709
Views
0
CrossRef citations to date
0
Altmetric
Review

Bridging the gap between fundamental research and product development of long acting injectable PLGA microspheres

, , &
Pages 1247-1264 | Received 22 May 2022, Accepted 20 Jul 2022, Published online: 09 Aug 2022

References

  • Park K, Skidmore S, Hadar J, et al. Injectable, long-acting PLGA formulations: analyzing PLGA and understanding microparticle formation. J Control Release. 2019 Jun 28;304:125–134. PubMed PMID: 31071374.
  • Park K, Otte A, Sharifi F, et al. Formulation composition, manufacturing process, and characterization of poly (lactide-co-glycolide) microparticles. J Control Release. 2021;329:1150–1161.
  • Garner J, Skidmore S, Hadar J, et al. Analysis of semi-solvent effects for PLGA polymers. Int J Pharm. 2021;602:120627.
  • Lee BK, Yun Y, Park K. PLA micro-and nano-particles. Adv Drug Deliv Rev. 2016;107:176–191.
  • Park K. Controlled drug delivery systems: past forward and future back. J Control Release. 2014;190:3–8.
  • Yun Y, Lee BK, Park K. Controlled drug delivery systems: the next 30 years. Front Chem Sci Eng. 2014;8(3):276–279.
  • Schoubben A, Ricci M, Giovagnoli S. Meeting the unmet: from traditional to cutting-edge techniques for poly lactide and poly lactide-co-glycolide microparticle manufacturing. J Pharm Invest. 2019;49(4):381–404.
  • Blasi P. Poly (lactic acid)/poly (lactic-co-glycolic acid)-based microparticles: an overview. J Pharm Invest. 2019;49(4):337–346.
  • Su Y, Zhang B, Sun R, et al. PLGA-based biodegradable microspheres in drug delivery: recent advances in research and application. Drug Deliv. 2021;28(1):1397–1418.
  • Nkanga CI, Fisch A, Rad-Malekshahi M, et al. Clinically established biodegradable long acting injectables: an industry perspective. Adv Drug Deliv Rev. 2020;167:19–46.
  • Kang J, Wu F, Cai Y, et al. Development of Recombinant Human Growth Hormone (rhGH) sustained-release microspheres by a low temperature aqueous phase/aqueous phase emulsion method. Eur J Pharm Sci. 2014;62:141–147.
  • Cai Y, Xu M, Yuan M, et al. Developments in human growth hormone preparations: sustained-release, prolonged half-life, novel injection devices, and alternative delivery routes. Int J Nanomedicine. 2014;9:3527.
  • Wan B, Bao Q, Zou Y, et al. Effect of polymer source variation on the properties and performance of risperidone microspheres. Int J Pharm. 2021;610:121265.
  • Andhariya JV, Jog R, Shen J, et al. Development of Level A in vitro-in vivo correlations for peptide loaded PLGA microspheres. J Control Release. 2019;308:1–13.
  • Molavi F, Barzegar-Jalali M, Hamishehkar H. Polyester based polymeric nano and microparticles for pharmaceutical purposes: a review on formulation approaches. J Control Release. 2020;320:265–282.
  • Tomic I, Mueller-Zsigmondy M, Vidis-Millward A, et al. In vivo release of peptide-loaded PLGA microspheres assessed through deconvolution coupled with mechanistic approach. Eur J Pharm Biopharm. 2018;125:21–27.
  • Park K, Jung GY, Kim M-K, et al. Triptorelin acetate-loaded poly (lactide-co-glycolide)(PLGA) microspheres for controlled drug delivery. Macromol Res. 2012;20(8):847–851.
  • Chen L, Ahmed AMQ, Deng Y, et al. Novel triptorelin acetate-loaded microspheres prepared by a liquid/oil/oil method with high encapsulation efficiency and low initial burst release. J Drug Delivery Sci Technol. 2019;54:101390.
  • Xie S, Wang S, Zhao B, et al. Effect of PLGA as a polymeric emulsifier on preparation of hydrophilic protein-loaded solid lipid nanoparticles. Colloids Surf B Biointerfaces. 2008;67(2):199–204.
  • Castellanos IJ, Flores G, Griebenow K. Effect of the molecular weight of poly (ethylene glycol) used as emulsifier on α‐chymotrypsin stability upon encapsulation in PLGA microspheres. J Pharm Pharmacol. 2005;57(10):1261–1269.
  • Kim Y, Sah H. Protein loading into spongelike PLGA microspheres. Pharmaceutics. 2021;13(2):137.
  • Wu L, Wang M, Singh V, et al. Three dimensional distribution of surfactant in microspheres revealed by synchrotron radiation X-ray microcomputed tomography. Asian J Pharm Sci. 2017;12(4):326–334.
  • Zhang C, Yang L, Wan F, et al. Quality by design thinking in the development of long-acting injectable PLGA/PLA-based microspheres for peptide and protein drug delivery. Int J Pharm. 2020;585:119441.
  • Hua Y, Su Y, Zhang H, et al. Poly (lactic-co-glycolic acid) microsphere production based on quality by design: a review. Drug Deliv. 2021;28(1):1342–1355.
  • Jain P, Garg A, Farooq U, et al. Preparation and quality by design assisted (Qb-d) optimization of bioceramic loaded microspheres for periodontal delivery of doxycycline hyclate. Saudi J Biol Sci. 2021;28(5):2677–2685.
  • Qi F, Wu J, Li H, et al. Recent research and development of PLGA/PLA microspheres/nanoparticles: a review in scientific and industrial aspects. Front Chem Sci Eng. 2019;13(1):14–27.
  • Butreddy A, Gaddam RP, Kommineni N, et al. PLGA/PLA-Based long-acting injectable depot microspheres in clinical use: production and characterization overview for protein/peptide delivery. Int J Mol Sci. 2021;22(16):8884.
  • Li X, Wei Y, Lv P, et al. Preparation of ropivacaine loaded PLGA microspheres as controlled-release system with narrow size distribution and high loading efficiency. Colloids Surf A Physicochem Eng Asp. 2019;562:237–246.
  • Wen K, Na X, Yuan M, et al. Preparation of novel ropivacaine hydrochloride-loaded PLGA microspheres based on post-loading mode and efficacy evaluation. Colloids Surf B Biointerfaces. 2022;210:112215.
  • Fredenberg S, Wahlgren M, Reslow M, et al. The mechanisms of drug release in poly (lactic-co-glycolic acid)-based drug delivery systems—a review. Int J Pharm. 2011;415(1–2):34–52.
  • Si W, Yang Q, Zong Y, et al. Toward understanding the effect of solvent evaporation on the morphology of PLGA microspheres by double emulsion method. Ind Eng Chem Res. 2021;60(25):9196–9205.
  • Panigrahi D, Sahu PK, Swain S, et al. Quality by design prospects of pharmaceuticals application of double emulsion method for PLGA loaded nanoparticles. SN Appl Sci. 2021;3(6):1–21.
  • Ding S, Serra CA, Vandamme TF, et al. Double emulsions prepared by two–step emulsification: history, state-of-the-art and perspective. J Control Release. 2019;295:31–49.
  • Seddari S, Moulai-Mostefa N, Sabbache H. Effect of pH on the stability of W/O/W double emulsions prepared by the mixture of biopolymers using direct method. Mater Today Proc. 2022;49:1030–1034.
  • Kovács A, Erős I, Csóka I. Optimization and development of stable w/o/w cosmetic multiple emulsions by means of the Quality by Design approach. Int J Cosmet Sci. 2016;38(2):128–138.
  • Ma G. Microencapsulation of protein drugs for drug delivery: strategy, preparation, and applications. J Control Release. 2014;193:324–340.
  • Beig A, Feng L, Walker J, et al. Physical–chemical characterization of octreotide encapsulated in commercial glucose-star PLGA microspheres. Mol Pharm. 2020;17(11):4141–4151.
  • Robin B, Albert C, Beladjine M, et al. Tuning morphology of pickering emulsions stabilised by biodegradable PLGA nanoparticles: how PLGA characteristics influence emulsion properties. J Colloid Interface Sci. 2021;595:202–211.
  • Sharifi F, Otte A, Yoon G, et al. Continuous in-line homogenization process for scale-up production of naltrexone-loaded PLGA microparticles. J Control Release. 2020 Sep 10;325:347–358. PubMed PMID: 32645336; PubMed Central PMCID: PMCPMC7434690.
  • Operti MC, Bernhardt A, Grimm S, et al. PLGA-based nanomedicines manufacturing: technologies overview and challenges in industrial scale-up. Int J Pharm. 2021;605:120807.
  • Herbert P, Murphy K, Johnson O, et al. A large-scale process to produce microencapsulated proteins. Pharm Res. 1998;15(2):357.
  • Zhou J, Hirota K, Ackermann R, et al. Reverse engineering the 1-month Lupron Depot®. AAPS J. 2018;20(6):1–13.
  • Zhou J, Walker J, Ackermann R, et al. Effect of manufacturing variables and raw materials on the composition-equivalent PLGA microspheres for 1-month controlled release of leuprolide. Mol Pharm. 2020;17(5):1502–1515.
  • De Hert SC, Rodgers TL. Linking continuous and recycle emulsification kinetics for in-line mixers. Chem Eng Res Des. 2018;132:922–929.
  • Hall S, Cooke M, Pacek A, et al. Scaling up of silverson rotor–stator mixers. Can J Chem Eng. 2011;89(5):1040–1050.
  • Garner J, Skidmore S, Park H, et al. Beyond Q1/Q2: the impact of manufacturing conditions and test methods on drug release from PLGA-based microparticle depot formulations. J Pharm Sci. 2018;107(1):353–361.
  • Wischke C, Schwendeman SP. Principles of encapsulating hydrophobic drugs in PLA/PLGA microparticles. Int J Pharm. 2008;364(2):298–327.
  • Sawant A, Kamath S, Kg H, et al. Solid-in-oil-in-water emulsion: an innovative paradigm to improve drug stability and biological activity. AAPS PharmSciTech. 2021;22(5):1–14.
  • Huang Z, Chen X, Fu H, et al. Formation mechanism and in vitro evaluation of risperidone-containing PLGA microspheres fabricated by ultrafine particle processing system. J Pharm Sci. 2017;106(11):3363–3371.
  • Versypt ANF, Pack DW, Braatz RD. Mathematical modeling of drug delivery from autocatalytically degradable PLGA microspheres—A review. J Control Release. 2013;165(1):29–37.
  • Duraikkannu SL, Castro-Muñoz R, Figoli A. A review on phase-inversion technique-based polymer microsphere fabrication. Colloid Interface Sci Commun. 2021;40:100329.
  • Li Y, Teng Z, Chen P, et al. Enhancement of aqueous stability of allyl isothiocyanate using nanoemulsions prepared by an emulsion inversion point method. J Colloid Interface Sci. 2015;438:130–137.
  • Pu W, He M, Yang X, et al. Experimental study on the key influencing factors of phase inversion and stability of heavy oil emulsion: asphaltene, resin and petroleum acid. Fuel. 2022;311:122631.
  • Perazzo A, Preziosi V, Guido S. Phase inversion emulsification: current understanding and applications. Adv Colloid Interface Sci. 2015;222:581–599.
  • Albayrak C, Seemann H, Rindler V, et al. Successful proof of concept with imsus platform technology: preclinical development of a 1-month controlled release formulation for a peptide drug. J Control Release. 2008;132(3):e77–e79.
  • Seemann H, Albayrak C, Rindler V. Development of controlled release formulations by means of ALRISE’s ImSus (®) platform technology. J Control Release. 2010;148(1):e16–7.
  • Meeus J, Lenaerts M, Scurr DJ, et al. The influence of spray-drying parameters on phase behavior, drug distribution, and in vitro release of injectable microspheres for sustained release. J Pharm Sci. 2015;104(4):1451–1460.
  • Li Y, Li M, Rantanen J, et al. Transformation of nanoparticles into compacts: a study on PLGA and celecoxib nanoparticles. Int J Pharm. 2022;611:121278.
  • Li S, Shi X, Xu B, et al. In vitro drug release and antibacterial activity evaluation of silk fibroin coated vancomycin hydrochloride loaded poly (lactic-co-glycolic acid)(PLGA) sustained release microspheres. J Biomater Appl. 2022;36(9):1676–1688.
  • Zhu C, Huang Y, Zhang X, et al. Comparative studies on exenatide-loaded poly (D, L-lactic-co-glycolic acid) microparticles prepared by a novel ultra-fine particle processing system and spray drying. Colloids Surf B Biointerfaces. 2015;132:103–110.
  • İlter I, Koç M, Demirel Z, et al. Microencapsulation of phycocyanin by spray‐drying method: effect of process parameters and wall materials. J Food Process Preserv. 2022;46(4). DOI:10.1111/jfpp.16434.
  • Kim SR, Ho MJ, Choi YW, et al. Improved drug loading and sustained release of entecavir‐loaded PLGA microsphere prepared by spray drying technique. Bull Korean Chem Soc. 2019;40(4):306–312.
  • Shi N-Q, Zhou J, Walker J, et al. Microencapsulation of luteinizing hormone-releasing hormone agonist in poly (lactic-co-glycolic acid) microspheres by spray-drying. J Control Release. 2020;321:756–772.
  • Wan F, Yang M. Design of PLGA-based depot delivery systems for biopharmaceuticals prepared by spray drying. Int J Pharm. 2016;498(1–2):82–95.
  • Schiller S, Hanefeld A, Schneider M, et al. Towards a continuous manufacturing process of protein-loaded polymeric nanoparticle powders. AAPS PharmSciTech. 2020;21(7):1–5.
  • Chauhan R, Balgemann R, Greb C, et al. Production of dasatinib encapsulated spray-dried poly (lactic-co-glycolic acid) particles. J Drug Delivery Sci Technol. 2019;53:101204.
  • Cotabarren I, Bertín, M D, et al. Modelling of the spray drying process for particle design. Chem Eng Res Des. 2018 Transactions of the Institution of Chemical Engineers;132:1091–1104.
  • Zhu C, Shoji Y, Mccray S, et al. Stabilization of HAC1 influenza vaccine by spray drying: formulation development and process scale-up. Pharm Res. 2014;31(11):3006–3018.
  • Schick RJ. Spray dryer scale-up: from laboratory to production.
  • Raffin RP, Jornada DS, Ré M, et al. Sodium pantoprazole-loaded enteric microparticles prepared by spray drying: effect of the scale of production and process validation. Int J Pharm. 2006;324(1):10–18.
  • Kemp I, Hartwig T, Hamilton P, et al. Production of fine lactose particles from organic solvent in laboratory and commercial-scale spray dryers. Drying Technol. 2016;34(7):830–842.
  • Raffin R, Guterres S, Pohlmann A, et al. Powder characteristics of pantoprazole delivery systems produced in different spray-dryer scales. Drying Technol. 2006;24(3):339–348.
  • Merlos R, Wauthoz N, Levet V, et al. Optimization and scaling-up of ITZ-based dry powders for inhalation. J Drug Delivery Sci Technol. 2017;37:147–157.
  • Tolve R, Condelli N, Caruso MC, et al. Microencapsulation of phytosterols for food functionalization (Preparation and characterization of microencapsulated phytosterols for the formulation of functional foods: scale up from laboratory to semi-technical production). Food Res Int. 2018;116:1274–1281.
  • Littringer E, Paus R, Mescher A, et al. The morphology of spray dried mannitol particles—The vital importance of droplet size. Powder Technol. 2013;239:162–174.
  • Thybo P, Hovgaard L, Lindelv JS, et al. Scaling up the spray drying process from pilot to production scale using an atomized droplet size criterion. Pharm Res. 2008;25(7):1610–1620.
  • Ju H, Chr A, Chan H, et al. Three months extended-release microspheres prepared by multi-microchannel microfluidics in beagle dog models. Int J Pharm. 2021;608(25):121039.
  • Benzion A, Benny, Ofra O, et al. Microfluidic based fabrication and characterization of highly porous polymeric microspheres. Polymers. 2019;11(3). DOI:10.3390/polym11030419.
  • Chung C, Cui B, Song R, et al. Scalable production of monodisperse functional microspheres by multilayer parallelization of high aspect ratio microfluidic channels. Micromachines. 2019;10(9):592.
  • Ssaa B, Mi B, Azb B, et al. Encapsulation of a highly hydrophilic drug in polymeric particles: a comparative study of batch and microfluidic processes. Int J Pharm. 2021;605:120906.
  • Kim JH, Ryu CH, Chon CH, et al. Three months extended-release microspheres prepared by multi-microchannel microfluidics in beagle dog models. Int J Pharm. 2021;608120906. DOI:10.1016/j.ijpharm.2021.121039.
  • Nawar S, Stolaroff JK, Ye C, et al. Parallelizable microfluidic dropmakers with multilayer geometry for the generation of double emulsions. Lab Chip. 2020 Jan 7;20(1):147–154. PubMed PMID: 31782446.
  • Gwc A, Sl B, Dong W, et al. Long-acting injectable donepezil microspheres: formulation development and evaluation. 2021;340:72–86.
  • Min-Seo J Han Byul J, Soo-Eon L, et al. In vitro micro-mineralized tissue formation by the combinatory condition of adipose-derived stem cells, macroporous PLGA microspheres and a bioreactor. Macromol Res. 2014;22:47–57.
  • Remigijus V, Liu, Dongfei D, et al. Simple microfluidic approach to fabricate monodisperse hollow microparticles for multidrug delivery. ACS Appl Mater Interfaces. 2015;7(27):14822–14832.
  • Koji K, Elisa P, Abdirazak H, et al. From single microparticles to microfluidic emulsification: fundamental properties (solubility, density, phase separation) from micropipette manipulation of solvent, drug and polymer microspheres. Processes. 2016;4(4):49.
  • Gilchrist SE, Rickard DL, Letchford K, et al. Phase separation behavior of fusidic acid and rifampicin in PLGA microspheres. Mol Pharm. 2012;9(5):1489.
  • Chen LQ, Ahmed A, Deng Y, et al. Novel triptorelin acetate-loaded microspheres prepared by a liquid/oil/oil method with high encapsulation efficiency and low initial burst release. J Drug Delivery Sci Technol. 2019;54:101390.
  • Abulateefeh SR, Alkilany AM. Synthesis and Characterization of PLGA shell microcapsules containing aqueous cores prepared by internal phase separation. Aaps Pharmscitech. 2016;17(4):891–897.
  • Dewi P, Palmer, Go JA, et al. Porous PLGA microspheres tailored for dual delivery of biomolecules via layer-by-layer assembly. J Biomed Mater Res A. 2015;103(5):1849–1863.
  • Cossé A, König C, Lamprecht A, et al. Hot melt extrusion for sustained protein release: matrix erosion and in vitro release of PLGA-based implants. AAPS PharmSciTech. 2017;18(1):15–26.
  • TR A, JC B, Pq B, et al. Goserelin/PLGA solid dispersion used to prepare long-acting microspheres with reduced initial release and reduced fluctuation of drug serum concentration in vivo. International Journal of Pharmaceutics. 2022;615:121474.
  • Mohammed M, Nokhodchi, Ali A, et al. Continuous manufacturing via hot-melt extrusion and scale up: regulatory matters. Drug Discov Today. 2017;22(2):340–351.
  • Zheng Y, Pokorski JK. Hot melt extrusion: an emerging manufacturing method for slow and sustained protein delivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol.2021;13(5):e1712.DOI:10.1002/wnan.1712
  • Desai P.M, Hogan R.C, Brancazio D, et al. Integrated hot-melt extrusion – injection molding continuous tablet manufacturing platform: effects of critical process parameters and formulation attributes on product robustness and dimensional stability. Int J Pharm. 2017;531(1):332–342.
  • Feng Q, Wu, Jie J, et al. Mechanistic studies for monodisperse exenatide-loaded PLGA microspheres prepared by different methods based on SPG membrane emulsification - sciencedirect. Acta Biomater. 2014;10(10):4247–4256.
  • Ito F, Yamada H. Physical properties of microspheres prepared by blending poly(lactide-co-glycolide) and poly lactide. Bull Mater Sci. 2021;44(1). DOI:10.1007/s12034-020-02310-4
  • Vladisavljevic GT, Kobayashi I, Nakajima M. Production of uniform droplets using membrane, microchannel and microfluidic emulsification devices. Microfluid Nanofluidics. 2012;13(1):151–178.
  • Pan L, Zhou J, Ju F, et al. Intranasal delivery of α-asarone to the brain with lactoferrin-modified mPEG-PLA nanoparticles prepared by premix membrane emulsification. Drug Delivery Transl Res. 2018;8:83–96.
  • Spyropoulos F, Lloyd DM, Hancocks RD, et al. Advances in membrane emulsification. part B: recent developments in Modelling and Scale-up approaches. J Sci Food Agric. 2015;94(4):628–638.
  • Simons J, Keurentjes J, Meuldijk J. Micron-sized polymer particles by membrane emulsification. Macromol Symp. 2013;333(1):102–112.
  • Jiang T, Charcosset C. Premix membrane emulsification for the preparation of curcumin-loaded nanoemulsions. J Food Eng. 2022;316:110836.
  • Vladisavljevi GT. Preparation of microemulsions and nanoemulsions by membrane emulsification. Colloids Surf A Physicochem and Eng Asp. 2019;579:123709.
  • Gehrmann S, Bunjes H. Influence of membrane material on the production of colloidal emulsions by premix membrane emulsification. Eur J Pharm Biopharm. 2016;126:140–148.
  • Nauman N, Zaquen N, Junkers T, et al. Particle size control in miniemulsion polymerization via membrane emulsification. Macromolecules. 2019;52(12):4492–4499.
  • Falco N, Reverchon E, Della Porta G. Injectable PLGA/hydrocortisone formulation produced by continuous supercritical emulsion extraction. Int J Pharm. 2013;441(1–2):589–597.
  • Chen AZ, Tang N, Wang SB, et al. Insulin-loaded poly-l-lactide porous microspheres prepared in supercritical CO2 for pulmonary drug delivery. J Supercritical Fluids. 2015;101:117–123.
  • Kwong E. Advancing drug discovery: a pharmaceutics perspective. J Pharm Sci. 2015;104(3):865–871.
  • Parr MK, Schmidt AH. Life cycle management of analytical methods. J Pharm Biomed Anal. 2017;147:506–517.
  • Rhee YS, Sohn MJ, Woo BH, et al. Sustained-release delivery of octreotide from biodegradable polymeric microspheres. Aaps Pharmscitech. 2011;12(4):1293–1301.
  • Bruijn D, Robin. EmulTech – revolutionizing the drug delivery industry. Green Process Synth. 2012;1(2). DOI:10.1515/gps-2012-0007
  • Builes-Barrera CA, Roman-Gonzalez A, Villada OA, et al. MON-LB51 stimulation for bilateral inferior petrosal sinus sampling may be unnecessary for diagnosis of ACTH dependent Cushing syndrome. J Endocr Soc. 2020;4(Supplement_1). 10.1210/jendso/bvaa046.2295.
  • Wu H, Dong Z, Li H, et al. An integrated Process Analytical Technology (PAT) approach for pharmaceutical crystallization process understanding to ensure product quality and safety: FDA scientist’s perspective. Org Process Res Dev. 2014;19(1):189–195.
  • Kumar V, Taylor MK, Mehrotra A, et al. Real-time particle size analysis using focused beam reflectance measurement as a process analytical technology tool for a continuous granulation–drying–milling process. Aaps Pharmscitech. 2013;14(2):523–530.
  • Read E K, Park J T, Shah R B, Riley B S, et al. Process analytical technology (PAT) for biopharmaceutical products. Anal Bioanal Chem. 2011;105(2):76–84.
  • Schaefer C, Lecomte C, Clicq D, et al. On-line near infrared spectroscopy as a Process Analytical Technology (PAT) tool to control an industrial seeded API crystallization. J Pharm Biomed. 2013;83:194–201.
  • Gnoth S, Jenzsch M, Simutis R, et al. Process Analytical Technology (PAT): batch-to-batch reproducibility of fermentation processes by robust process operational design and control. J Biotechnol. 2007;132(2):180–186.
  • Mittal M, Gupta S, Rathore AS. Raman spectroscopy as process analytical technology tool for monitoring atomic layer deposition (ALD) of drug particles. Mater Chem Phys. 2022;282:125976.
  • Operti MC, Bernhardt A, Grimm S, et al. PLGA-based nanomedicines manufacturing: technologies overview and challenges in industrial scale-up. Int J Pharm. 2021;605:120807.
  • Gu X, Savla C, Palmer AF. Tangential flow filtration facilitated fractionation and PEGylation of low and high‐molecular weight polymerized hemoglobins and their biophysical properties. Biotechnol Bioeng. 2022;119(1):176–186.
  • Dorney KM, Baker JD, Edwards ML, et al. Tangential flow filtration of colloidal silver nanoparticles: a “green. J Chem Educ. 2014;91(7):ágs. 1044–1049.
  • Jabra MG, Zydney AL. Design and optimization of single pass tangential flow filtration for inline concentration of monoclonal antibodies. J Membr Sci. 2022;643:120047.
  • Zhang S, Wu D, Ljap Z. Characterization of controlled release microspheres using FIB-SEM and image-based release prediction. AAPS PharmSciTech. 2020;21(5):1–14.
  • Li X, Wei Y, Wen K, et al. Novel insights on the encapsulation mechanism of PLGA terminal groups on ropivacaine. Eur J Pharm Biopharm. 2021;160:143–151.
  • Checa-Casalengua P, Jiang C, Bravo-Osuna I, et al. Preservation of biological activity of glial cell line-derived neurotrophic factor (GDNF) after microencapsulation and sterilization by gamma irradiation. Int J Pharm. 2012;436(1–2):545–554.
  • Faisant N, Siepmann J, Richard J, et al. Mathematical modeling of drug release from bioerodible microparticles: effect of gamma-irradiation. Eur J Pharm Biopharm. 2003;56(2):271–279. Official Journal of Arbeitsgemeinschaft Fur Pharmazeutische Verfahrenstechnik E V.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.