796
Views
2
CrossRef citations to date
0
Altmetric
Review

The industrial design, translation, and development strategies for long-acting peptide delivery

, , , &
Pages 1233-1245 | Received 29 Apr 2022, Accepted 01 Jul 2022, Published online: 21 Jul 2022

References

  • Muttenthaler M, King GF, Adams DJ, et al. Trends in peptide drug discovery. Nat Rev Drug Discov. 2021;20(4):309–325.
  • Wang L, Wang N, Zhang W, et al. Therapeutic peptides: current applications and future directions. Signal Transduct Target Ther. 2022;7(1):48–75.
  • Henninot A, Collins JC, Nuss JM. The current state of peptide drug discovery: back to the future? J Med Chem. 2018;61(4):1382–1414.
  • Global Peptide Therapeutics Market & Clinical Pipeline Insight 2026, by Research and Markets. https://www.researchandmarkets.com/reports/4896465/global-peptide-therapeutics-market-and-clinical
  • Lau JL, Dunn MK. Therapeutic peptides: historical perspectives, current development trends, and future directions. Bioorg Med Chem. 2018;26(10):2700–2707.
  • Di L. Strategic approaches to optimizing peptide ADME properties. AAPS J. 2015;17(1):134–143.
  • Ibeanu N, Egbu R, Onyekuru L, et al., Injectables and depots to prolong drug action of proteins and peptides. Pharmaceutics. 12(10): 999–1041. 2020.
  • Otvos L, Wade JD. Current challenges in peptide-based drug discovery. Front Chem. 2014;2:62.
  • Datta-Mannan A. Mechanisms influencing the pharmacokinetics and disposition of monoclonal antibodies and peptides. Drug Metab Dispos. 2019;47(10):1100–1110.
  • Shi Y, Lu A, Wang X, et al., A review of existing strategies for designing long-acting parenteral formulations: focus on underlying mechanisms, and future perspectives. Acta Pharm Sin B. 11(8): 2396–2415. 2021.
  • Nie T, Wang W, Liu X, et al. Sustained release systems for delivery of therapeutic peptide/protein. Biomacromolecules. 2021;22(6):2299–2324.
  • Pechenov S, Bhattacharjee H, Yin YD, et al. Improving drug-like properties of insulin and GLP-1 via molecule design and formulation and improving diabetes management with device & drug delivery. Adv Drug Deliv Rev. 2017;112:106–122.
  • Kowalczyk R, Harris PWR, Williams GM, et al. Peptide Lipidation - A Synthetic Strategy to Afford Peptide Based Therapeutics. Adv Exp Med Biol. 2017;1030:185–227.
  • Van Witteloostuijn SB, Pedersen SL, Jensen KJ. Half-life extension of biopharmaceuticals using chemical methods: alternatives to pegylation. ChemMedChem. 2016;11(22):2474–2495.
  • Knudsen LB, Nielsen PF, Huusfeldt PO, et al. Potent derivatives of glucagon-like peptide-1 with pharmacokinetic properties suitable for once daily administration. J Med Chem. 2000;43(9):1664–1669.
  • Meyers PA. Muramyl tripeptide (mifamurtide) for the treatment of osteosarcoma. Expert Rev Anticancer Ther. 2009;9(8):1035–1049.
  • Menacho-Melgar R, Decker JS, Hennigan JN, et al. A review of lipidation in the development of advanced protein and peptide therapeutics. J Control Release. 2019;295:1–12.
  • Schmid H. Peginesatide for the treatment of renal disease-induced anemia. Expert Opin Pharmacother. 2013;14(7):937–948.
  • Gorman DM, Lee LJ, Payne CD, et al. Chemical synthesis and characterisation of the complement C5 inhibitory peptide zilucoplan. Amino Acids. 2021;53(1):143–147.
  • Hubulashvili D, Marzella N. Romiplostim (Nplate), a treatment option for immune (idiopathic) thrombocytopenic purpura. Pharm Ther. 2009;34(9):482–485.
  • Patch RJ, Zhang R, Edavettal S, et al. Design, synthesis and preclinical evaluation of bio-conjugated amylinomimetic peptides as long-acting amylin receptor agonists. Eur J Med Chem. 2022;236:114330.
  • Simerska P, Moyle PM, Toth I. Modern lipid-, carbohydrate-, and peptide-based delivery systems for peptide, vaccine, and gene products. Med Res Rev. 2011;31(4):520–547.
  • Jacobsen LV, Flint A, Olsen AK, et al. Liraglutide in type 2 diabetes mellitus: clinical pharmacokinetics and pharmacodynamics. Clin Pharmacokinet. 2016;55(6):657–672.
  • Lau J, Bloch P, Schäffer L, et al. Discovery of the once-weekly glucagon-like peptide-1 (GLP-1) analogue semaglutide. J Med Chem. 2015;58(18):7370–7380.
  • Schultz HS, Østergaard S, Sidney J, et al. The effect of acylation with fatty acids and other modifications on HLA class II:peptide binding and T cell stimulation for three model peptides. PLOS ONE. 2018;13(5):e0197407.
  • Madsen K, Knudsen LB, Agersoe H, et al. Structure−activity and protraction relationship of long-acting glucagon-like peptide-1 derivatives:  importance of fatty acid length, polarity, and bulkiness. J Med Chem. 2007;50(24):6126–6132.
  • Wang Y, Lomakin A, Kanai S, et al. The molecular basis for the prolonged blood circulation of lipidated incretin peptides: peptide oligomerization or binding to serum albumin? J Control Release. 2016;241:25–33.
  • Gallo M, Vanni D, Esposito S, et al. Oligomerization, albumin binding and catabolism of therapeutic peptides in the subcutaneous compartment: an investigation on lipidated GLP-1 analogs. J Pharm Biomed Anal. 2022;210:114566.
  • Tibble CA, Cavaiola TS, Henry RR. Longer acting GLP-1 receptor agonists and the potential for improved cardiovascular outcomes: a review of current literature. Expert Rev Endocrinol Metab. 2013;8(3):247–259.
  • Jeppesen PB. Teduglutide, a novel glucagon-like peptide 2 analog, in the treatment of patients with short bowel syndrome. Therap Adv Gastroenterol. 2012;5(3):159–171.
  • Hermanson T, Bennett CL, Macdougall IC. Peginesatide for the treatment of anemia due to chronic kidney disease – an unfulfilled promise. Expert Opin Drug Saf. 2016;15(10):1421–1426.
  • Lim YW, Tan WS, Ho KL, et al. Challenges and complications of poly(lactic-co-glycolic acid)-based long-acting drug product development. Pharmaceutics. 2022;14:3.
  • Wong SL, Lau DT-W, Baughman SA, et al. Pharmacokinetics and pharmacodynamics of a novel depot formulation of Abarelix, a gonadotropin-releasing hormone (GnRH) antagonist, in healthy men ages 50 to 75. J Clin Pharmacol. 2004;44(5):495–502.
  • Doehn C, Sommerauer M, Jocham D. Degarelix for prostate cancer. Expert Opin Investig Drugs. 2009;18(6):851–860.
  • Minder EI, Barman-Aksoezen J, Schneider-Yin X. Pharmacokinetics and pharmacodynamics of afamelanotide and its clinical use in treating dermatologic disorders. Clin Pharmacokinet. 2017;56(8):815–823.
  • Cuevas-Ramos D, Fleseriu M. Pasireotide: a novel treatment for patients with acromegaly. Drug Des Devel Ther. 2016;10:227–239.
  • Firmagon (Degarelix acetate): FDA-Approved Drugs. 2008. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2008/022201s000_SumR.pdf.
  • Jensen L, Helleberg H, Roffel A, et al. Absorption, metabolism and excretion of the GLP-1 analogue semaglutide in humans and nonclinical species. Eur J Pharm Sci. 2017;104:31–41.
  • Kapitza C, Nosek L, Jensen L, et al. Semaglutide, a once-weekly human GLP-1 analog, does not reduce the bioavailability of the combined oral contraceptive, ethinylestradiol/levonorgestrel. J Clin Pharmacol. 2015;55(5):497–504.
  • Werner U, Haschke G, Herling AW, et al. Pharmacological profile of lixisenatide: a new GLP-1 receptor agonist for the treatment of type 2 diabetes. Regul Pept. 2010;164(2):58–64.
  • Frías JP. Tirzepatide: a glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) dual agonist in development for the treatment of type 2 diabetes. Expert Rev Endocrinol Metab. 2020;15(6):379–394.
  • Coskun T, Sloop KW, Loghin C, et al. LY3298176, a novel dual GIP and GLP-1 receptor agonist for the treatment of type 2 diabetes mellitus: from discovery to clinical proof of concept. Mol Metab. 2018;18:3–14.
  • Woodburn KW, Holmes CP, Wilson SD, et al. Absorption, distribution, metabolism and excretion of peginesatide, a novel erythropoiesis-stimulating agent, in rats. Xenobiotica. 2012;42(7):660–670.
  • Veronese FM. Peptide and protein PEGylation: a review of problems and solutions. Biomaterials. 2001;22(5):405–417.
  • Adams MJ, Blundell TL, Dodson EJ, et al. Structure of rhombohedral 2 zinc insulin crystals. Nature. 1969;224(5218):491–495.
  • Hagedorn H, Jensen BN, and Krarup NB, et al. Protamine Insulinate. J Am Med Assoc. 1936;106(3):177–180.
  • Krayenbuhl C, Rosenberg T. Crystalline protamine insulin. Reports of the Steno Memorial Hospital and the Nordisk Insulinlaboratorium. 1946;1:60–73.
  • Pouget E, Fay N, Dujardin E, et al. Elucidation of the self-assembly pathway of lanreotide octapeptide into β-sheet nanotubes: role of two stable intermediates. J Am Chem Soc. 2010;132(12):4230–4241.
  • Valéry C, Pouget E, Pandit A, et al. Molecular origin of the self-assembly of lanreotide into nanotubes: a mutational approach. Biophys J. 2008;94(5):1782–1795.
  • Valéry C, Paternostre M, Robert B, et al. Biomimetic organization: octapeptide self-assembly into nanotubes of viral capsid-like dimension. Proc Nat Acad Sci. 2003;100(18):10258–10262.
  • Valéry C, Artzner F, Robert B, et al. Self-association process of a peptide in solution: from β-sheet filaments to large embedded nanotubes. Biophys J. 2004;86(4):2484–2501.
  • Wolin EM, Manon A, Chassaing C, et al. Lanreotide depot: an antineoplastic treatment of carcinoid or neuroendocrine tumors. J Gastrointest Cancer. 2016;47(4):366–374.
  • Carmichael JD, Carmichael J. Lanreotide depot deep subcutaneous injection: a new method of delivery and its associated benefits. Patient Prefer Adherence. 2012;6:73–82.
  • Bronstein M, Musolino N, Jallad R, et al. Pharmacokinetic profile of lanreotide AutogelR in patients with acromegaly after four deep subcutaneous injections of 60, 90 or 120 mg every 28 days. Clin Endocrinol (Oxf). 2005;63(5):514–519.
  • Antonijoan RM, Barbanoj MJ, Cordero JA, et al. Pharmacokinetics of a new Autogel formulation of the somatostatin analogue lanreotide after a single subcutaneous dose in healthy volunteers. J Pharm Pharmacol. 2004;56(4):471–476.
  • Kinna S, Ouberaï MM, Sonzini S, et al. Thermo-Responsive self-assembly of a dual glucagon-like peptide and glucagon receptor agonist. Int J Pharm. 2021;604:120719.
  • Ouberai MM, Dos Santos ALG, Kinna S, et al. Controlling the bioactivity of a peptide hormone in vivo by reversible self-assembly. Nat Commun. 2017;8(1):1026.
  • London NJS, Chiang A, Haller JA. The dexamethasone drug delivery system: indications and evidence. Adv Ther. 2011;28(5):351–366.
  • Mitragotri S, Burke PA, Langer R. Overcoming the challenges in administering biopharmaceuticals: formulation and delivery strategies. Nat Rev Drug Discov. 2014;13(9):655–672.
  • Kwak HH, Shim WS, Choi MK, et al. Development of a sustained-release recombinant human growth hormone formulation. J Control Release. 2009;137(2):160–165.
  • Tomic I, Vidis-Millward A, Mueller-Zsigmondy M, et al. Setting accelerated dissolution test for PLGA microspheres containing peptide, investigation of critical parameters affecting drug release rate and mechanism. Int J Pharm. 2016;505(1–2):42–51.
  • Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces. 2010;75(1):1–18.
  • Qi F, Wu J, Li H, et al. Recent research and development of PLGA/PLA microspheres/nanoparticles: a review in scientific and industrial aspects. Front Chem Sci Eng. 2019;13(1):14–27.
  • Schneider C, Langer R, Loveday D, et al. Applications of ethylene vinyl acetate copolymers (EVA) in drug delivery systems. J Control Release. 2017;262:284–295.
  • Lee SS, Hughes P, Ross AD, et al. Biodegradable implants for sustained drug release in the eye. Pharm Res. 2010;27(10):2043–2053.
  • Ruel-Gariépy E, Leroux J-C. In situ-forming hydrogels—review of temperature-sensitive systems. Eur J Pharm Biopharm. 2004;58(2):409–426.
  • Kanwar N, Sinha VR. In situ forming depot as sustained-release drug delivery systems. Crit Rev Ther Drug Carrier Syst. 2019;36(2):93–136.
  • Li J, Mooney DJ. Designing hydrogels for controlled drug delivery. Nat Rev Mater. 2016;1(12):1–17.
  • Wu Z, Alany RG, Tawfeek N, et al. A study of microemulsions as prolonged-release injectables through in-situ phase transition. J Control Release. 2014;174:188–194.
  • Zabara A, Mezzenga R. Controlling molecular transport and sustained drug release in lipid-based liquid crystalline mesophases. J Control Release. 2014;188:31–43.
  • Swaminathan J, Ehrhardt C. Liposomal delivery of proteins and peptides. Expert Opin Drug Deliv. 2012;9(12):1489–1503.
  • Agarwal P, Rupenthal ID. Injectable implants for the sustained release of protein and peptide drugs. Drug Discov Today. 2013;18(7–8):337–349.
  • Dunn RL, English JP, Cowsar DR. et al. Biodegradable in-situ forming implants and methods of producing the same. US Pat. 1994;5340849.
  • ELIGARD®. Leuprolide acetate for injectable suspension, FDA-approved drugs, 2002. https://www.tolmar.com/products/eligard.
  • Heller J, Barr J, Ng SY, et al. Poly(ortho esters): synthesis, characterization, properties and uses. Adv Drug Deliv Rev. 2002;54(7):1015–1039.
  • Nkanga CI, Fisch A, Rad-Malekshahi M, et al. Clinically established biodegradable long acting injectables: an industry perspective. Adv Drug Deliv Rev. 2020;167:19–46.
  • Tunn UW. A 6-month depot formulation of leuprolide acetate is safe and effective in daily clinical practice: a non-interventional prospective study in 1273 patients. BMC Urol. 2011;11(1):15.
  • Chu FM, Jayson M, Dineen MK, et al. A clinical study of 22.5 mg. La-2550: a new subcutaneous depot delivery system for leuprolide acetate for the treatment of prostate cancer. J Urol. 2002;168(3):1199–1203.
  • Thakur RRS, McMillan HL, Jones DS. Solvent induced phase inversion-based in situ forming controlled release drug delivery implants. J Control Release. 2014;176:8–23.
  • Van Tomme SR, Storm G, Hennink WE. In situ gelling hydrogels for pharmaceutical and biomedical applications. Int J Pharm. 2008;355(1–2):1–18.
  • Sinha VR, Trehan A. Biodegradable microspheres for protein delivery. J Control Release. 2003;90(3):261–280.
  • Tamani F, Bassand C, Hamoudi MC, et al. Mechanistic explanation of the (up to) 3 release phases of PLGA microparticles: monolithic dispersions studied at lower temperatures. Int J Pharm. 2021;596:120220.
  • Gasmi H, Siepmann F, Hamoudi MC, et al. Towards a better understanding of the different release phases from PLGA microparticles: dexamethasone-loaded systems. Int J Pharm. 2016;514(1):189–199.
  • Fredenberg S, Wahlgren M, Reslow M, et al. The mechanisms of drug release in poly(lactic-co-glycolic acid)-based drug delivery systems—A review. Int J Pharm. 2011;415(1–2):34–52.
  • Zhou J, Walker J, Ackermann R, et al. Effect of manufacturing variables and raw materials on the composition-equivalent PLGA microspheres for 1-month controlled release of leuprolide. Mol Pharm. 2020;17(5):1502–1515.
  • Wong CY, Al-Salami H, Dass CR. Microparticles, microcapsules and microspheres: a review of recent developments and prospects for oral delivery of insulin. Int J Pharm. 2018;537(1–2):223–244.
  • Kim SJ, Hahn SK, Kim MJ, et al. Development of a novel sustained release formulation of recombinant human growth hormone using sodium hyaluronate microparticles. J Control Release. 2005;104(2):323–335.
  • Lupron depot (leuprolde acetate): FDA-approved drugs, 1989. https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=019732
  • Davies PH, Stewart SE, Lancranjan I, et al. Long-term therapy with long-acting octreotide (Sandostatin-LAR ®) for the management of acromegaly. Clin Endocrinol (Oxf). 1998;48(3):311–316.
  • Fløgstad AK, Halse J, Bakke S, et al. Sandostatin LAR in acromegalic patients: long term treatment. J Clin Endocrinol Metab. 1997;82(1):23–28.
  • Grass P, Marbach P, Bruns C, et al. Sandostatin® LAR® (microencapsulated octreotide acetate) in acromegaly: pharmacokinetic and pharmacodynamic relationships. Metabolism. 1996;45(Suppl 8):27–30.
  • Wysham C, Grimm M, Chen S. Once weekly exenatide: efficacy, tolerability and place in therapy. Diabetes Obesity Metab. 2013;15(10):871–881.
  • Painter NA, Morello CM, Singh RF, et al. An evidence-based and practical approach to using bydureon in patients with type 2 diabetes. J Am Board Fam Med. 2013;26(2):203–210.
  • Minze MG, Klein MS, Jernigan MJ, et al. Once-weekly exenatide: an extended-duration glucagon-like peptide agonist for the treatment of type 2 diabetes mellitus. Pharmacotherapy. 2013;33(6):627–638.
  • DeYoung MB, MacConell L, Sarin V, et al. Encapsulation of exenatide in Poly-(d,l -lactide-co-glycolide) microspheres produced an investigational long-acting once-weekly formulation for type 2 diabetes. Diabetes Technol Ther. 2011;13(11):1145–1154.
  • Ogawa Y, Okada H, Yamamoto Y, et al. In vivo release profiles of leuprolide acetate from microcapsules prepared with polylactic acids or copoly(lactic/glycolic) acids and in vivo degradation of these polymers. Chem Pharm Bull. 1988;36(7):2576–2581.
  • Noguchi S, Kim HJ, Jesena A, et al. Phase 3, open-label, randomized study comparing 3-monthly with monthly goserelin in pre-menopausal women with estrogen receptor-positive advanced breast cancer. Breast Cancer. 2016;23(5):771–779.
  • Fontana D, Mari M, Martinelli A, et al. 3-month formulation of goserelin acetate (‘Zoladex’ 10.8-mg depot) in advanced prostate cancer: results from an Italian, open, multicenter trial. Urol Int. 2003;70(4):316–320.
  • Anderson JM, Shive MS. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv Drug Deliv Rev. 2012;64:72–82.
  • Tran VT, Benoît JP, Venier-Julienne MC. Why and how to prepare biodegradable, monodispersed, polymeric microparticles in the field of pharmacy? Int J Pharm. 2011;407(1–2):1–11.
  • Bak A, Leung D, Barrett SE, et al., Physicochemical and formulation developability assessment for therapeutic peptide delivery–a primer. AAPS J. 17(1): 144–155. 2015.
  • Payne RW, Manning MCJIPT, Peptide formulation: challenges and strategies. Innova Pharma Technol. 2009;28:64–68.
  • Lantus (insulin glargine injection) solution for subcutaneous injection. FDA-Approved Drugs; 2000. http://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=021081.
  • Basaglar (insulin glargine injection): FDA-approved drugs, 2015. https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=BasicSearch.process
  • Gao L, Liu G, Ma J, et al. Drug nanocrystals: in vivo performances. J Control Release. 2012;160(3):418–430.
  • Li X, Li L, Wang X, et al. Application of model‐based methods to characterize exenatide‐loaded double‐walled microspheres: in vivo release, pharmacokinetic/pharmacodynamic model, and in vitro and in vivo correlation. J Pharm Sci. 2012;101(10):3946–3961.
  • Giri TK, Choudhary C, Ajazuddin et al. Prospects of pharmaceuticals and biopharmaceuticals loaded microparticles prepared by double emulsion technique for controlled delivery. Saudi Pharm J. 2013;21(2):125–141.
  • Wan F, Yang M. Design of PLGA-based depot delivery systems for biopharmaceuticals prepared by spray drying. Int J Pharm. 2016;498(1):82–95.
  • Baldinger A, Clerdent L, Rantanen J, et al. Quality by design approach in the optimization of the spray-drying process. Pharm Dev Technol. 2012;17(4):389–397.
  • Cai Y, Wei L, Ma L, et al. Long-acting preparations of exenatide. Drug Des Devel Ther. 2013;7:963–970.
  • Wischke C, Schwendeman SP. Principles of encapsulating hydrophobic drugs in PLA/PLGA microparticles. Int J Pharm. 2008;364(2):298–327.
  • Operti MC, Fecher D, van Dinther EAW, et al. A comparative assessment of continuous production techniques to generate sub-micron size PLGA particles. Int J Pharm. 2018;550(1):140–148.
  • Zhang C, Yang L, Wan F, et al. Quality by design thinking in the development of long-acting injectable PLGA/PLA-based microspheres for peptide and protein drug delivery. Int J Pharm. 2020;585:119441.
  • Rathore AS, Winkle H. Quality by design for biopharmaceuticals. Nat Biotechnol. 2009;27(1):26–34.
  • Breitenbach A, Li YX, Kissel T. Branched biodegradable polyesters for parenteral drug delivery systems. J Control Release. 2000;64(1):167–178.
  • Berkland C, King M, Cox A, et al. Precise control of PLG microsphere size provides enhanced control of drug release rate. J Control Release. 2002;82(1):137–147.
  • Lee JS, Chae GS, Kim MS, et al. Degradation behaviour in vitro for poly(D,L-lactide-co-glycolide) as drug carrier. Biomed Mater Eng. 2004;14(2):185–192.
  • Xu Y, Kim CS, Saylor DM, et al. Polymer degradation and drug delivery in PLGA-based drug-polymer applications: a review of experiments and theories. J Biomed Mater Res B Appl Biomater. 2017;105(6):1692–1716.
  • Chen W, Palazzo A, Hennink WE, et al. Effect of particle size on drug loading and release kinetics of gefitinib-loaded PLGA microspheres. Mol Pharm. 2017;14(2):459–467.
  • Fredenberg S, Wahlgren M, Reslow M, et al. The mechanisms of drug release in poly(lactic-co-glycolic acid)-based drug delivery systems—A review. Int J Pharm. 2011;415(1):34–52.
  • Andhariya JV, Jog R, Shen J, et al. In vitro-in vivo correlation of parenteral PLGA microspheres: effect of variable burst release. J Control Release. 2019;314:25–37.
  • Blanco-Prı́eto MaJ, Campanero MA, Besseghir K, et al. Importance of single or blended polymer types for controlled in vitro release and plasma levels of a somatostatin analogue entrapped in PLA/PLGA microspheres. J Control Release. 2004;96(3):437–448.
  • Chu D-F, Fu X-Q, Liu W-H, et al. Pharmacokinetics and in vitro and in vivo correlation of huperzine A loaded poly(lactic-co-glycolic acid) microspheres in dogs. Int J Pharm. 2006;325(1–2):116–123.
  • Vlugt Wensink KDF, de Vrueh R, Gresnigt MG, et al. Preclinical and clinical in vitro in vivo correlation of an hgh dextran microsphere formulation. Pharm Res. 2007;24(12):2239–2248.
  • Zolnik BS, Burgess DJ. Evaluation of in vivo–in vitro release of dexamethasone from PLGA microspheres. J Control Release. 2008;127(2):137–145.
  • Shen J, Choi S, Qu W, et al. In vitro-in vivo correlation of parenteral risperidone polymeric microspheres. J Control Release. 2015;218:2–12.
  • Shen J, Lee K, Choi S, et al. A reproducible accelerated in vitro release testing method for PLGA microspheres. Int J Pharm. 2016;498(1–2):274–282.
  • Shen J, Burgess DJ. In vitro–in vivo correlation for complex non-oral drug products: where do we stand? J Control Release. 2015;219:644–651.
  • Andhariya JV, Shen J, Choi S, et al. Development of in vitro-in vivo correlation of parenteral naltrexone loaded polymeric microspheres. J Control Release. 2017;255:27–35.
  • Eliaz RE, Wallach D, Kost J. Delivery of soluble tumor necrosis factor receptor from in-situ forming PLGA implants: in-vivo. Pharm Res. 2000;17(12):1546–1550.
  • Brodbeck KJ, DesNoyer JR, McHugh AJ. Phase inversion dynamics of PLGA solutions related to drug delivery. Part II. The role of solution thermodynamics and bath-side mass transfer. J Control Release. 1999;62(3):333–344.
  • Graham PD, Brodbeck KJ, McHugh AJ. Phase inversion dynamics of PLGA solutions related to drug delivery. J Control Release. 1999;58(2):233–245.
  • Bouissou C, Rouse JJ, Price R, et al. The influence of surfactant on PLGA microsphere glass transition and water sorption: remodeling the surface morphology to attenuate the burst release. Pharm Res. 2006;23(6):1295–1305.
  • Jiang W, Schwendeman SP. Stabilization of a model formalinized protein antigen encapsulated in poly(lactide-co-glycolide)-based microspheres. J Pharm Sci. 2001;90(10):1558–1569.
  • Zhu G, Schwendeman SP. Stabilization of proteins encapsulated in cylindrical poly(lactide-co-glycolide) implants: mechanism of stabilization by basic additives. Pharm Res. 2000;17(3):351–357.
  • Ahn JH, Park EJ, Lee HS, et al. Reversible blocking of amino groups of octreotide for the inhibition of formation of acylated peptide impurities in poly(lactide-co-glycolide) delivery systems. AAPS PharmSciTech. 2011;12(4):1220–1226.
  • Murty SB, Na DH, Thanoo BC, et al. Impurity formation studies with peptide-loaded polymeric microspheres Part II. In vitro evaluation. Int J Pharm. 2005;297(1–2):62–72.
  • Zhou J, Walker J, Ackermann R, et al. Effect of manufacturing variables and raw materials on the composition-equivalent PLGA microspheres for 1-month controlled release of leuprolide. Molecular Pharmaceutics. 2020;17(5):1502–1515.
  • Ruel-Gariépy E, Leroux J-C. In situ-forming hydrogels—review of temperature-sensitive systems. Eur J Pharm Biopharm. 2004;58(2):409–426.
  • Utterback JM, Abernathy WJ. A dynamic model of process and product innovation. Omega (Westport). 1975;3(6):639–656.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.