266
Views
0
CrossRef citations to date
0
Altmetric
Review

Lipoplexes and polyplexes as nucleic acids delivery nanosystems: The current state and future considerations

ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon
Pages 577-594 | Received 31 Jan 2022, Accepted 06 May 2022, Published online: 27 Jun 2022

References

  • Guan S, Munder A, Hedtfeld S, et al. Self-assembled peptide-poloxamine nanoparticles enable in vitro and in vivo genome restoration for cystic fibrosis. Nat Nanotechnol. 2019;14:287–297.
  • Ndeboko B, Lemamy GJ, Nielsen PE, et al. Therapeutic potential of cell penetrating peptides (CPPs) and cationic polymers for chronic hepatitis B. Int J Mol Sci. 2015;16:28230–28241.
  • Vaughan HJ, Green JJ, Tzeng SY. Cancer-targeting nanoparticles for combinatorial nucleic acid delivery. Adv Mater. 2019;32:e1901081.
  • Akinc A, Maier MA, Manoharan M, et al. The onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs. Nat Nanotechnol. 2019;14:1084–1087.
  • Hua S, de Matos MBC, Metselaar JM, et al. Current trends and challenges in the clinical translation of nanoparticulate nanomedicines: Pathways for translational development and commercialization. Front Pharmacol. 2018;9:790.
  • Guan S, Rosenecker J. Nanotechnologies in delivery of mRNA therapeutics using nonviral vector-based delivery systems. Gene Ther. 2017;24:133–143.
  • Rezaee M, Oskuee RK, Nassirli H, et al. Progress in the development of lipopolyplexes as efficient non-viral gene delivery systems. J Control Release. 2016;236:1–14.
  • Zhang QY, Ho PY, Tu MJ, et al. Lipidation of polyethylenimine-based polyplex increases serum stability of bioengineered RNAi agents and offers more consistent tumoral gene knockdown in vivo. Int J Pharm. 2018;547:537–544.
  • Zylberberg C, Gaskill K, Pasley S, et al. Engineering liposomal nanoparticles for targeted gene therapy. Gene Ther. 2017;24:441–452.
  • Davis ME, Zuckerman JE, Choi CH, et al. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature. 2010;464:1067–1070.
  • Urnauer S, Schmohl KA, Tutter M, et al. Dual-targeted NIS polyplexes-a theranostic strategy toward tumors with heterogeneous receptor expression. Gene Ther. 2019;26:93–108.
  • Lostalé-Seijo I, Montenegro J. Synthetic materials at the forefront of gene delivery. Nat Rev Chem. 2018;2:258–277.
  • Hong E, Halman JR, Shah AB, et al. Structure and composition define immunorecognition of nucleic acid nanoparticles. Nano Lett. 2018;18:4309–4321. DOI:10.1021/acs.nanolett.8b01283
  • Zamboni WC, Szebeni J, Kozlov SV, et al. Animal models for analysis of immunological responses to nanomaterials: challenges and considerations. Adv Drug Deliv Rev. 2018;136-137:82–96.
  • Szebeni J, Simberg D, Gonzalez-Fernandez A, et al. Roadmap and strategy for overcoming infusion reactions to nanomedicines. Nat Nanotechnol. 2018;13:1100–1108.
  • Dobrovolskaia MA. Pre-clinical immunotoxicity studies of nanotechnology-formulated drugs: challenges, considerations and strategy. J Control Release. 2015;220:571–583. DOI:10.1016/j.jconrel.2015.08.056.
  • Dobrovolskaia MA, McNeil SE. Understanding the correlation between in vitro and in vivo immunotoxicity tests for nanomedicines. J Control Release. 2013;172:456–466.
  • Tong S, Moyo B, Lee CM, et al. Engineered materials for in vivo delivery of genome-editing machinery. Nat Rev Mater. 2019;4:726–737.
  • Zhu D, Yan H, Zhou Z, et al. Detailed investigation on how the protein Corona modulates the physicochemical properties and gene delivery of polyethylenimine (PEI) polyplexes. Biomater Sci. 2018;6:1800–1817.
  • Palchetti S, Digiacomo L, Giulimondi F, et al. A mechanistic explanation of the inhibitory role of the protein Corona on liposomal gene expression. Biochim Biophys Acta - Biomembr. 2020;1862:183159.
  • Maeda H. Polymer therapeutics and the EPR effect. J Drug Target. 2017;25:781–785.
  • Nierenberg D, Khaled AR, Flores O. Formation of a protein Corona influences the biological identity of nanomaterials. Rep Pract Oncol Radiother. 2018;23:300–308.
  • Giulimondi F, Digiacomo L, Pozzi D, et al. Interplay of protein Corona and immune cells controls blood residency of liposomes. Nat Commun. 2019;10:3686.
  • Dilliard SA, Cheng Q, Siegwart DJ. On the mechanism of tissue-specific mRNA delivery by selective organ targeting nanoparticles. Proc Natl Acad Sci U S A. 2021;118:e2109256118 doi:10.1073/pnas.2109256118.
  • Borgognoni CF, Mormann M, Qu Y, et al. Reaction of human macrophages on protein Corona covered TiO2 nanoparticles. Nanomedicine. 2015;11:275–282.
  • Kumar A, Bicer EM, Morgan AB, et al. Enrichment of immunoregulatory proteins in the biomolecular Corona of nanoparticles within human respiratory tract lining fluid. Nanomedicine. 2016;12:1033–1043.
  • Albanese A, Tang P, Chan W. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng. 2012;14:1–16.
  • Malone RW, Felgner PL, Verma IM. Cationic liposome-mediated RNA transfection. Proc Natl Acad Sci U S A. 1989;86:6077–6081.
  • Du Z, Munye MM, Tagalakis AD, et al. The role of the helper lipid on the DNA transfection efficiency of lipopolyplex formulations. Sci Rep. 2014;4:7107.
  • Radler JO, Koltover I, Salditt T, et al. Structure of DNA-cationic liposome complexes: DNA intercalation in multilamellar membranes in distinct interhelical packing regimes. Science. 1997;275:810–814.
  • Zuhorn IS, Bakowsky U, Polushkin E, et al. Nonbilayer phase of lipoplex-membrane mixture determines endosomal escape of genetic cargo and transfection efficiency. Mol Ther. 2005;11:801–810.
  • Kranz LM, Diken M, Haas H, et al. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature. 2016;534:396–401.
  • Digiacomo L, Pozzi D, Palchetti S, et al. Impact of the protein Corona on nanomaterial immune response and targeting ability. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2020;12:e1615.
  • Leventis R, Silvius JR. Interactions of mammalian cells with lipid dispersions containing novel metabolizable cationic amphiphiles. Biochim Biophys Acta. 1990;1023:124–132.
  • Kubota K, Onishi K, Sawaki K, et al. Effect of the nanoformulation of siRNA-lipid assemblies on their cellular uptake and immune stimulation. Int J Nanomedicine. 2017;12:5121–5133.
  • Lee J, Ahn HJ. PEGylated DC-Chol/DOPE cationic liposomes containing KSP siRNA as a systemic siRNA delivery carrier for ovarian cancer therapy. Biochem Biophys Res Commun. 2018;503:1716–1722.
  • Li Y, Liu R, Shi Y, et al. Zwitterionic poly(carboxybetaine)-based cationic liposomes for effective delivery of small interfering RNA therapeutics without accelerated blood clearance phenomenon. Theranostics. 2015;5:583–596.
  • Mohamed M, Abu Lila AS, Shimizu T, et al. PEGylated liposomes: immunological responses. Sci Technol Adv Mater. 2019;20:710–724.
  • De Serrano LO, Burkhart DJ. Liposomal vaccine formulations as prophylactic agents: design considerations for modern vaccines. J Nanobiotechnology. 2017;15:83.
  • Kozma GT, Meszaros T, Vashegyi I, et al. Pseudo-anaphylaxis to polyethylene glycol (PEG)-coated liposomes: Roles of anti-PEG IgM and complement activation in a porcine model of human infusion reactions. ACS Nano. 2019;13:9315–9324.
  • Shiraishi K, Kawano K, Maitani Y, et al. Exploring the relationship between anti-PEG IgM behaviors and PEGylated nanoparticles and its significance for accelerated blood clearance. J Control Release. 2016;234:59–67.
  • Tully M, Dimde M, Weise C, et al. Polyglycerol for half-life extension of proteins—alternative to PEGylation? Biomacromolecules. 2021;22:1406–1416.
  • Kierstead PH, Okochi H, Venditto VJ, et al. The effect of polymer backbone chemistry on the induction of the accelerated blood clearance in polymer modified liposomes. J Control Release. 2015;213:1–9.
  • Nogueira SS, Schlegel A, Maxeiner K, et al. Polysarcosine-functionalized lipid nanoparticles for therapeutic mRNA Delivery. ACS Appl Nano Mater. 2020;3:10634–10645.
  • Cao Z, Zhang L, Jiang S. Superhydrophilic zwitterionic polymers stabilize liposomes. Langmuir. 2012;28:11625–11632.
  • Shi D, Beasock D, Fessler A, et al. To PEGylate or not to PEGylate: immunological properties of nanomedicine’s most popular component, polyethylene glycol and its alternatives. Adv Drug Deliv Rev. 2022;180:114079.
  • Byk G, Dubertret C, Escriou V, et al. Synthesis, activity, and structure–activity relationship studies of novel cationic lipids for DNA transfer. J Med Chem. 1998;41:229–235.
  • Meka RR, Godeshala S, Marepally S, et al. Asymmetric cationic lipid based non-viral vectors for an efficient nucleic acid delivery [10.1039/C6RA07256A]. RSC Adv. 2016;6:77841–77848.
  • Kulkarni JA, Darjuan MM, Mercer JE, et al. On the formation and morphology of lipid nanoparticles containing ionizable cationic lipids and siRNA. ACS Nano. 2018;12:4787–4795.
  • Li L, Wang R, Wilcox D, et al. Developing lipid nanoparticle-based siRNA therapeutics for hepatocellular carcinoma using an integrated approach. Mol Cancer Ther. 2013;12:2308–2318.
  • Cheng X, Lee RJ. The role of helper lipids in lipid nanoparticles (LNPs) designed for oligonucleotide delivery. Adv Drug Deliv Rev. 2016;99:129–137.
  • Kanasty R, Dorkin JR, Vegas A, et al. Delivery materials for siRNA therapeutics. Nat Mater. 2013;12:967–977.
  • Cullis PR, Hope MJ. Lipid nanoparticle systems for enabling gene therapies. Mol Ther. 2017;25:1467–1475.
  • Viricel W, Poirier S, Mbarek A, et al. Cationic switchable lipids: pH-triggered molecular switch for siRNA delivery. Nanoscale. 2017;9:31–36.
  • Hafez IM, Maurer N, Cullis PR. On the mechanism whereby cationic lipids promote intracellular delivery of polynucleic acids. Gene Ther. 2001;8:1188–1196.
  • Hou X, Zaks T, Langer R, et al. Lipid nanoparticles for mRNA delivery. Nat Rev Mater. 2021;6:1078–1094.
  • Shende P, Ture N, Gaud RS, et al. Lipid- and polymer-based plexes as therapeutic carriers for bioactive molecules. Int J Pharm. 2019;558:250–260.
  • Arpicco S, Battaglia L, Brusa P, et al. Recent studies on the delivery of hydrophilic drugs in nanoparticulate systems. J Drug Delivery Sci Technol. 2016;32:298–312.
  • Bernkop-Schnurch A, Dunnhaupt S. Chitosan-based drug delivery systems. Eur J Pharm Biopharm. 2012;81:463–469.
  • Tros de Ilarduya C, Sun Y, Duzgunes N. Gene delivery by lipoplexes and polyplexes. Eur J Pharm Sci. 2010;40:159–170.
  • Wang W, Li W, Ma N, et al. Non-viral gene delivery methods. Curr Pharm Biotechnol. 2013;14:46–60.
  • Cao Y, Tan YF, Wong YS, et al. Recent advances in chitosan-based carriers for gene delivery. Mar Drugs. 2019;17:381.
  • Louw AM, Kolar MK, Novikova LN, et al. Chitosan polyplex mediated delivery of miRNA-124 reduces activation of microglial cells in vitro and in rat models of spinal cord injury. Nanomedicine. 2016;12:643–653.
  • Naskar S, Sharma S, Kuotsu K. Chitosan-based nanoparticles: An overview of biomedical applications and its preparation. J Drug Delivery Sci Technol. 2019;49:66–81.
  • Shamaeizadeh N, Varshosaz J, Mirian M, et al. Glutathione targeted tragacanthic acid-chitosan as a non-viral vector for brain delivery of miRNA-219a-5P: an in vitro/in vivo study. Int J Biol Macromol. 2022;200:543–556.
  • Cao Y, Tan YF, Wong YS, et al. Designing siRNA/chitosan-methacrylate complex nanolipogel for prolonged gene silencing effects. Sci Rep. 2022;12:3527.
  • Wu GY, Wu CH. Receptor-mediated in vitro gene transformation by a soluble DNA carrier system. J Biol Chem. 1987;262:4429–4432.
  • Farrell LL, Pepin J, Kucharski C, et al. A comparison of the effectiveness of cationic polymers poly-L-lysine (PLL) and polyethylenimine (PEI) for non-viral delivery of plasmid DNA to bone marrow stromal cells (BMSC). Eur J Pharm Biopharm. 2007;65:388–397.
  • Yamagata M, Kawano T, Shiba K, et al. Structural advantage of dendritic poly(L-lysine) for gene delivery into cells. Bioorg Med Chem. 2007;15:526–532.
  • Ohsaki M, Okuda T, Wada A, et al. In vitro gene transfection using dendritic poly(L-lysine). Bioconjug Chem. 2002;13:510–517.
  • Brissault B, Kichler A, Guis C, et al. Synthesis of linear polyethylenimine derivatives for DNA transfection. Bioconjug Chem. 2003;14(3):581–587.
  • Benns JM, Choi J-S, Mahato RI, et al. pH-sensitive cationic polymer gene delivery vehicle:  n -Ac-poly(l -histidine)-graft-poly(l -lysine) comb shaped polymer. Bioconjug Chem. 2000;11(5):637–645.
  • Hall A, Wu LP, Parhamifar L, et al. Differential modulation of cellular bioenergetics by poly(l-lysine)s of different molecular weights. Biomacromolecules. 2015;16:2119–2126.
  • Akinc A, Thomas M, Klibanov AM, et al. Exploring polyethylenimine-mediated DNA transfection and the proton sponge hypothesis. J Gene Med. 2005;7:657–663.
  • Nouri F, Sadeghpour H, Heidari R, et al. Preparation, characterization, and transfection efficiency of low molecular weight polyethylenimine-based nanoparticles for delivery of the plasmid encoding CD200 gene. Int J Nanomedicine. 2017;12:5557.
  • Monnery BD, Wright M, Cavill R, et al. Cytotoxicity of polycations: Relationship of molecular weight and the hydrolytic theory of the mechanism of toxicity. Int J Pharm. 2017;521:249–258.
  • Liu S, Gao Y, Zhou D, et al. Highly branched poly(β-amino ester) delivery of minicircle DNA for transfection of neurodegenerative disease related cells. Nat Commun. 2019;10:3307.
  • Lopez-Bertoni H, Kozielski KL, Rui Y, et al. Bioreducible polymeric nanoparticles containing multiplexed cancer stem cell regulating miRNAs inhibit glioblastoma growth and prolong survival. Nano Lett. 2018;18:4086–4094.
  • Green JJ, Zugates GT, Tedford NC, et al. Combinatorial modification of degradable polymers enables transfection of human cells comparable to adenovirus. Adv Mater. 2007;19:2836–2842.
  • Zhang F, Parayath NN, Ene CI, et al. Genetic programming of macrophages to perform anti-tumor functions using targeted mRNA nanocarriers. Nat Commun. 2019;10:3974.
  • Sunshine JC, Peng DY, Green JJ. Uptake and transfection with polymeric nanoparticles are dependent on polymer end-group structure, but largely independent of nanoparticle physical and chemical properties. Mol Pharm. 2012;9:3375–3383.
  • Dosta P, Segovia N, Cascante A, et al. Surface charge tunability as a powerful strategy to control electrostatic interaction for high efficiency silencing, using tailored oligopeptide-modified poly(beta-amino ester)s (PBAEs). Acta Biomater. 2015;20:82–93.
  • Venault A, Huang YC, Lo JW, et al. Tunable PEGylation of branch-type PEI/DNA polyplexes with a compromise of low cytotoxicity and high transgene expression: in vitro and in vivo gene delivery. J Mater Chem B. 2017;5:4732–4744.
  • Wu C, Li J, Wang W, et al. Rationally designed polycationic carriers for potent polymeric siRNA-mediated gene silencing. ACS Nano. 2018;12:6504–6514. DOI:10.1021/acsnano.7b08777
  • Cao Z, Jiang S. Super-hydrophilic zwitterionic poly(carboxybetaine) and amphiphilic non-ionic poly(ethylene glycol) for stealth nanoparticles. Nano Today. 2012;7(5):404–413.
  • Miyata K, Kakizawa Y, Nishiyama N, et al. Freeze-dried formulations for in vivo gene delivery of PEGylated polyplex micelles with disulfide crosslinked cores to the liver. J Control Release. 2005;109:15–23.
  • Takeda KM, Yamasaki Y, Dirisala A, et al. Effect of shear stress on structure and function of polyplex micelles from poly(ethylene glycol)-poly(l-lysine) block copolymers as systemic gene delivery carrier. Biomaterials. 2017;126:31–38.
  • Li Z, Zhang L, Jiang K, et al. Biosafety assessment of delivery systems for clinical nucleic acid therapeutics. Biosaf Health. 2022; ahead of print. DOI:10.1016/j.bsheal.2022.03.003.
  • Kumar Y, Kuche K, Swami R, et al. Exploring the potential of novel pH sensitive lipoplexes for tumor targeted gene delivery with reduced toxicity. Int J Pharm. 2020;573:118889.
  • Pandi P, Jain A, Kommineni N, et al. Dendrimer as a new potential carrier for topical delivery of siRNA: a comparative study of dendriplex vs. lipoplex for delivery of TNF-alpha siRNA. Int J Pharm. 2018;550:240–250.
  • Ju J, Huan ML, Wan N, et al. Cholesterol derived cationic lipids as potential non-viral gene delivery vectors and their serum compatibility. Bioorg Med Chem Lett. 2016;26:2401–2407.
  • Lou B, Jin R, Cheng J, et al. A hierarchical assembly strategy to engineer dextran-enveloped polyurethane nanopolyplexes for robust ovarian cancer gene therapy. Acta Biomater. 2018;78:260–273.
  • Chen G, Wang K, Wang Y, et al. Fluorination enhances serum stability of bioreducible poly(amido amine) polyplexes and enables Efficient intravenous siRNA delivery. Adv Healthc Mater. 2018;7:1700978.
  • Mandal H, Katiyar SS, Swami R, et al. epsilon-poly-l-lysine/plasmid DNA nanoplexes for efficient gene delivery in vivo. Int J Pharm. 2018;542:142–152.
  • Zhang T, Huang Y, Ma X, et al. Fluorinated oligoethylenimine nanoassemblies for efficient siRNA-mediated gene silencing in serum-containing media by effective endosomal escape. Nano Lett. 2018;18:6301–6311.
  • Palchetti S, Pozzi D, Capriotti AL, et al. Influence of dynamic flow environment on nanoparticle-protein Corona: from protein patterns to uptake in cancer cells. Colloids Surf B Biointerfaces. 2017;153:263–271.
  • Walkey CD, Olsen JB, Song F, et al. Protein Corona fingerprinting predicts the cellular interaction of gold and silver nanoparticles. ACS Nano. 2014;8:2439–2455.
  • Ooi YJ, Wen Y, Zhu J, et al. Surface charge switchable polymer/DNA nanoparticles responsive to tumor extracellular pH for tumor-triggered enhanced gene delivery. Biomacromolecules. 2020;21:1136–1148.
  • Gu J, Chen X, Xin H, et al. Serum-resistant complex nanoparticles functionalized with imidazole-rich polypeptide for gene delivery to pulmonary metastatic melanoma. Int J Pharm. 2014;461:559–569.
  • Kim A, Ng WB, Bernt W, et al. Validation of size estimation of nanoparticle tracking analysis on polydisperse macromolecule assembly. Sci Rep. 2019;9:2639.
  • ISO/TR 16197:2014. Nanotechnologies compilation and description of toxicological screening methods for manufactured nanomaterials. 2014. [cited 2022 Jan24]. Available from:www.iso.org
  • ASTM E2526-08, Standard test method for evaluation of cytotoxicity of nanoparticulate materials in porcine kidney cells and human hepatocarcinoma cells. 2013. [cited 2022 Jan24]. Available from: www.astm.org
  • Nanotechnology Characterization Laboratory, (NCL). Assay cascade protocols. Available from: https://ncl.cancer.gov/resources/assay-cascade-protocols. cited January 24, 2022.
  • Halamoda-Kenzaoui B, Holzwarth U, Roebben G, et al. Mapping of the available standards against the regulatory needs for nanomedicines. Wiley Interdiscip Rev-Nanomed Nanobiotechnol. 2019;11:e1531.
  • Urban P, Liptrott NJ, Bremer S. Overview of the blood compatibility of nanomedicines: a trend analysis of in vitro and in vivo studies. Wiley Interdiscip Rev-Nanomed Nanobiotechnol. 2019;11:e1546.
  • Rondon EP, Benabdoun HA, Vallieres F, et al. Evidence supporting the safety of pegylated diethylaminoethyl-chitosan polymer as a Nanovector for Gene Therapy Applications. Int J Nanomedicine. 2020;15:6183–6200.
  • Coolen A-L, Lacroix C, Mercier-Gouy P, et al. Poly(lactic acid) nanoparticles and cell-penetrating peptide potentiate mRNA-based vaccine expression in dendritic cells triggering their activation. Biomaterials. 2019;195:23–37.
  • Zhao Z, Yao WH, Wang N, et al. Synthesis and evaluation of mono- and multi-hydroxyl low toxicity pH-sensitive cationic lipids for drug delivery. Eur J Pharm Sci. 2019;133:69–78.
  • Novakowski S, Jiang K, Prakash G, et al. Delivery of mRNA to platelets using lipid nanoparticles. Sci Rep. 2019;9:552.
  • Vhora I, Lalani R, Bhatt P, et al. Lipid-nucleic acid nanoparticles of novel ionizable lipids for systemic BMP-9 gene delivery to bone-marrow mesenchymal stem cells for osteoinduction. Int J Pharm. 2019;563:324–336. DOI:10.1016/j.ijpharm.2019.04.006
  • Estapé Senti M, de Jongh CA, Dijkxhoorn K, et al. Anti-PEG antibodies compromise the integrity of PEGylated lipid-based nanoparticles via complement. J Control Release. 2022;341:475–486.
  • Khatri N, Baradia D, Vhora I, et al. Development and characterization of siRNA lipoplexes: effect of different lipids, in vitro evaluation in cancerous cell lines and in vivo toxicity study. AAPS PharmSciTech. 2014;15:1630–1643.
  • Routkevitch D, Sudhakar D, Conge M, et al. Efficiency of cytosolic delivery with poly(beta-amino ester) nanoparticles is dependent on the effective pKa of the polymer. ACS Biomater Sci Eng. 2020;6:3411–3421.
  • de Groot AM, Thanki K, Gangloff M, et al. Immunogenicity testing of lipidoids in vitro and in silico: Modulating lipidoid-mediated TLR4 activation by nanoparticle design. Mol Ther Nucleic Acids. 2018;11:159–169.
  • Ndeupen S, Qin Z, Jacobsen S, et al. The mRNA-LNP platform’s lipid nanoparticle component used in preclinical vaccine studies is highly inflammatory. iScience. 2021;24(12): 103479
  • Dobrovolskaia MA, Shurin M, Shvedova AA. Current understanding of interactions between nanoparticles and the immune system. Toxicol Appl Pharmacol. 2016;299:78–89.
  • Giselbrecht J, Wiedemann S, Reddy Pinnapireddy S, et al. Nucleic acid carrier composed of a branched fatty acid lysine conjugate—Interaction studies with blood components. Colloids Surf B Biointerfaces. 2019;184:110547.
  • Dey AK, Nougarede A, Clement F, et al. Tuning the immunostimulation properties of cationic lipid nanocarriers for nucleic acid delivery. Front Immunol. 2021;12:722411.
  • Yang Q, Liu S, Liu X, et al. Role of charge-reversal in the hemo/immuno-compatibility of polycationic gene delivery systems. Acta Biomater. 2019;96:436–455.
  • Tezgel O, Szarpak-Jankowska A, Arnould A, et al. Chitosan-lipid nanoparticles (CS-LNPs): Application to siRNA delivery. J Colloid Interface Sci. 2018;510:45–56.
  • Hussein WM, Cheong YS, Liu C, et al. Peptide-based targeted polymeric nanoparticles for siRNA delivery. Nanotechnology. 2019;30:415604.
  • Lokugamage MP, Vanover D, Beyersdorf J, et al. Optimization of lipid nanoparticles for the delivery of nebulized therapeutic mRNA to the lungs. Nat Biomed Eng. 2021;5:1059–1068.
  • Betker JL, Anchordoquy TJ. The effect of repeat administration of lipoplexes on gene delivery, biodistribution, and cytokine response in immunocompetent tumor-bearing mice. J Pharm Sci [ahead of print] .
  • Kenjo E, Hozumi H, Makita Y, et al. Low immunogenicity of LNP allows repeated administrations of CRISPR-Cas9 mRNA into skeletal muscle in mice. Nat Commun. 2021;12:7101.
  • Lokugamage MP, Gan Z, Zurla C, et al. Mild innate immune activation overrides efficient nanoparticle-mediated RNA delivery. Adv Mater. 2020;32:1904905.
  • Parhiz H, Brenner JS, Patel PN, et al. Added to pre-existing inflammation, mRNA-lipid nanoparticles induce inflammation exacerbation (IE). J Control Release. 2022;344:50–61.
  • Hatit MZC, Lokugamage MP, Dobrowolski CN, et al. Species-dependent in vivo mRNA delivery and cellular responses to nanoparticles. Nat Nanotechnol. 2022;17:310–318.
  • Urbanics R, Bedőcs P, Szebeni J. Lessons learned from the porcine CARPA model: constant and variable responses to different nanomedicines and administration protocols. Eur J Nanomed. 2015;7:219–231.
  • Dézsi L, Mészáros T, Kozma G, et al. A naturally hypersensitive porcine model may help understand the mechanism of COVID-19 mRNA vaccine-induced rare (pseudo) allergic reactions: complement activation as a possible contributing factor. GeroScience. 2022 [ahead of print] . DOI:10.1007/s11357-021-00495-y.
  • Langevin D, Lozano O, Salvati A, et al. Inter-laboratory comparison of nanoparticle size measurements using dynamic light scattering and differential centrifugal sedimentation. NanoImpact. 2018;10:97–107.
  • Newton HS, Dobrovolskaia MA. Immunophenotyping: analytical approaches and role in preclinical development of nanomedicines. Adv Drug Deliv Rev. 2022;185:114281. ahead of print. DOI:10.1016/j.addr.2022.114281.
  • Oliveira C, Silveira I, Veiga F, et al. Recent advances in characterization of nonviral vectors for delivery of nucleic acids: impact on their biological performance. Expert Opin Drug Deliv. 2015;12:27–39.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.