357
Views
0
CrossRef citations to date
0
Altmetric
Review

Cancer bone metastases and nanotechnology-based treatment strategies

, , , ORCID Icon &
Pages 1217-1232 | Received 28 Apr 2022, Accepted 21 Jun 2022, Published online: 03 Jul 2022

References

  • Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortalityworldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–249.
  • Coleman RE, Croucher PI, Padhani AR, et al. Bone metastases. Nat Rev Dis Primers. 2020;6(1):83.
  • Coleman RE. Clinical features of metastatic bone disease and risk of skeletal morbidity. Clin Cancer Res. 2006;12(20 Pt 2):6243s–6249s.
  • Boxer DI, Todd CE, Coleman R, et al. Bone secondaries in breast cancer: the solitary metastasis. J Nucl Med. 1989;30(8):1318–1320.
  • von Moos R, Costa L, Gonzalez-Suarez E, et al. Management of bone health in solid tumours: from bisphosphonates to a monoclonal antibody. Cancer Treat Rev. 2019;76:57–67.
  • Coleman R, Hadji P, Body JJ, et al. Bone health in cancer: ESMO clinical practice guidelines. Ann Oncol. 2020;31(12):1650–1663.
  • Yong M, Jensen AØ, Jacobsen JB, et al. Survival in breast cancer patients with bone metastases and skeletal-related events: a population-based cohort study in Denmark (1999-2007). Breast Cancer Res Treat. 2011;129(2):495–503.
  • Nørgaard M, Jensen AØ, Jacobsen JB, et al. Skeletal related events, bone metastasis and survival of prostate cancer: a population based cohort study in Denmark (1999 to 2007). J Urol. 2010;184(1):162–167.
  • Zhang W, Bado IL, Hu J, et al. The bone microenvironment invigorates metastatic seeds for further dissemination. Cell. 2021;184(9):2471–2486.e20.
  • Choksi P, Papaleontiou M, Guo C, et al. Skeletal complications and mortality in thyroid cancer: a population-based study. J Clin Endocrinol Metab. 2017;102(4):1254–1260.
  • Ruatta F, Derosa L, Escudier B, et al. Prognosis of renal cell carcinoma with bone metastases: experience from a large cancer centre. Eur J Cancer. 2019;107:79–85.
  • Cetin K, Christiansen CF, Jacobsen JB, et al. Bone metastasis, skeletal-related events, and mortality in lung cancer patients: a Danish population-based cohort study. Lung Cancer. 2014;86(2):247–254.
  • Kanthan R, Loewy J, Kanthan SC. Skeletal metastases in colorectal carcinomas: a Saskatchewan profile. Dis Colon Rectum. 1999;42(12):1592–1597.
  • Fornetti J, Welm AL, Stewart SA. Understanding the bone in cancer metastasis. J Bone Miner Res. 2018;33(12):2099–2113.
  • Satcher RL, Zhang XH. Evolving cancer-niche interactions and therapeutic targets during bone metastasis. Nat Rev Cancer. 2022;22(2):85–101.
  • Sowder ME, Johnson RW. Bone as a preferential site for metastasis. JBMR Plus. 2019;3(3):e10126–e10126.
  • Zhang W, Bado I, Wang H, et al. Bone metastasis: find your niche and fit in. Trends Cancer. 2019;5(2):95–110.
  • Clezardin P, Coleman R, Puppo M, et al. Bone metastasis: mechanisms, therapies, and biomarkers. Physiol Rev. 2021;101(3):797–855.
  • Spencer JA, Ferraro F, Roussakis E, et al. Direct measurement of local oxygen concentration in the bone marrow of live animals. Nature. 2014;508(7495):269–273.
  • Baschuk N, Rautela J, Parker BS. Bone specific immunity and its impact on metastasis. Bonekey Rep. 2015;4:665.
  • Ellis SL, Nilsson SK. The location and cellular composition of the hemopoietic stem cell niche. Cytotherapy. 2012;14(2):135–143.
  • Yang H, Yu Z, Ji S, et al. Targeting bone microenvironments for treatment and early detection of cancer bone metastatic niches. J Control Release. 2022;341:443–456.
  • Zhang W, Wang F, Hu C, et al. The progress and perspective of nanoparticle-enabled tumor metastasis treatment. Acta Pharm Sin B. 2020;10(11):2037–2053.
  • Yu W, Hu C, Gao H. Advances of nanomedicines in breast cancer metastasis treatment targeting different metastatic stages. Adv Drug Deliv Rev. 2021;178:113909.
  • Peng S, Xiao F, Chen M, et al. Tumor‐microenvironment‐responsive nanomedicine for enhanced cancer immunotherapy. Adv Sci. 2022;9(1):2103836.
  • Yu W, Liu R, Zhou Y, et al. Size-tunable strategies for a tumor targeted drug delivery system. ACS Cent Sci. 2020;6(2):100–116.
  • Zhang S, Xibo P, Huile G, et al. Metal-organic framework-based nanomaterials for biomedical applications. Chin Chem Lett. 2020;31(5):1060–1070.
  • Jia W, Wang Y, Liu R, et al. Shape transformable strategies for drug delivery. Adv Funct Mater. 2021;31(18):2009765.
  • Cheng X, Wei J, Ge Q, et al. The optimized drug delivery systems of treating cancer bone metastatic osteolysis with nanomaterials. Drug Deliv. 2021;28(1):37–53.
  • Coughlin TR, Romero-Moreno R, Mason DE, et al. Bone: a fertile soil for cancer metastasis. Curr Drug Targets. 2017;18(11):1281.
  • Liu Y, Cao X. Characteristics and significance of the pre-metastatic niche. Cancer Cell. 2016;30(5):668–681.
  • Kaplan RN, Psaila B, Lyden D. Bone marrow cells in the ‘pre-metastatic niche’: within bone and beyond. Cancer Metast Rev. 2007;25(4):521–529.
  • Ursini-Siegel J, Siegel PM. The influence of the pre-metastatic niche on breast cancer metastasis. Cancer Lett. 2016;380(1):281–288.
  • Shiozawa Y, Eber MR, Berry JE, et al. Bone marrow as a metastatic niche for disseminated tumor cells from solid tumors. Bonekey Rep. 2015;4:689.
  • Kang J, La Manna F, Bonollo F, et al. Tumor microenvironment mechanisms and bone metastatic disease progression of prostate cancer. Cancer Lett. 2022;530:156–169.
  • Yuan X, Qian N, Ling S, et al. Breast cancer exosomes contribute to pre-metastatic niche formation and promote bone metastasis of tumor cells. Theranostics. 2021;11(3):1429–1445.
  • Wels J, Kaplan RN, Rafii S, et al. Migratory neighbors and distant invaders: tumor-associated niche cells. Genes Dev. 2008;22(5):559–574.
  • Wang Y, Ren S, Wang Z, et al. Chemokines in bone-metastatic breast cancer: therapeutic opportunities. Int Immunopharmacol. 2020;87:106815.
  • Weidle UH, Birzele F, Kollmorgen G, et al. Molecular mechanisms of bone metastasis. Cancer Genomics Proteomics. 2016;13(1):1–12.
  • Midavaine É, Côté J, Sarret P. The multifaceted roles of the chemokines CCL2 and CXCL12 in osteophilic metastaticcancers. Cancer Metastasis Rev. 2021;40(2):427–445.
  • van Driel M, van Leeuwen JPTM. Cancer and bone: a complex complex. Arch Biochem Biophys. 2014;561:159–166.
  • Sanmartin MC, Borzone FR, Giorello MB, et al. Bone marrow/bone pre-metastatic niche for breast cancer cells colonization: the role of mesenchymal stromal cells. Crit Rev Oncol Hematol. 2021;164:103416.
  • Schneider JG, Amend SR, Weilbaecher KN. Integrins and bone metastasis: integrating tumor cell and stromal cell interactions. Bone. 2011;48(1):54–65.
  • Sharma R, Sharma R, Khaket TP, et al. Breast cancer metastasis: putative therapeutic role of vascular cell adhesion molecule-1. Cell Oncol (Dordr). 2017;40(3):199–208.
  • Braun S, Pantel K, Müller P, et al. Cytokeratin-positive cells in the bone marrow and survival of patients with stage I,II, or III breast cancer. N Engl J Med. 2000;342(8):525–533.
  • Salvador F, Llorente A, Gomis RR. From latency to overt bone metastasis in breast cancer: potential for treatment and prevention. J Pathol. 2019;249(1):6–18.
  • Aguirre-Ghiso JA, Sosa MS. Emerging topics on disseminated cancer cell dormancy and the paradigm of metastasis. Annu Rev Cancer Biol. 2018;2(1):377–393.
  • Vičić I, Belev B. The pathogenesis of bone metastasis in solid tumors: a review. Croat Med J. 2021;62(3):270–282.
  • Shiozawa Y, Pedersen EA, Patel LR, et al. GAS6/AXL axis regulates prostate cancer invasion, proliferation, and survival in the bone marrow niche. Neoplasia. 2010;12(2):116–127.
  • Ghajar CM, Peinado H, Mori H, et al. The perivascular niche regulates breast tumour dormancy. Nat Cell Biol. 2013;15(7):807–817.
  • Ono M, Kosaka N, Tominaga N, et al. Exosomes from bone marrow mesenchymal stem cells contain a microRNA that promotes dormancy in metastatic breast cancer cells. Sci Signal. 2014;7(332):ra63.
  • Byrne NM, Summers MA, McDonald MM. Tumor cell dormancy and reactivation in bone: skeletal biology and therapeutic opportunities. JBMR Plus. 2019;3(3):e10125.
  • Owen S, Zabkiewicz C, Ye L, et al. Key factors in breast cancer dissemination and establishment at the bone: past, present and future perspectives. Adv Exp Med Biol. 2017;1026:197–216.
  • Shupp A, Kolb A, Mukhopadhyay D, et al. Cancer metastases to bone: concepts, mechanisms, and interactions with bone osteoblasts. Cancers (Basel). 2018;10(6):182.
  • Peinado H, Zhang H, Matei IR, et al. Pre-metastatic niches: organ-specific homes for metastases. Nat Rev Cancer. 2017;17(5):302–317.
  • Shin E, Koo JS. The role of adipokines and bone marrow adipocytes in breast cancer bone metastasis. Int J Mol Sci. 2020;21(14):4967.
  • Alsamraae M, Cook LM. Emerging roles for myeloid immune cells in bone metastasis. Cancer Metast Rev. 2021;40(2):413–425.
  • Bado IL, Zhang W, Hu J, et al. The bone microenvironment increases phenotypic plasticity of ER(+) breast cancer cells. Dev Cell. 2021;56(8):1100–1117.e9.
  • Ban J, Fock V, Aryee DNT, et al. Mechanisms, diagnosis and treatment of bone metastases. Cells. 2021;10(11):2944.
  • Yang M, Liu C, Yu X. Skeletal-related adverse events during bone metastasis of breast cancer: current status. Discov Med. 2019;27(149):211–220.
  • Dionísio MR, Mansinho A, Abreu C, et al. Clinical and translational pharmacology of drugs for the prevention and treatment of bone metastases and cancer-induced bone loss. Br J Clin Pharmacol. 2019;85(6):1114–1124.
  • Nichols JW, Bae YH. EPR: evidence and fallacy. J Control Release. 2014;190:451–464.
  • Mu CF, Shen J, Liang J, et al. Targeted drug delivery for tumor therapy inside the bone marrow. Biomaterials. 2018;155:191–202.
  • Sarin H. Physiologic upper limits of pore size of different blood capillary types and another perspective on the dual pore theory of microvascular permeability. J Angiogenes Res. 2010;2:14.
  • Adjei IM, Sharma B, Peetla C, et al. Inhibition of bone loss with surface-modulated, drug-loaded nanoparticles in an intraosseous model of prostate cancer. J Control Release. 2016;232:83–92.
  • Milla P, Dosio F, Cattel L. PEGylation of proteins and liposomes: a powerful and flexible strategy to improve the drug delivery. Curr Drug Metab. 2012;13(1):105–119.
  • Yadav D, Dewangan HK. PEGYLATION: an important approach for novel drug delivery system. J Biomater Sci Polym Ed. 2021;32(2):266–280.
  • Ernsting MJ, Murakami M, Undzys E, et al. A docetaxel-carboxymethylcellulose nanoparticle outperforms the approved taxanenanoformulation, Abraxane, in mouse tumor models with significant control ofmetastases. J Control Release. 2012;162(3):575–581.
  • Kroon J, Buijs JT, van der Horst G, et al. Liposomal delivery of dexamethasone attenuates prostate cancer bone metastatic tumor growth in vivo. Prostate. 2015;75(8):815–824.
  • Wenande E, Garvey LH. Immediate-type hypersensitivity to polyethylene glycols: a review. Clin Exp Allergy. 2016;46(7):907–922.
  • Hu J, Yuan X, Wang F, et al. The progress and perspective of strategies to improve tumor penetration of nanomedicines. Chin Chem Lett. 2021;32(4):1341–1347.
  • Maeda H, Fang J, Inutsuka T, et al. Vascular permeability enhancement in solid tumor: various factors, mechanisms involved and its implications. Int Immunopharmacol. 2003;3(3):319–328.
  • Less JR, Skalak TC, Sevick EM, et al. Microvascular architecture in a mammary carcinoma: branching patterns and vesseldimensions. Cancer Res. 1991;51(1):265–273.
  • Yang S, Gao H. Nanoparticles for modulating tumor microenvironment to improve drug delivery and tumor therapy. Pharmacol Res. 2017;126(SI):97–108.
  • Zhou Y, Chen X, Cao J, et al. Overcoming the biological barriers in the tumor microenvironment for improving drug delivery and efficacy. J Mat Chem B. 2020;8(31):6765–6781.
  • Eikenes L, Bruland ØS, Brekken C, et al. Collagenase increases the transcapillary pressure gradient and improves the uptake and distribution of monoclonal antibodies in human osteosarcoma xenografts. Cancer Res. 2004;64(14):4768–4773.
  • Cun X, Ruan S, Chen J, et al. A dual strategy to improve the penetration and treatment of breast cancer by combining shrinking nanoparticles with collagen depletion by losartan. Acta Biomater. 2016;31:186–196.
  • Martin JD, Seano G, Jain RK. Normalizing function of tumor vessels: progress, opportunities, and challenges. Annu Rev Physiol. 2019;81:505–534.
  • Chauhan VP, Stylianopoulos T, Martin JD, et al. Normalization of tumour blood vessels improves the delivery of nanomedicines in a size-dependent manner. Nat Nanotechnol. 2012;7(6):383–388.
  • Liu R, An Y, Jia W, et al. Macrophage-mimic shape changeable nanomedicine retained in tumor for multimodal therapy of breast cancer. J Control Release. 2020;321:589–601.
  • Liu R, Yu M, Yang X, et al. Linear chimeric triblock molecules self-assembled micelles with controllably transformable property to enhance tumor retention for chemo-photodynamic therapy of breast cancer. Adv Funct Mater. 2019;29(23):1808462.
  • Qin Y, Tong F, Zhang W, et al. Self-delivered supramolecular nanomedicine with transformable shape for ferrocene-amplified photodynamic therapy of breast cancer and bone metastases. Adv Funct Mater. 2021;31(210464542):2104645.
  • Lee H, Shields AF, Siegel BA, et al. (64)Cu-MM-302 Positron emission tomography quantifies variability of enhanced permeability and retention of nanoparticles in relation to treatment response in patients with metastatic breast cancer. Clin Cancer Res. 2017;23(15):4190–4202.
  • Gao X, Li L, Cai X, et al. Targeting nanoparticles for diagnosis and therapy of bone tumors: opportunities and challenges. Biomaterials. 2021;265:120404.
  • Neale JR, Richter NB, Merten KE, et al. Bone selective effect of an estradiol conjugate with a novel tetracycline-derived bone-targeting agent. Bioorg Med Chem Lett. 2009;19(3):680–683.
  • Nadar RA, Margiotta N, Iafisco M, et al. Bisphosphonate-functionalized imaging agents, anti-tumor agents and nanocarriers for treatment of bone cancer. Adv Healthc Mater. 2017;6(8):1601119.
  • Katsumi H, Yamashita S, Morishita M, et al. Bone-targeted drug delivery systems and strategies for treatment of bone metastasis. Chem Pharm Bull (Tokyo). 2020;68(7):560–566.
  • Miller K, Clementi C, Polyak D, et al. Poly(ethylene glycol)-paclitaxel-alendronate self-assembled micelles for the targeted treatment of breast cancer bone metastases. Biomaterials. 2013;34(15):3795–3806.
  • Zayed GM, Tessmar JK. Heterobifunctional poly(ethylene glycol) derivatives for the surface modification of gold nanoparticles toward bone mineral targeting. Macromol Biosci. 2012;12(8):1124–1136.
  • Liu Y, Jia Z, Akhter MP, et al. Bone-targeting liposome formulation of Salvianic acid A accelerates the healing of delayed fracture Union in Mice. Nanomedicine. 2018;14(7):2271–2282.
  • Alexandrino EM, Ritz S, Marsico F, et al. Paclitaxel-loaded polyphosphate nanoparticles: a potential strategy for bone cancer treatment. J Mater Chem B. 2014;2(10):1298–1306.
  • Iwasaki Y, Yokota A, Otaka A, et al. Bone-targeting poly(ethylene sodium phosphate). Biomater Sci. 2017;6(1):91–95.
  • Zhou Z, Fan T, Yan Y, et al. One stone with two birds: phytic acid-capped platinum nanoparticles for targeted combination therapy of bone tumors. Biomaterials. 2019;194:130–138.
  • Yarbrough DK, Hagerman E, Eckert R, et al. Specific binding and mineralization of calcified surfaces by small peptides. Calcif Tissue Int. 2010;86(1):58–66.
  • Low SA, Yang J, Kopeček J. Bone-targeted acid-sensitive doxorubicin conjugate micelles as potential osteosarcoma therapeutics. Bioconjug Chem. 2014;25(11):2012–2020.
  • Wang D, Miller S, Kopeckova P, et al. Bone-targeting macromolecular therapeutics. Adv Drug Deliv Rev. 2005;57(7):1049–1076.
  • Shimoda Y, Kitajima K, Inoue S, et al. Calcium ion binding of three different types of oligo/polysialic acids as studied by equilibrium dialysis and circular dichroic methods. Biochemistry. 1994;33(5):1202–1208.
  • Yan Y, Gao X, Zhang S, et al. A carboxyl-terminated dendrimer enables osteolytic lesion targeting and photothermal ablation of malignant bone tumors. ACS Appl Mater Interfaces. 2019;11(1):160–168.
  • Xing L, Ebetino FH, Boeckman RK Jr, et al. Targeting anti-cancer agents to bone using bisphosphonates. Bone (New York, NY). 2020;138:115492.
  • Schott S, Wallwiener M, Kootz B, et al. Cytotoxicity of the new antimetabolite-bisphosphonate (5-FdU-alendronate) in comparison to standard therapeutics on breast and ovarian cancer cell lines in the ATP tumor chemosensitivity assay. Invest New Drugs. 2012;30(4):1750–1755.
  • Holmberg AR, Lerner UH, Alayia AA, et al. Development of a novel poly bisphosphonate conjugate for treatment of skeletal metastasis and osteoporosis. Int J Oncol. 2010;37(3):563.
  • El-Mabhouh AA, Nation PN, Abele JT, et al. A conjugate of gemcitabine with bisphosphonate (Gem/BP) shows potential as a targeted bone-specific therapeutic agent in an animal model of human breast cancer bone metastases. Oncol Res. 2011;19(6):287.
  • Wang H, Xiao L, Tao J, et al. Synthesis of a bone-targeted bortezomib with in vivo anti-myeloma effects in mice. Pharmaceutics. 2018;10(3):154.
  • Otaka A, Yamaguchi T, Saisho R, et al. Bone-targeting phospholipid polymers to solubilize the lipophilic anticancer drug. J Biomed Mater Res A. 2020;108(10):2090–2099.
  • Bai SB, Cheng Y, Liu D-Z, et al. Bone-targeted PAMAM nanoparticle to treat bone metastases of lung cancer. Nanomedicine (Lond). 2020;15(9):833–849.
  • Long M, Liu X, Huang X, et al. Alendronate-functionalized hypoxia-responsive polymeric micelles for targeted therapy of bone metastatic prostate cancer. J Control Release. 2021;334:303–317.
  • Sun W, Ge K, Jin Y, et al. Bone-targeted nanoplatform combining zoledronate and photothermal therapy to treat breast cancer bone metastasis. ACS Nano. 2019;13(7):7556–7567.
  • He X, Wang X, Yang L, et al. Intelligent lesion blood brain barrier targeting nano-missiles for Alzheimer’s disease treatment by anti-neuroinflammation and neuroprotection. Acta Pharm Sin B. 2022;12(4):1987–1999.
  • Liu J, Zeng Y, Shi S, et al. Design of polyaspartic acid peptide-poly (ethylene glycol)-poly (ε-caprolactone) nanoparticles as a carrier of hydrophobic drugs targeting cancer metastasized to bone. Int J Nanomedicine. 2017;12:3561–3575.
  • Wang D, Miller SC, Shlyakhtenko LS, et al. Osteotropic peptide that differentiates functional domains of the skeleton. Bioconjug Chem. 2007;18(5):1375–1378.
  • Liu X. Bone site-specific delivery of siRNA. J Biomed Res. 2016;30(4):264–271.
  • Zhu Q, Feng C, Liao W, et al. Target delivery of MYCN siRNA by folate-nanoliposomes delivery system in a metastatic neuroblastoma model. Cancer Cell Int. 2013;13(1):65.
  • Au KM, Satterlee A, Min Y, et al. Folate-targeted pH-responsive calcium zoledronate nanoscale metal-organic frameworks: turning a bone antiresorptive agent into an anticancer therapeutic. Biomaterials. 2016;82:178–193.
  • Luo Z, Dai Y, Gao H. Development and application of hyaluronic acid in tumor targeting drug delivery. Acta Pharm Sin B. 2019;9(6):1099–1112.
  • Nair HB, Huffman S, Veerapaneni P, et al. Hyaluronic acid-bound letrozole nanoparticles restore sensitivity to letrozole-resistant xenograft tumors in mice. J Nanosci Nanotechnol. 2011;11(5):3789–3799.
  • Ross MH, Esser AK, Fox GC, et al. Bone-induced expression of integrin β3 enables targeted nanotherapy of breast cancermetastases. Cancer Res. 2017;77(22):6299–6312.
  • Wang F, Chen L, Zhang R, et al. RGD peptide conjugated liposomal drug delivery system for enhance therapeutic efficacy in treating bone metastasis from prostate cancer. J Control Release. 2014;196:222–233.
  • Barani M, Mukhtar M, Rahdar A, et al. Recent advances in nanotechnology-based diagnosis and treatments of human osteosarcoma. Biosensors (Basel). 2021;11(2):55.
  • Chen SH, Liu TI, Chuang CL, et al. Alendronate/folic acid-decorated polymeric nanoparticles for hierarchically targetable chemotherapy against bone metastatic breast cancer. J Mater Chem B. 2020;8(17):3789–3800.
  • Ke X, Lin W, Li X, et al. Synergistic dual-modified liposome improves targeting and therapeutic efficacy of bone metastasis from breast cancer. Drug Deliv. 2017;24(1):1680–1689.
  • Niu Y, Yang H, Yu Z, et al. Intervention with the bone-associated tumor vicious cycle through dual-protein therapeutics for treatment of skeletal-related events and bone metastases. ACS Nano. 2022;16(2):2209–2223.
  • Loibl S, Gianni L. HER2-positive breast cancer. Lancet. 2017;389(10087):2415–2429.
  • Petrov SA, Zyk NY, Machulkin AE, et al. PSMA-targeted low-molecular double conjugates for diagnostics and therapy. Eur J Med Chem. 2021;225:113752.
  • Altaf F, Weber M, Dea N, et al. Evidence-based review and survey of expert opinion of reconstruction of metastatic spine tumors. Spine (Phila Pa 1976). 2016;41(Suppl 20):S254–S261.
  • Henrichs M, Krebs J, Gosheger G, et al. Modular tumor endoprostheses in surgical palliation of long-bone metastases: a reduction in tumor burden and a durable reconstruction. World J Surg Oncol. 2014;12(1):330.
  • Phull SS, Yazdi AR, Ghert M, et al. Bone cement as a local chemotherapeutic drug delivery carrier in orthopedic oncology: a review. J Bone Oncol. 2021;26:100345.
  • Cyphert EL, Kanagasegar N, Zhang N, et al. PMMA bone cement composite functions as an adjuvant chemotherapeutic platform for localized and multi-window release during bone reconstruction. Macromol Biosci. 2022;22(5):e2100415.
  • Dewhurst RM, Scalzone A, Buckley J, et al. Development of natural-based bone cement for a controlled doxorubicin-drug release. Front Bioeng Biotechnol. 2020;8:754.
  • Liao J, Han R, Wu Y, et al. Review of a new bone tumor therapy strategy based on bifunctional biomaterials. Bone Res. 2021;9(1):18.
  • Raucci MG, D’Amora U, Ronca A, et al. Injectable functional biomaterials for minimally invasive surgery. Adv Healthc Mater. 2020;9(13):e2000349.
  • Li X, Yang Z, Fang L, et al. Hydrogel composites with different dimensional nanoparticles for bone regeneration. Macromol Rapid Commun. 2021;42(20):e2100362.
  • Yang Z, Zhao F, Zhang W, et al. Degradable photothermal bioactive glass composite hydrogel for the sequential treatment of tumor-related bone defects: from anti-tumor to repairing bone defects. Chem Eng J (Lausanne, Switzerland : 1996). 2021; 419:129520.
  • Byambaa B, Annabi N, Yue K, et al. Bioprinted osteogenic and vasculogenic patterns for engineering 3D bone tissue. Adv Healthc Mater. 2017;6(16):1700015.
  • Wu Y, Woodbine L, Carr AM, et al. 3D printed Calcium Phosphate Cement (CPC) scaffolds for anti-cancer drug delivery. Pharmaceutics. 2020;12(11):1077.
  • Lin H, Shi S, Lan X, et al. Scaffold 3D-printed from metallic nanoparticles-containing ink simultaneously eradicates tumor and repairs tumor-associated bone defects. Small Methods. 2021;5(9):e2100536.
  • Xiao W, Gao H. The impact of protein Corona on the behavior and targeting capability of nanoparticle-based delivery system. Int J Pharm. 2018;552(1–2):328–339.
  • Gao H, He Q. The interaction of nanoparticles with plasma proteins and the consequent influence on nanoparticles behavior. Expert Opin Drug Deliv. 2014;11(3):409–420.
  • Farshbaf M, Valizadeh H, Panahi Y, et al. The impact of protein corona on the biological behavior of targeting nanomedicines. Int J Pharm. 2022;614:121458.
  • Wang Y, Zhang H, Xiao W, et al. Unmasking CSF protein corona: effect on targeting capacity of nanoparticles. J Control Release. 2021;333:352–361.
  • Zhang H, Wu T, Yu W, et al. Ligand size and conformation affect the behavior of nanoparticles coated with in vitro and in vivo protein corona. ACS Appl Mater Interfaces. 2018;10(10):9094–9103.
  • Xiao W, Xiong J, Zhang S, et al. Influence of ligands property and particle size of gold nanoparticles on the protein adsorption and corresponding targeting ability. Int J Pharm. 2018;538(1–2):105–111.
  • Ju Y, Dai Q, Cui J, et al. Improving targeting of metal-phenolic capsules by the presence of proteincoronas. ACS Appl Mater Interfaces. 2016;8(35):22914–22922.
  • Qiu M, Tang Y, Chen J, et al. Lung-selective mRNA delivery of synthetic lipid nanoparticles for the treatment of pulmonary lymphangioleiomyomatosis. Proc Natl Acad Sci U S A. 2022;119(8). DOI:10.1073/pnas.2116271119.
  • Lu X, Xu P, Ding HM, et al. Tailoring the component of protein corona via simple chemistry. Nat Commun. 2019;10(1):4520.
  • Yu L, Xu M, Xu W, et al. Enhanced cancer-targeted drug delivery using precoated nanoparticles. Nano Lett. 2020;20(12):8903–8911.
  • Liu R, Wang N, Jiang D, et al. Advances of nanoparticles as drug delivery systems for disease diagnosis and treatment. Chin Chem Lett. 2022. DOI:10.1016/j.cclet.2022.05.036.
  • Chen S, Chen X, Geng Z, et al. The horizon of bone organoid: a perspective on construction and application. Bioact Mater. 2022;18:15–25.
  • Janagama D, Hui SK. 3-D cell culture systems in bone marrow tissue and organoid engineering, and BMPhantoms as in vitro models of hematological cancer Therapeutics-A review. Materials (Basel). 2020;13(24):5609.
  • Lee S, Mendoza TR, Burner DN, et al. Novel dormancy mechanism of castration resistance in bone metastatic prostate cancer organoids. Int J Mol Sci. 2022;23(6):3203.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.