poly (lactic-co-glycolic acid) micro and nanoparticles. J Pharm Invest. 2019;49(4):347–380.
  • Nakashima A, Izumi T, Ohya K, et al. Design of highly dispersible PLGA microparticles in aqueous fluid for the development of long-acting release injectables. Chem Pharm Bull. 2017;65(2):157–165.
  • Shen J, Lee K, Choi S, et al. A reproducible accelerated in vitro release testing method for PLGA microspheres. Int J Pharm. 2016 Feb 10 498(1–2):274–282.
  • Hickey T, Kreutzer D, Burgess D, et al. In vivo evaluation of a dexamethasone/PLGA microsphere system designed to suppress the inflammatory tissue response to implantable medical devices. J Biomed Mater Res. 2002;61(2):180–187.
  • Zolnik BS, Burgess DJ. Evaluation of in vivo–in vitro release of dexamethasone from PLGA microspheres. J Control Release. 2008;127(2):137–145.
  • Sequeira JA, Santos AC, Serra J, et al. Nanostructures for the Engineering of Cells, Tissues, and Organs, From Design to Applications . Poly (lactic-co-glycolic acid) (PLGA) matrix implants. Chapter 10 . Amsterdam (Netherlands): Elsevier; 2018. p. 375–402.
  • Żywicka B, Krucińska I, Garcarek J, et al. Biological properties of low-toxic PLGA and PLGA/PHB fibrous nanocomposite scaffolds for osseous tissue regeneration. Evaluation of potential bioactivity. Molecules. 2017;22(11):1852.
  • Tabata Y, Ikada Y High Performance Materials, A Comprehensive Guide to Medical and Pharmaceutical Applications. Phagocytosis of polymer microspheres by macrophages, Chapter 38. New York: Routledge; 2017. p. 621–646.
  • Andreas K, Zehbe R, Kazubek M, et al. Biodegradable insulin-loaded PLGA microspheres fabricated by three different emulsification techniques: investigation for cartilage tissue engineering. Acta Biomater. 2011;7(4):1485–1495.
  • Somayaji MR, Das D, Przekwas A. A new level a type ivivc for the rational design of clinical trials toward regulatory approval of generic polymeric long-acting injectables. Clin Pharmacokinet. 2016 Oct;55(10):1179–1190.
  • Martins C, Sousa F, Araujo F, et al. Functionalizing PLGA and PLGA derivatives for drug delivery and tissue regeneration applications. Adv Healthc Mater. 2018;7(1):1701035.
  • Rahnfeld L, Luciani P. Injectable lipid-based depot formulations: where do we stand? Pharmaceutics. 2020 Jun 19; 12(6):567.
  • Zhang C, Yang L, Wan F, et al. Quality by design thinking in the development of long-acting injectable PLGA/PLA-based microspheres for peptide and protein drug delivery. Int J Pharm. 2020 Jul 30;585:119441.
  • Andhariya JV, Choi S, Wang Y, et al. Accelerated in vitro release testing method for naltrexone loaded PLGA microspheres. Int J Pharm. 2017 Mar 30 520(1–2):79–85.
  • Schoubben A, Ricci M, Giovagnoli S. Meeting the unmet: from traditional to cutting-edge techniques for poly lactide and poly lactide-co-glycolide microparticle manufacturing. J Pharm Invest. 2019;49(4):381–404.
  • Pathak P, Paliwal S. A review on new trends in preparation of long acting microspheres. J Drug Deliv Therap. 2019;9(5):192–198.
  • Ramazani F, Chen W, van Nostrum CF, et al. Strategies for encapsulation of small hydrophilic and amphiphilic drugs in PLGA microspheres: state-of-the-art and challenges. Int J Pharm. 2016 Feb 29 499(1–2):358–367.
  • Zhou J, Walker J, Ackermann R, et al. Effect of manufacturing variables and raw materials on the composition-equivalent PLGA microspheres for 1-month controlled release of leuprolide. Mol Pharm. 2020;17(5):1502–1515.
  • Grizić D, Lamprecht A. Predictability of drug encapsulation and release from propylene carbonate/PLGA microparticles. Int J Pharm. 2020;586:119601.
  • Bode C, Kranz H, Kruszka A, et al. In-situ forming PLGA implants: how additives affect swelling and drug release. J Drug Delivery Sci Technol. 2019;53:101180.
  • Karp F, Turino LN, Helbling IM, et al. In situ formed implants, based on plga and eudragit blends, for novel florfenicol controlled release formulations. J Pharm Sci. 2021;110(3):1270–1278.
  • Park CW, Lee HJ, Oh DW, et al. Preparation and in vitro/in vivo evaluation of PLGA microspheres containing norquetiapine for long-acting injection. Drug Des Devel Ther. 2018;12:711–719.
  • Shen J, Burgess DJ. In vitro-in vivo correlation for complex non-oral drug products: where do we stand? J Control Release. 2015 Dec 10; 219:644–651
  • D’Souza S, Faraj JA, Giovagnoli S, et al. IVIVC from long acting olanzapine microspheres. Int J Biomater. 2014;2014:407065.
  • Benhabbour SR, Kovarova M, Jones C, et al. Ultra-long-acting tunable biodegradable and removable controlled release implants for drug delivery. Nat Commun. 2019 Sep 20 10(1):4324.
  • Bao Q, Zou Y, Wang Y, et al. Impact of formulation parameters on in vitro release from long-acting injectable suspensions. AAPS J. 2021 Mar 11 23(2):42.
  • Yoo J, Won YY. Phenomenology of the initial burst release of drugs from PLGA microparticles. ACS Biomater Sci Eng. 2020 Nov 9; 6(11):6053–6062.
  • Kohno M, Andhariya JV, Wan B, et al. The effect of PLGA molecular weight differences on risperidone release from microspheres. Int J Pharm. 2020 May 30;582:119339.
  • Tomic I, Mueller-Zsigmondy M, Vidis-Millward A, et al. In vivo release of peptide-loaded PLGA microspheres assessed through deconvolution coupled with mechanistic approach. Eur J Pharm Biopharm. 2018;125:21–27.
  • Wang X, Burgess DJ. Drug release from in situ forming implants and advances in release testing. Adv Drug Deliv Rev. 2021;178:113912.
  • Chhabra S, Sachdeva V, Singh S. Influence of end groups on in vitro release and biological activity of lysozyme from a phase-sensitive smart polymer-based in situ gel forming controlled release drug delivery system. Int J Pharm. 2007;342(1–2):72–77.
  • Owen A, Rannard S. Strengths, weaknesses, opportunities and challenges for long acting injectable therapies: insights for applications in HIV therapy. Adv Drug Deliv Rev. 2016 Aug 1; 103:144–156
  • Parent M, Nouvel C, Koerber M, et al., PLGA in situ implants formed by phase inversion: critical physicochemical parameters to modulate drug release. J Control Release. 172(1): 292–304. 2013.
  • Brodbeck K, DesNoyer J, McHugh A. Phase inversion dynamics of PLGA solutions related to drug delivery: part ii. the role of solution thermodynamics and bath-side mass transfer. J Control Release. 1999;62(3):333–344.
  • Ibrahim TM, El-Megrab NA, El-Nahas HM. An overview of PLGA in-situ forming implants based on solvent exchange technique: effect of formulation components and characterization. Pharm Dev Technol. 2021;26(7):709–728.
  • Zhang X, Yang L, Zhang C, et al. Effect of polymer permeability and solvent removal rate on in situ forming implants: drug burst release and microstructure. Pharmaceutics. 2019;11(10):520.
  • Duque L, Körber M, Bodmeier R. Improving release completeness from PLGA-based implants for the acid-labile model protein ovalbumin. Int J Pharm. 2018;538(1–2):139–146.
  • Shah TV, Vasava DV. A glimpse of biodegradable polymers and their biomedical applications. e-Polymers. 2019;19(1):385–410.
  • Li G, Yao L, Li J, et al. Preparation of poly (lactide-co-glycolide) microspheres and evaluation of pharmacokinetics and tissue distribution of BDMC-PLGA-MS in rats. Asian J Pharm Sci. 2018;13(1):82–90.
  • Andhariya JV, Jog R, Shen J, et al. Development of Level A in vitro-in vivo correlations for peptide loaded PLGA microspheres. J Control Release. 2019;308:1–13.
  • Kim S, Sah H. Merits of sponge-like PLGA microspheres as long-acting injectables of hydrophobic drug. J Biomater Sci Polym Ed. 2019;30(18):1725–1743.
  • Lee WY, Asadujjaman M, Jee J-P. Long acting injectable formulations: the state of the arts and challenges of poly(lactic-co-glycolic acid) microsphere, hydrogel, organogel and liquid crystal. J Pharm Invest. 2019;49(4):459–476.
  • Dolgin E. Long-acting HIV drugs advanced to overcome adherence challenge. Nat Med. 2014 Apr;20(4):323–324.
  • Qi F, Wu J, Li H, et al. Recent research and development of PLGA/PLA microspheres/nanoparticles: a review in scientific and industrial aspects. Front Chem Sci Eng. 2018;13(1):14–27.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.