633
Views
3
CrossRef citations to date
0
Altmetric
Review

Polymer-based thermoresponsive hydrogels for controlled drug delivery

&
Pages 1203-1215 | Received 08 Apr 2022, Accepted 13 May 2022, Published online: 26 Jun 2022

References

  • Klouda L, Mikos AG. Thermoresponsive hydrogels in biomedical applications - a review. Eur J Pharm Biopharm. 2008;68(1):34.
  • Hoffman AS. Hydrogels for biomedical applications. Adv Drug Deliv Rev. 2012;64:18–23.
  • Hoffman AS. Hydrogels for biomedical applications. Ann N Y Acad Sci. 2001;944(1):62–73.
  • Øvrebø Ø, Perale G, Wojciechowski JP, et al. Design and clinical application of injectable hydrogels for musculoskeletal therapy. Bioeng Transl Med. 2022;7:e10295.
  • Mauri E, Papa S, Masi M, et al. Novel functionalization strategies to improve drug delivery from polymers. Expert Opin Drug Deliv. 2017;14(11):1305–1313.
  • Caron I, Rossi F, Papa S, et al. A new three dimensional biomimetic hydrogel to deliver factors secreted by human mesenchymal stem cells in spinal cord injury. Biomaterials. 2016;75:135–147.
  • Munoz-Robles BG, Kopyeva I, DeForest CA. Surface patterning of hydrogel biomaterials to probe and direct cell–matrix interactions. Adv Mater Interfaces. 2020;7(21):2001198.
  • Webber MJ, Tibbitt MW. Dynamic and reconfigurable materials from reversible network interactions. Nat Rev Mater. 2022;1–16. DOI:10.1038/s41578-021-00412-x.
  • Chai Q, Jiao Y, Yu X. Hydrogels for biomedical applications: their characteristics and the mechanisms behind them. Gels. 2017;3:6.
  • Simões S, Figueiras A, Veiga F, et al. Modular hydrogels for drug delivery. J Biomater Nanobiotechnol. 2012;3(2):185–199.
  • Peppas NA, Langer R. New challenges in biomaterials. Science. 1994;263(5154):1715–1720.
  • Ossipov DA, Hilborn J. Poly(vinyl alcohol)-based hydrogels formed by “click chemistry. Macromolecules. 2006;39(5):1709–1718.
  • Kuo CK, Ma PX. Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: part 1. Structure, gelation rate and mechanical properties. Biomaterials. 2001;22(6):511–521.
  • Burdick JA, Frankel D, Dernell WS, et al. An initial investigation of photocurable three-dimensional lactic acid based scaffolds in a critical-sized cranial defect. Biomaterials. 2003;24(9):1613–1620.
  • Peppas NA, Bures P, Leobandung W, et al. Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm. 2000;50(1):27–46.
  • Xu MM, Liu RJ, Yan Q. Biological Stimuli-responsive polymer systems: design, construction and controlled self-assembly. Chinese J Polym Sci. 2017;36(3):347–365. 363. 2017.
  • Sun X, Agate S, Salem KS, et al. Hydrogel-based sensor networks: compositions, properties, and applications - a review. ACS Appl Bio Mater. 2021;4(1):140–162.
  • Jochum FD, Theato P. Temperature- and light-responsive smart polymer materials. Chem Soc Rev. 2013;42(17):7468–7483.
  • Nicoletta FP, Cupelli D, Formoso P, et al. Light responsive polymer membranes: a review. Membranes (Basel). 2012;2(1):134–197.
  • Katsuno C, Konda A, Urayama K, et al. Pressure-responsive polymer membranes of slide-ring gels with movable cross-links. Adv Mater. 2013;25(33):4636–4640.
  • Reinhardt M, Dzubiella J, Trapp M, et al. Fine-tuning the structure of stimuli-responsive polymer films by hydrostatic pressure and temperature. Macromolecules. 2013;46(16):6541–6547.
  • Kim SJ, Kim HI, Park SJ, et al. Behavior in electric fields of smart hydrogels with potential application as bio-inspired actuators. Smart Mater Struct. 2005;14(4):511–514.
  • Wang M, Singh H, Hatton TA, et al. Field-responsive superparamagnetic composite nanofibers by electrospinning. Polymer. 2004;45(16):5505–5514.
  • Thévenot J, Oliveira H, Sandre O, et al. Magnetic responsive polymer composite materials. Chem Soc Rev. 2013;42(17):7099–7116.
  • Tagliazucchi M, Azzaroni O, Szleifer I. Responsive polymers end-tethered in solid-state nanochannels: when nanoconfinement really matters. J Am Chem Soc. 2010;132(35):12404–12411.
  • Tagliazucchi M, Szleifer I. Stimuli-responsive polymers grafted to nanopores and other nano-curved surfaces: structure, chemical equilibrium and transport. Soft Matter. 2012;8(28):7292–7305.
  • Xu MM, Liu RJ, Yan Q. Biological stimuli-responsive polymer systems: design, construction and controlled self-assembly. Chinese J Polym Sci. 2018;36(3):347–365.
  • Dan Z, Cao H, He X, et al. Biological stimuli-responsive cyclodextrin-based host-guest nanosystems for cancer therapy. Int J Pharm. 2015;483(1–2):63–68.
  • Bikram M, West JL. Thermo-responsive systems for controlled drug delivery. Expert Opin Drug Deliv. 2008;5(10):1077–1091.
  • Sponchioni M, Capasso Palmiero U, Moscatelli D. Thermo-responsive polymers: applications of smart materials in drug delivery and tissue engineering. Mater Sci Eng C. 2019;102:589–605.
  • Ward MA, Georgiou TK. Thermoresponsive polymers for biomedical applications. Polym. 2011;3(3):1215–1242.
  • Ebara M, Kotsuchibashi Y, Uto K, et al. Smart Biomaterials. Tokyo: Springer. 2014; p. 9–65.
  • Schild HG. Poly(N-isopropylacrylamide): experiment, theory and application. Prog Polym Sci. 1992;17(2):163–249.
  • Southall NT, Dill KA, Haymet ADJ. A view of the hydrophobic effect. J Phys Chem B. 2001;106(3):521–533.
  • Matanović MR, Kristl J, Grabnar PA. Thermoresponsive polymers: insights into decisive hydrogel characteristics, mechanisms of gelation, and promising biomedical applications. Int J Pharm. 2014;472(1–2):262–275.
  • Kasiński A, Zielińska-Pisklak M, Oledzka E, et al. Smart hydrogels – synthetic stimuli-responsive antitumor drug release systems. Int J Nanomedicine. 2020;15:4541–4572.
  • Norouzi M, Nazari B, Miller DW. Injectable hydrogel-based drug delivery systems for local cancer therapy. Drug Discov Today. 2016;21(11):1835–1849.
  • Agarwal P, Rupenthal ID. Injectable implants for the sustained release of protein and peptide drugs. Drug Discov Today. 2013;18(7–8):337–349.
  • Cao M, Wang Y, Hu X, et al., Reversible thermoresponsive peptide-PNIPAM hydrogels for controlled drug delivery. Biomacromolecules. 2019;20(9):3601–3610.
  • Tang S, Zhao L, Yuan J, et al. Physical hydrogels based on natural polymers. Hydrogels Based Nat Polym 2020; 51–89
  • Perale G, Rossi F, Sundstrom E, et al. Hydrogels in spinal cord injury repair strategies. ACS Chem Neurosci. 2011;2(7):336–345.
  • Vihola H, Laukkanen A, Tenhu H, et al. Drug release characteristics of physically cross-linked thermosensitive poly(N-vinylcaprolactam) hydrogel particles. J Pharm Sci. 2008;97(11):4783–4793.
  • Vihola H, Laukkanen A, Valtola L, et al. Cytotoxicity of thermosensitive polymers poly(N-isopropylacrylamide), poly(N-vinylcaprolactam) and amphiphilically modified poly(N-vinylcaprolactam). Biomaterials. 2005;26(16):3055–3064.
  • Bütün V, Armes SP, Billingham NC. Synthesis and aqueous solution properties of near-monodisperse tertiary amine methacrylate homopolymers and diblock copolymers. Polymer. 2001;42(14):5993–6008.
  • Becer CR, Hahn S, Fijten MWM, et al. Libraries of methacrylic acid and oligo(ethylene glycol) methacrylate copolymers with LCST behavior. J Polym Sci Part A Polym Chem. 2008;46(21):7138–7147.
  • Pakulska MM, Ballios BG, Shoichet MS. Injectable hydrogels for central nervous system therapy. Biomed Mater. 2012;7(2):024101.
  • Kim S, Nishimoto SK, Bumgardner JD, et al. A chitosan/β-glycerophosphate thermo-sensitive gel for the delivery of ellagic acid for the treatment of brain cancer. Biomaterials. 2010;31(14):4157–4166.
  • Ashraf S, Park HK, Park H, et al. Snapshot of phase transition in thermoresponsive hydrogel PNIPAM: role in drug delivery and tissue engineering. Macromol Res. 2016;24(4):297–304.
  • Okuyama Y, Yoshida R, Sakai K, et al. Swelling controlled zero order and sigmoidal drug release from thermo-responsive poly(N-isopropylacrylamide-co-butyl methacrylate) hydrogel. J Biomater Sci Polym Ed. 1993;4(5):545–556.
  • Bellotti E, Schilling AL, Little SR, et al. Injectable thermoresponsive hydrogels as drug delivery system for the treatment of central nervous system disorders: a review. J Control Release. 2021;329:16–35.
  • Kim S, Lee K, Cha C. Refined control of thermoresponsive swelling/deswelling and drug release properties of poly(N-isopropylacrylamide) hydrogels using hydrophilic polymer crosslinkers. J Biomater Sci Polym Ed. 2016;27(17):1698–1711.
  • Chen S, Zhong H, Gu B, et al. Thermosensitive phase behavior and drug release of in situ N-isopropylacrylamide copolymer. Mater Sci Eng C. 2012;32(8):2199–2204.
  • Alexander A, Ajazuddin KJ, Khan J, et al. Polyethylene glycol (PEG)–Poly(N-isopropylacrylamide) (PNIPAAm) based thermosensitive injectable hydrogels for biomedical applications. Eur J Pharm Biopharm. 2014;88(3):575–585.
  • Kang Derwent JJ, Mieler WF. Thermoresponsive hydrogels as a new ocular drug delivery platform to the posterior segment of the eye. Trans Am Ophthalmol Soc. 2008;106:206–213.
  • Alvarez-Lorenzo C, Concheiro A, Dubovik AS, et al. Temperature-sensitive chitosan-poly(N-isopropylacrylamide) interpenetrated networks with enhanced loading capacity and controlled release properties. J Control Release. 2005;102(3):629–641.
  • Park SY, Kim SY, Kang JH, et al., Design of thermoresponsive hydrogels by controlling the chemistry and imprinting of drug molecules within the hydrogel for enhanced loading and smart delivery of drugs. Mol Syst Des Eng. 2021;6(4):286–292.
  • Mai-ngam K, Boonkitpattarakul K, Sakulsombat M, et al. Synthesis and phase separation of amine-functional temperature responsive copolymers based on poly(N-isopropylacrylamide). Eur Polym J. 2009;45(4):1260–1269.
  • Lue SJ, Chen CH, Shih CM, et al. Grafting of poly(N-isopropylacrylamide-co-acrylic acid) on micro-porous polycarbonate films: regulating lower critical solution temperatures for drug controlled release. J Memb Sci. 2011;379(1–2):330–340.
  • Yoo MI, Sung YK, Cho SC, et al. Effect of polymer complex formation on the cloud-point of poly(N-isopropyl acrylamide) (PNIPAAm) in the poly(NIPAAm-co-acrylic acid): polyelectrolyte complex between poly(acrylic acid) and poly(allylamine). Polymer. 1997;38(11):2759–2765.
  • Constantin M, Bucatariu S, Harabagiu V, et al. Poly(N-isopropylacrylamide-co-methacrylic acid) pH/thermo-responsive porous hydrogels as self-regulated drug delivery system. Eur J Pharm Sci. 2014;62:86–95.
  • Ohya S, Nakayama Y, Matsuda T. Thermoresponsive artificial extracellular matrix for tissue engineering:  hyaluronic acid bioconjugated with poly(N -isopropylacrylamide) grafts. Biomacromolecules. 2001;2(3):856–863.
  • Gan J, Guan XX, Zheng J, et al. Biodegradable, thermoresponsive PNIPAM-based hydrogel scaffolds for the sustained release of levofloxacin. RSC Adv. 2016;6(39):32967–32978.
  • Li J, Yang C, Li H, et al. Cationic supramolecules composed of multiple oligoethylenimine-grafted β-cyclodextrins threaded on a polymer chain for efficient gene delivery. Adv Mater. 2006;18(22):2969–2974.
  • Li J, Li X, Ni X, et al. Self-assembled supramolecular hydrogels formed by biodegradable PEO-PHB-PEO triblock copolymers and alpha-cyclodextrin for controlled drug delivery. Biomaterials. 2006;27(22):4132–4140.
  • Chen G, Jiang M. Cyclodextrin-based inclusion complexation bridging supramolecular chemistry and macromolecular self-assembly. Chem Soc Rev. 2011;40(5):2254–2266.
  • Ha W, Yu J, Song X-Y, et al., Tunable temperature-responsive supramolecular hydrogels formed by prodrugs as a codelivery system. ACS Appl Mater Interfaces. 2014;6(13):11.
  • Dabbaghi A, Ramazani A, Farshchi N, et al. Synthesis, physical and mechanical properties of amphiphilic hydrogels based on polycaprolactone and polyethylene glycol for bioapplications: a review. J Ind Eng Chem. 2021;101:307–323.
  • Mishra GP, Tamboli V, Mitra AK. Effect of hydrophobic and hydrophilic additives on sol-gel transition and release behavior of timolol maleate from polycaprolactone-based hydrogel. Colloid Polym Sci. 2011;289(14):1553–1562.
  • Boffito M, Sirianni P, Di Rienzo AM, et al. Thermosensitive block copolymer hydrogels based on poly(ɛ-caprolactone) and polyethylene glycol for biomedical applications: state of the art and future perspectives. J Biomed Mater Res Part A. 2015;103(3):1276–1290.
  • Xu S, Wang W, Li X, et al. Sustained release of PTX-incorporated nanoparticles synergized by burst release of DOX⋅HCl from thermosensitive modified PEG/PCL hydrogel to improve anti-tumor efficiency. Eur J Pharm Sci. 2014;62:267–273.
  • Yan TD, Black D, Savady R, et al. Systematic review on the efficacy of cytoreductive surgery combined with perioperative intraperitoneal chemotherapy for peritoneal carcinomatosis from colorectal carcinoma. J Clin Oncol. 2006;24(24):4011–4019.
  • Ren Y, Li X, Han B, et al. Improved anti-colorectal carcinomatosis effect of tannic acid co-loaded with oxaliplatin in nanoparticles encapsulated in thermosensitive hydrogel. Eur J Pharm Sci. 2019;128:279–289.
  • Komatsu S, Asoh TA, Ishihara R, et al. Fabrication of thermoresponsive degradable hydrogel made by radical polymerization of 2-methylene-1,3-dioxepane: unique thermal coacervation in hydrogel. Polymer. 2019;179:121633.
  • Russo E, Villa C. Poloxamer hydrogels for biomedical applications. Pharm. 2019;11:671.
  • Attwood D, Collett JH, Tait CJ. The micellar properties of the poly(oxyethylene) - poly(oxypropylene) copolymer Pluronic F127 in water and electrolyte solution. Int J Pharm. 1985;26(1–2):25–33.
  • Agrawal M, Saraf S, Saraf S, et al. Stimuli-responsive In situ gelling system for nose-to-brain drug delivery. J Control Release. 2020;327:235–265.
  • Giuliano E, Paolino D, Fresta M, et al. Mucosal applications of poloxamer 407-based hydrogels: an overview. Pharm. 2018;10:159.
  • Habeck M. Temperature-sensitive gels: from tissue engineering to drug delivery. Drug Discov Today. 2001;6(11):553–554.
  • Alexander A, Saraf S, Saraf S. Understanding the role of poloxamer 407 based thermoreversible in situ gelling hydrogel for delivery of pegylated melphalan conjugate. Curr Drug Deliv. 2016;13(4):621–630.
  • Altuntaş E, Yener G. Formulation and evaluation of thermoreversible in situ nasal gels containing mometasone furoate for allergic rhinitis. AAPS PharmSciTech. 2017;18(7):2673–2682.
  • Koffi AA, Agnely F, Ponchel G, et al. Modulation of the rheological and mucoadhesive properties of thermosensitive poloxamer-based hydrogels intended for the rectal administration of quinine. Eur J Pharm Sci. 2006;27(4):328–335.
  • Khan S, Warade S, Singhavi DJ. Improvement in ocular bioavailability and prolonged delivery of tobramycin sulfate following topical ophthalmic administration of drug-loaded mucoadhesive microparticles incorporated in thermosensitive in situ gel. J Ocul Pharmacol Ther. 2018;34(3):287–297.
  • Sridhar V, Wairkar S, Gaud R, et al. Brain targeted delivery of mucoadhesive thermosensitive nasal gel of selegiline hydrochloride for treatment of Parkinson’s disease. J Drug Target. 2017;26:150–161.
  • Zhao YZ, Jiang X, Xiao J, et al. Using NGF heparin-poloxamer thermosensitive hydrogels to enhance the nerve regeneration for spinal cord injury. Acta Biomater. 2016;29:71–80.
  • Wang Q, He Y, Zhao Y, et al. A thermosensitive heparin-poloxamer hydrogel bridges AFGF to treat spinal cord injury. ACS Appl Mater Interfaces. 2017;9(8):6725–6745.
  • Boustta M, Colombo PE, Lenglet S, et al. Versatile UCST-based thermoresponsive hydrogels for loco-regional sustained drug delivery. J Control Release. 2014;174:1–6.
  • Zhao X, Wang H, Zou Y, et al. Injectable hydrogel materials for spinal cord regeneration: a review. Biomed Mater. 2012;7(1):012001.
  • Chatterjee S, Hui PCL, wai KC. Thermoresponsive hydrogels and their biomedical applications: special insight into their applications in textile based transdermal therapy. Polym. 2018;10(5):480.
  • Joly-Duhamel C, Hellio D, Djabourov M. All gelatin networks:  1. biodiversity and physical chemistry. Langmuir. 2002;18(19):7208–7217.
  • Chang Y, Xiao L, Tang Q. Preparation and characterization of a novel thermosensitive hydrogel based on chitosan and gelatin blends. J Appl Polym Sci. 2009;113(1):400–407.
  • Normand V, Lootens DL, Amici E, et al. New insight into agarose gel mechanical properties. Biomacromolecules. 2000;1(4):730–738.
  • Graham S, Marina PF, Blencowe A. Thermoresponsive polysaccharides and their thermoreversible physical hydrogel networks. Carbohydr Polym. 2019;207:143–159.
  • Forget A, Christensen J, Lüdeke S, et al. Polysaccharide hydrogels with tunable stiffness and provasculogenic properties via α-helix to β-sheet switch in secondary structure. Proc Natl Acad Sci U S A. 2013;110(32):12887–12892.
  • Schattling P, Jochum FD, Theato P. Multi-stimuli responsive polymers – the all-in-one talents. Polym Chem. 2013;5(1):25–36.
  • Van Hoorick J, Ottevaere H, Thienpont H, et al. Polymer and photonic materials towards biomedical breakthroughs. polym photonic mater towar biomed break. Cham, Switzerland: Springer. 2018; pp. 3–49.
  • Zhao YL, Fraser Stoddart J. Azobenzene-based light-responsive hydrogel system. Langmuir. 2009;25(15):8442–8446.
  • Chiang CY, Chu CC. Synthesis of photoresponsive hybrid alginate hydrogel with photo-controlled release behavior. Carbohydr Polym. 2015;119:18–25.
  • Park KM, Lee SY, Joung YK, et al. Thermosensitive chitosan-Pluronic hydrogel as an injectable cell delivery carrier for cartilage regeneration. Acta Biomater. 2009;5(6):1956–1965.
  • Bhattarai N, Matsen FA, Zhang M. PEG-grafted chitosan as an injectable thermoreversible hydrogel. Macromol Biosci. 2005;5(2):107–111.
  • Alexander A, Saraf S, Saraf S, et al. A comparative study of chitosan and poloxamer based thermosensitive hydrogel for the delivery of PEGylated melphalan conjugates. Drug Dev Ind Pharm. 2015;41(12):1954–1961.
  • Mu M, Li X, Tong A, et al. Multi-functional chitosan-based smart hydrogels mediated biomedical application. Expert Opin Drug Deliv. 2019;16(3):239–250.
  • Abashzadeh S, Dinarvand R, Sharifzadeh M, et al. Formulation and evaluation of an in situ gel forming system for controlled delivery of triptorelin acetate. Eur J Pharm Sci. 2011;44(4):514–521.
  • Saraf S, Ajazuddin AA, Khan J, et al. Advancement in stimuli triggered in situ gelling delivery for local and systemic route. Expert Opin Drug Deliv. 2012;9(12):1573–1592.
  • Yun Q, Wang SS, Xu S, et al. Use of 5-fluorouracil loaded micelles and cisplatin in thermosensitive chitosan hydrogel as an efficient therapy against colorectal peritoneal carcinomatosis. Macromol Biosci. 2017;17:1600262.
  • Muzzarelli RAA. Human enzymatic activities related to the therapeutic administration of chitin derivatives. Cell Mol Life Sci C 532. 1997;53(2):131–140.
  • Liu F, Urban MW. Recent advances and challenges in designing stimuli-responsive polymers. Prog Polym Sci. 2010;35(1–2):3–23.
  • Leach JB, Schmidt CE. Characterization of protein release from photocrosslinkable hyaluronic acid-polyethylene glycol hydrogel tissue engineering scaffolds. Biomaterials. 2005;26(2):125–135.
  • Shin B, Kim J, Vales TP, et al. Thermoresponsive drug controlled release from chitosan-based hydrogel embedded with poly(N -isopropylacrylamide) nanogels. J Polym Sci Part A Polym Chem. 2018;56(17):1907–1914.
  • Wang C, Zhao N, Yuan W. NIR/thermoresponsive injectable self-healing hydrogels containing polydopamine nanoparticles for efficient synergistic cancer thermochemotherapy. ACS Appl Mater Interfaces. 2020;12(8):9118–9131.
  • Zhang H, Guo S, Fu S, et al., A near-infrared light-responsive hybrid hydrogel based on UCST triblock copolymer and gold nanorods. Polym. 2017;9(12):238.
  • Basuki JS, Qie F, Mulet X, et al. Photo-modulated therapeutic protein release from a hydrogel depot using visible light. Angew Chem Int Educ. 2017;56(4):966–971.
  • Moretti L, Mazzanti A, Rossetti A, et al. Plasmonic control of drug release efficiency in agarose gel loaded with gold nanoparticle assemblies. Nanophotonics. 2021;10(1):247–257.
  • Li Z, Chen Y, Yang Y, et al. Recent advances in nanomaterials-based chemo-photothermal combination therapy for improving cancer treatment. Front Bioeng Biotechnol. 2019;7:293.
  • Matai I, Kaur G, Soni S, et al. Near-infrared stimulated hydrogel patch for photothermal therapeutics and thermoresponsive drug delivery. J Photochem Photobiol B Biol. 2020;210:111960.
  • Fujigaya T, Morimoto T, Niidome Y, et al. NIR laser-driven reversible volume phase transition of single-walled carbon nanotube/poly(N-isopropylacrylamide) composite gels. Adv Mater. 2008;20(19):3610–3614.
  • Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nat Mater. 2013;12(11):991–1003.
  • Pankhurst QA, Connolly J, Jones SK, et al. Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys. 2003;36(13):R167.
  • Stuart MAC, Huck WTS, Genzer J, et al. Emerging applications of stimuli-responsive polymer materials. Nat Mater. 2010;9(2):101–113.
  • Bedanta S, Kleemann W. Supermagnetism. J Phys D Appl Phys. 2008;42(1):013001.
  • Meenach SA, Anderson KW, Hilt JZ. Synthesis and characterization of thermoresponsive poly(ethylene glycol)-based hydrogels and their magnetic nanocomposites. J Polym Sci Part A Polym Chem. 2010;48(15):3229–3235.
  • Crippa F, Moore TL, Mortato M, et al. Dynamic and biocompatible thermo-responsive magnetic hydrogels that respond to an alternating magnetic field. J Magn Magn Mater. 2017;427:212–219.
  • Jalili NA, Jaiswal MK, Peak CW, et al. Injectable nanoengineered stimuli-responsive hydrogels for on-demand and localized therapeutic delivery. Nanoscale. 2017;9(40):15379–15389.
  • Campbell S, Maitland D, Hoare T. Enhanced pulsatile drug release from injectable magnetic hydrogels with embedded thermosensitive microgels. ACS Macro Lett. 2015;4(3):312–316.
  • Hendrickson GR, Andrew Lyon L. Microgel translocation through pores under confinement. Angew Chem Int Educ. 2010;49:2193–2197.
  • Knecht LD, Ali N, Wei Y, et al. Nanoparticle-mediated remote control of enzymatic activity. ACS Nano. 2012;6(10):9079–9086.
  • Naseri-Nosar M, Ziora ZM. Wound dressings from naturally-occurring polymers: a review on homopolysaccharide-based composites. Carbohydr Polym. 2018;189:379–398.
  • Hu M, Korschelt K, Daniel P, et al. Fibrous nanozyme dressings with catalase-like activity for H 2 O 2 reduction to promote wound healing. ACS Appl Mater Interfaces. 2017;9(43):38024–38031.
  • Gao W, Jin W, Li Y, et al. A highly bioactive bone extracellular matrix-biomimetic nanofibrous system with rapid angiogenesis promotes diabetic wound healing. J Mater Chem B. 2017;5(35):7285–7296.
  • Pereira RF, Bártolo PJ. Traditional therapies for skin wound healing. Adv Wound Care. 2016;5(5):208–229.
  • Neibert K, Gopishetty V, Grigoryev A, et al. Wound-healing with mechanically robust and biodegradable hydrogel fibers loaded with silver nanoparticles. Adv Healthc Mater. 2012;1(5):621–630.
  • Zhang X, Tian C, Chen Z, et al. Hydrogel‐based multifunctional dressing combining magnetothermally responsive drug delivery and stem cell therapy for enhanced wound healing. Adv Ther. 2020;3(9):2000001.
  • Wang S, Yang H, Tang Z, et al. Wound dressing model of human umbilical cord mesenchymal stem cells-alginates complex promotes skin wound healing by paracrine signaling. Stem Cells Int. 2016;2016:1–8.
  • Bagherifard S, Tamayol A, Mostafalu P, et al. Dermal patch with integrated flexible heater for on demand drug delivery. Adv Healthc Mater. 2016;5(1):175–184.
  • Fernández VVA, Aguilar J, Becerra F, et al. Tailoring thermoresponsive nanostructured poly(N-isopropylacrylamide) hydrogels made with poly(acrylamide) nanoparticles. Colloid Polym Sci. 2013;291(8):1829–1842.
  • Sabnis A, Wadajkar AS, Aswath P, et al. Factorial analyses of photopolymerizable thermoresponsive composite hydrogels for protein delivery. Nanomedicine. 2009;5(3):305.
  • Park K. The controlled drug delivery systems: past forward and future back. J Control Release. 2014;190:3.
  • Li J, Paulson JA. Designing hydrogels for controlled drug delivery Nat Rev Mater . 2016;1:16071.
  • Bernhard S, Tibbitt MW. Supramolecular engineering of hydrogels for drug delivery. Adv Drug Deliv Rev. 2021;171:240–256.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.