613
Views
2
CrossRef citations to date
0
Altmetric
Review

Long-acting ocular drug delivery technologies with clinical precedent

& ORCID Icon
Pages 1285-1301 | Received 16 May 2022, Accepted 28 Jul 2022, Published online: 10 Aug 2022

References

  • Lee VHL, Robinson JR. Topical ocular drug delivery: recent developments and future challenges. J Ocul Pharmacol Ther. 1986;2(1):67–108.
  • Davies NM. Biopharmaceutical considerations in topical ocular drug delivery. Clin Exp Pharmacol Physiol. 2000;27(7):558–562.
  • Rodrigues GA, Lutz D, Shen J, et al. Topical drug delivery to the posterior segment of the eye: addressing the challenge of preclinical to clinical translation. Pharm Res. 2018;35(12):245. DOI:10.1007/s11095-018-2519-x.
  • Taylor SRJ, Isa H, Joshi L, et al. New developments in corticosteroid therapy for Uveitis. Ophthalmologica. 2010;224(suppl 1):46–53. DOI:10.1159/000318021.
  • Raghava S, Hammond M, Kompella UB. Periocular routes for retinal drug delivery. Expert Opin Drug Deliv. 2004;1(1):99–114.
  • Subrizi A, Del Amo EM, Korzhikov-Vlakh V, et al., Design principles of ocular drug delivery systems: importance of drug payload, release rate, and material properties. Drug Discov Today. 24(8): 1446–1457. 2019. DOI:10.1016/j.drudis.2019.02.001.
  • Yasukawa T, Ogura Y, Kimura H, et al. Drug delivery from ocular implants. Expert Opin Drug Deliv. 2006;3(2):261–273. DOI:10.1517/17425247.3.2.261.
  • Cao Y, Samy KE, Bernards DA, et al. Recent advances in intraocular sustained-release drug delivery devices. Drug Discov Today. 2019;24(8):1694–1700. DOI:10.1016/j.drudis.2019.05.031.
  • Gote V, Sikder S, Sicotte J, et al. Ocular drug delivery: present innovations and future challenges. J Pharmacol Exp Ther. 2019;370(3):602–624. DOI:10.1124/jpet.119.256933.
  • Pons-Faudoa FP, Ballerini A, Sakamoto J, et al. Advanced implantable drug delivery technologies: transforming the clinical landscape of therapeutics for chronic diseases. Biomed Microdevices. 2019;21(2):47. DOI:10.1007/s10544-019-0389-6.
  • O’Brien MN, Jiang W, Wang Y, et al. Challenges and opportunities in the development of complex generic long-acting injectable drug products. J Control Release. 2021;336:144–158.
  • García-Estrada P, García-Bon MA, López-Naranjo EJ, et al. Polymeric implants for the treatment of intraocular eye diseases: trends in biodegradable and non-biodegradable materials. Pharmaceutics. 2021;13(5):701. DOI:10.3390/pharmaceutics13050701.
  • Johnson AR, Forster SP, White D, et al. Drug eluting implants in pharmaceutical development and clinical practice. Expert Opin Drug Deliv. 2021;18(5):577–593. DOI:10.1080/17425247.2021.1856072.
  • Allyn MM, Luo RH, Hellwarth EB, et al. Considerations for polymers used in ocular drug delivery. Front Med (Lausanne). 2022;8 DOI:10.3389/fmed.2021.787644.• Outlines critical development considerations for use of polymers in Ocular LAIIs.
  • Van Tomme SR, Storm G, Hennink WE. In situ gelling hydrogels for pharmaceutical and biomedical applications. Int J Pharm. 2008;355(1):1–18.
  • Başaran E, Yazan Y. Ocular application of chitosan. Expert Opin Drug Deliv. 2012;9(6):701–712.
  • Guvendiren M, Lu HD, Burdick JA. Shear-thinning hydrogels for biomedical applications. Soft Matter. 2012;8(2):260–272.
  • Jeong B, Kim SW, Bae YH. Thermosensitive sol–gel reversible hydrogels. Adv Drug Deliv Rev. 2012;64:154–162.
  • Yasin MN, Svirskis D, Seyfoddin A, et al. Implants for drug delivery to the posterior segment of the eye: a focus on stimuli-responsive and tunable release systems. J Control Release. 2014;196:208–221.
  • Herlihy KP, Williams S, Owens G, et al. Extended release of microfabricated protein particles from biodegradable hydrogel implants for the treatment of age related macular degeneration. Invest Ophthalmol Vis Sci. 2014;55(13):1960.
  • Nguyen DD, Lai J-Y. Advancing the stimuli response of polymer-based drug delivery systems for ocular disease treatment. Polym Chem. 2020;11(44):6988–7008.
  • Hashemi H, Khabazkhoob M, Mohazzab-Torabi S, et al. Anterior chamber angle and anterior chamber volume in a 40- to 64-year-old population. Eye Contact Lens. 2016;42(4):244–249. DOI:10.1097/ICL.0000000000000192.
  • Rabsilber TM, Khoramnia R, Auffarth GU. Anterior chamber measurements using pentacam rotating scheimpflug camera. J Cataract Refract Surg. 2006;32(3):456–459.
  • Goel M, Picciani RG, Lee RK, et al. Aqueous humor dynamics: a review. Open Ophthalmol J. 2010;4(1):52–59. DOI:10.2174/1874364101004010052.
  • Azhdam AM, Goldberg RA, Ugradar S. In vivo measurement of the human vitreous chamber volume using computed tomography imaging of 100 eyes. Trans Vision Sci Technol. 2020;9(1):2.
  • Chirila TV, Hong Y. Chapter C2 the vitreous humor. In: Murphy W, Black J, Hastings G, editors. Handbook of biomaterial properties. New York (NY): Springer; 2016. p. 125–134.
  • Käsdorf Benjamin T, Arends F, Lieleg O. Diffusion regulation in the vitreous humor. Biophys J. 2015;109(10):2171–2181.
  • Liebmann JM, Barton K, Weinreb RN, et al. Evolving guidelines for intracameral injection. J Glaucoma. 2020;29:S1–S7.
  • Labetoulle M, Findl O, Malecaze F, et al. Evaluation of the efficacy and safety of a standardised intracameral combination of mydriatics and anaesthetics for cataract surgery. Br J Ophthalmol. 2016;100(7):976–985. DOI:10.1136/bjophthalmol-2015-307587.
  • Behndig A, Cochener B, Güell JL, et al. Endophthalmitis prophylaxis in cataract surgery: overview of current practice patterns in 9 European countries. J Cataract Refract Surg. 2013;39(9):1421–1431. DOI:10.1016/j.jcrs.2013.06.014.
  • Grzybowski A, Brona P, Zeman L, et al. Commonly used intracameral antibiotics for endophthalmitis prophylaxis: a literature review. Surv Ophthalmol. 2021;66(1):98–108. DOI:10.1016/j.survophthal.2020.04.006.
  • Keating GM. Intracameral cefuroxime. Drugs. 2013;73(2):179–186.
  • Arshinoff SA, Modabber M. Dose and administration of intracameral moxifloxacin for prophylaxis of postoperative endophthalmitis. J Cataract Refract Surg. 2016;42(12):1730–1741.
  • Shorstein NH, Gardner S. Injection volume and intracameral moxifloxacin dose. J Cataract Refract Surg. 2019;45(10):1498–1502.
  • Yellepeddi VK, Sheshala R, McMillan H, et al. Punctal plug: a medical device to treat dry eye syndrome and for sustained drug delivery to the eye. Drug Discov Today. 2015;20(7):884–889. DOI:10.1016/j.drudis.2015.01.013.
  • Avery RL, Bakri SJ, Blumenkranz MS, et al. Intravitreal injection technique and monitoring: updated guidelines of an expert panel. Retina. 2014;34(Supplement 12):S1–S18. DOI:10.1097/IAE.0000000000000399.
  • Aiello LP, Brucker AJ, Chang S, et al. Evolving guidelines for intravenous injections. Retina. 2004;24(5):S3–S19. DOI:10.1097/00006982-200410001-00002.
  • Guest J-M, Malbin B, Abrams G, et al. Accuracy of intravitreal injection volume for aflibercept pre-filled syringe and BD Luer-Lok one-milliliter syringe. Int J Retin Vitr. 2022;8(1):27. DOI:10.1186/s40942-022-00375-3.
  • Jager RD, Aiello LP, Patel SC, et al. Risks of intravitreous injection: a comprehensive review retina. Retina (Philadelphia, Pa.). 2004;24(5):676–698. DOI:10.1097/00006982-200410000-00002.
  • Ghasemi Falavarjani K, Nguyen QD. Adverse events and complications associated with intravitreal injection of anti-VEGF agents: a review of literature. Eye. 2013;27(7):787–794.
  • Holz FG, Tadayoni R, Beatty S, et al. Multi-country real-life experience of anti-vascular endothelial growth factor therapy for wet age-related macular degeneration. Br J Ophthalmol. 2015;99(2):220–226. DOI:10.1136/bjophthalmol-2014-305327.
  • Kiss S, Dugel PU, Khanani AM, et al. Endophthalmitis rates among patients receiving intravitreal anti-VEGF injections: a USA claims analysis. Clinical ophthalmology. Vol. 12, Auckland (NZ): Dover Press; 2018. 1625–1635.
  • Rao P, Lum F, Wood K, et al. Real-world vision in age-related macular degeneration patients treated with single antiVEGF drug type for 1 year in the IRIS registry. Ophthalmology. 2018;125(4):522–528. DOI:10.1016/j.ophtha.2017.10.010.
  • Khanani AM, Skelly A, Bezlyak V, et al. SIERRA-AMD: a retrospective, real-world evidence study of patients with neovascular age-related macular degeneration in the United States. Ophthalmology Retina. 2020;4(2):122–133. DOI:10.1016/j.oret.2019.09.009.
  • Rajesh B, Zarranz-Ventura J, Fung AT, et al. Safety of 6000 intravitreal dexamethasone implants. Br J Ophthalmol. 2020;104(1):39–46. DOI:10.1136/bjophthalmol-2019-313991.
  • Kane FE, Burdan J, Cutino A, et al., Iluvien™: a new sustained delivery technology for posterior eye disease. Expert Opin Drug Deliv. 2008;5(9): 1039–1046. DOI:10.1517/17425247.5.9.1039. .
  • Haghjou N, Soheilian M, Abdekhodaie MJ. Sustained release intraocular drug delivery devices for treatment of uveitis. J Ophthalmic Vis Res. 2011;6(4):317–329.
  • Gaudio P. A review of evidence guiding the use of corticosteroids in the treatment of intraocular inflammation. Ocul Immunol Inflamm. 2004;12(3):169–192.
  • de Carvalho Ra P, Krausse ML, Murphree AL, et al. Delivery from episcleral exoplants. Invest Ophthalmol Vis Sci. 2006;47(10):4532–4539. DOI:10.1167/iovs.06-0030.
  • Lima LH, Farah ME, Gum G, et al. Sustained and targeted episcleral delivery of celecoxib in a rabbit model of retinal and choroidal neovascularization. Int J Retin Vitr. 2018;4(1):31. DOI:10.1186/s40942-018-0131-1.
  • Musch DC, Martin DF, Gordon JF, et al. Treatment of cytomegalovirus retinitis with a sustained-release ganciclovir implant. N Engl J Med. 1997;337(2):83–90. DOI:10.1056/NEJM199707103370203.
  • Morlet N, Young S, Naidoo D, et al. High dose intravitreal ganciclovir injection provides a prolonged therapeutic intraocular concentration. Br J Ophthalmol. 1996;80(3):214–216. DOI:10.1136/bjo.80.3.214.
  • Martin DF, Parks DJ, Mellow SD, et al. Treatment of cytomegalovirus retinitis with an intraocular sustained-release ganciclovir implant: a randomized controlled clinical trial. Arch Ophthalmol. 1994;112(12):1531–1539. DOI:10.1001/archopht.1994.01090240037023.
  • Marx JL, Kapusta MA, Patel SS, et al. Use of the ganciclovir implant in the treatment of recurrent cytomegalovirus retinitis. Arch Ophthalmol. 1996;114(7):815–820. DOI:10.1001/archopht.1996.01100140029003.
  • Schneider C, Langer R, Loveday D, et al. Applications of ethylene vinyl acetate copolymers (EVA) in drug delivery systems. J Control Release. 2017;262:284–295.
  • Jaffe GJ, Ben-nun J, Guo H, et al. Fluocinolone acetonide sustained drug delivery device to treat severe uveitis. Ophthalmology. 2000;107(11):2024–2033. DOI:10.1016/S0161-6420(00)00466-8.
  • Jaffe GJ, McCallum RM, Branchaud B, et al. Long-term follow-up results of a pilot trial of a fluocinolone acetonide implant to treat posterior uveitis. Ophthalmology. 2005;112(7):1192–1198.e1. DOI:10.1016/j.ophtha.2005.03.013.
  • Jaffe GJ, Martin D, Callanan D, et al. Fluocinolone acetonide implant (Retisert) for noninfectious posterior uveitis: thirty-four week results of a multicenter randomized clinical study. Ophthalmology. 2006;113(6):1020–1027. DOI:10.1016/j.ophtha.2006.02.021.
  • Driot J-Y, Novack GD, Rittenhouse KD, et al. Ocular pharmacokinetics of fluocinolone acetonide after retisert™ Intravitreal implantation in rabbits over a 1-year period. J Ocul Pharmacol Ther. 2004;20(3):269–275. DOI:10.1089/1080768041223611.
  • Stay MS, Xu J, Randolph TW, et al. Computer simulation of convective and diffusive transport of controlled-release drugs in the vitreous humor. Pharm Res. 2003;20(1):96–102. DOI:10.1023/A:1022207026982.
  • Friedrich S, Cheng Y-L, Saville B. Drug distribution in the vitreous humor of the human eye: the effects of intravitreal injection position and volume. Curr Eye Res. 1997;16(7):663–669.
  • Brumm MV, Nguyen QD. Fluocinolone acetonide intravitreal sustained release device–a new addition to the armamentarium of uveitic management. Int J Nanomedicine. 2007;2(1):55–64.
  • Chou K-J, Guo H, Ashton P, et al. Inventors; eyepoint pharmaceuticals, Inc, assignee. Injectable sustained release delivery devices. United States patent 8871241. 2014.
  • Parrish RK, Campochiaro PA, Pearson PA, et al. Characterization of intraocular pressure increases and management strategies following treatment with fluocinolone acetonide intravitreal implants in the FAME trials. Ophthalmic Surg Lasers Imaging. 2016;47(5):426–435. DOI:10.3928/23258160-20160419-05.
  • Bailey C, Chakravarthy U, Lotery A, et al. Real-world experience with 0.2 μg/day fluocinolone acetonide intravitreal implant (ILUVIEN) in the United Kingdom. Eye. 2017;31(12):1707–1715. DOI:10.1038/eye.2017.125.
  • Eaton A, Koh SS, Jimenez J, et al. The USER study: a chart review of patients receiving a 0.2 µg/day fluocinolone acetonide implant for diabetic macular edema. Opthalmol Ther. 2019;8(1):51–62. DOI:10.1007/s40123-018-0155-5
  • Jaffe GJ, Lin P, Keenan RT, et al. Injectable fluocinolone acetonide long-acting implant for noninfectious intermediate uveitis, posterior uveitis, and panuveitis: two-year results. Ophthalmology. 2016;123(9):1940–1948. DOI:10.1016/j.ophtha.2016.05.025.
  • El-Ghrably IA, Saad A, Dinah C. A novel technique for repositioning of a migrated ILUVIEN® (Fluocinolone Acetonide) implant into the anterior chamber. Opthalmol Ther. 2015;4(2):129–133.DOI:10.1007/s40123-015-0035-1.
  • Moisseiev E, Morse LS. Fluocinolone acetonide intravitreal implant in the visual axis. JAMA Ophthalmol. 2016;134(9):1067–1068.
  • Campochiaro PA, Marcus DM, Awh CC, et al. The port delivery system with ranibizumab for neovascular age-related macular degeneration: results from the randomized phase 2 ladder clinical trial. Ophthalmology. 2019;126(8):1141–1154. DOI:10.1016/j.ophtha.2019.03.036.
  • Loewenstein A, Laganovska G, Bressler NM, et al. Phase 1 clinical study of the port delivery system with ranibizumab for continuous treatment of neovascular age-related macular degeneration. Invest Ophthalmol Vis Sci. 2020;61(7):4201.
  • Campochiaro PA, Gune S, Maia M, et al. Pharmacokinetic (PK) profile of the port delivery system with ranibizumab (PDS) in the phase 2 ladder trial. Invest Ophthalmol Vis Sci. 2020;61(7):1157.
  • Khanani AM, Aziz AA, Weng CY, et al. Port delivery system: a novel drug delivery platform to treat retinal diseases. Expert Opin Drug Deliv. 2021;18(11):1571–1576. DOI:10.1080/17425247.2021.1968826.
  • Khanani AM, Callanan D, Dreyer R, et al. End-of-Study results for the ladder phase 2 trial of the port delivery system with ranibizumab for neovascular age-related macular degeneration. Ophthalmol Retina. 2021;5(8):775–787. DOI:10.1016/j.oret.2020.11.004.
  • Adamis AP, de Juan EJ. Development of the port delivery system with ranibizumab for neovascular age-related macular degeneration. Curr Opin Ophthalmol. 2022;33(3):131–136. DOI:10.1097/ICU.0000000000000851.
  • Yohe S, Maass KF, Horvath J, et al. In-vitro characterization of ranibizumab release from the port delivery system. J Control Release. 2022;345:101–107. DOI:10.1016/j.jconrel.2022.03.005.
  • Holekamp NM, Campochiaro PA, Chang MA, et al. Archway randomized phase 3 trial of the port delivery system with Ranibizumab for Neovascular Age-Related Macular Degeneration. Ophthalmology. 2022;129(3):295–307. DOI:10.1016/j.ophtha.2021.09.016.
  • Xu L, Lu T, Tuomi L, et al. Pharmacokinetics of ranibizumab in patients with neovascular age-related macular degeneration: a population approach. Invest Ophthalmol Vis Sci. 2013;54(3):1616–1624. DOI:10.1167/iovs.12-10260.
  • Bantseev V, Schuetz C, Booler HS, et al. Evaluation of surgical factors affecting vitreous hemorrhage following port delivery system with Ranibizumab implant insertion in a minipig model. Retina. 2020;40(8):1520–1528. DOI:10.1097/IAE.0000000000002614.
  • Sharma A, Parachuri N, Kumar N, et al. The port delivery system with ranibizumab—journey of mitigating vitreous hemorrhage. Eye. 2022;36(3):488–489. DOI:10.1038/s41433-021-01830-5.
  • Fialho SL, Silva Cunha A. Manufacturing techniques of biodegradable implants intended for intraocular application. Drug Deliv. 2005;12(2):109–116.
  • Fredenberg S, Wahlgren M, Reslow M, et al., The mechanisms of drug release in poly(lactic-co-glycolic acid)-based drug delivery systems—A review. Int J Pharm. 2011;415(1):34–52. DOI:10.1016/j.ijpharm.2011.05.049.
  • Lee SS, Hughes P, Ross AD, et al Biodegradable implants for sustained drug release in the eye. Pharm Res. 2010;27(10):2043–2053. DOI:10.1007/s11095-010-0159-x.
  • Adrianto MF, Annuryanti F, Wilson CG, et al. In vitro dissolution testing models of ocular implants for posterior segment drug delivery. Drug Deliv Transl Res. 2022;12(6):1355–1375. DOI:10.1007/s13346-021-01043-z.
  • Zhang S, Nagapudi K, Shen M, et al. Release mechanisms and practical percolation threshold for long-acting biodegradable implants: an image to simulation study. J Pharm Sci. 2022;111(7): 1896–1910.
  • Awwad S, Day RM, Khaw PT, et al. Sustained release ophthalmic dexamethasone: in vitro in vivo correlations derived from the PK-Eye. Int J Pharm. 2017;522(1–2):119–127. DOI:10.1016/j.ijpharm.2017.02.047.
  • Kuppermann BD, Blumenkranz MS, Haller JA, et al. Randomized controlled study of an intravitreous dexamethasone drug delivery system in patients with persistent macular edema. Arch Ophthalmol. 2007;125(3):309–317. DOI:10.1001/archopht.125.3.309.
  • Williams GA, Haller JA, Kuppermann BD, et al. Dexamethasone posterior-segment drug delivery system in the treatment of macular edema resulting from uveitis or Irvine-Gass syndrome. Am J Ophthalmol. 2009;147(6):1048–1054.e2. DOI:10.1016/j.ajo.2008.12.033.
  • Haller JA, Bandello F, Belfort R, et al. Randomized, sham-controlled trial of dexamethasone intravitreal implant in patients with macular edema due to retinal vein occlusion. Ophthalmology. 2010;117(6):1134–1146.e3. DOI:10.1016/j.ophtha.2010.03.032.
  • Guigou S, Hajjar C, Parrat E, et al. Multicenter Ozurdex® assessment for diabetic macular edema: MOZART study. J Fr Ophtalmol. 2014;37(6):480–485. DOI:10.1016/j.jfo.2014.03.001.
  • Chang-Lin J-E, Attar M, Acheampong AA, et al. Pharmacokinetics and pharmacodynamics of a sustained-release dexamethasone intravitreal implant. Invest Ophthalmol Vis Sci. 2011;52(1):80–86. DOI:10.1167/iovs.10-5285.
  • Bhagat R, Zhang J, Farooq S, et al. Comparison of the release profile and pharmacokinetics of intact and fragmented dexamethasone intravitreal implants in rabbit eyes. J Ocul Pharmacol Ther. 2014;30(10):854–858. DOI:10.1089/jop.2014.0082.
  • Bansal R, Bansal P, Kulkarni P, et al. Wandering Ozurdex® implant. J Ophthalmic Inflamm Infect. 2012;2(1):1–5. DOI:10.1007/s12348-011-0042-x
  • Lee DH, Chan CK. Modified insertion technique for a sustained-release dexamethasone intravitreal implant (Ozurdex®). Am J Ophthalmol Case Rep. 2020;19:100725.
  • Pardo-López D, Francés-Muñoz E, Gallego-Pinazo R, et al. Anterior chamber migration of dexametasone intravitreal implant (Ozurdex). Graefe’s Arch Clin Exp Ophthalmol. 2012;250(11):1703. DOI:10.1007/s00417-011-1802-x.
  • Sirinek PE, Lin MM. Intracameral sustained release bimatoprost implants (Durysta). Semin Ophthalmol. 2022;37(3):385–390.
  • Shirley M. Bimatoprost Implant: first Approval. Drugs Aging. 2020;37(6):457–462.
  • Seal JR, Robinson MR, Burke J, et al. Intracameral sustained-release bimatoprost implant delivers bimatoprost to target tissues with reduced drug exposure to off-target tissues. J Ocul Pharmacol Ther. 2019;35(1):50–57. DOI:10.1089/jop.2018.0067.
  • Medeiros FA, Walters TR, Kolko M, et al. Phase 3, randomized, 20-month study of bimatoprost implant in open-angle glaucoma and ocular hypertension (ARTEMIS 1). Ophthalmology. 2020;127(12):1627–1641. DOI:10.1016/j.ophtha.2020.06.018.
  • Ceonzo K, Gaynor A, Shaffer L, et al. Polyglycolic acid-induced inflammation: role of hydrolysis and resulting complement activation. Tissue Eng. 2006;12(2):301–308. DOI:10.1089/ten.2006.12.301.
  • Thackaberry EA, Lorget F, Farman C, et al. The safety evaluation of long-acting ocular delivery systems. Drug Discov Today. 2019;24(8):1539–1550. DOI:10.1016/j.drudis.2019.05.032.
  • Mihov G, Draaisma G, Dias A, et al. Degradable polyesteramides: a novel platform for sustained drug delivery. J Control Release. 2010;148(1):e46–e47. DOI:10.1016/j.jconrel.2010.07.053.
  • Franken A, Kemp A, Messier K, et al. Degradable polyesteramides: a novel platform for ophthalmic drug delivery. Invest Ophthalmol Vis Sci. 2011;52(14):3262.
  • Glendenning A, Crews K, Sturdivant J, et al. Sustained release, biodegradable pea implants for intravitreal delivery of the ROCK/PKC inhibitor AR-13503. Invest Ophthalmol Vis Sci. 2018;59(9):5672.
  • Ding J, Crews K, Carbajal K, et al. Ocular tissue distribution and duration of release of AR-13503 following administration of AR-13503 sustained release intravitreal implant in rabbits and miniature swine. Invest Ophthalmol Vis Sci. 2019;60(9):5387.
  • Perry JL, Herlihy KP, Napier ME, et al. PRINT: a novel platform toward shape and size specific nanoparticle theranostics. Acc Chem Res. 2011;44(10):990–998. DOI:10.1021/ar2000315.
  • DeSimone JM. Co-opting Moore’s law: therapeutics, vaccines and interfacially active particles manufactured via PRINT®. J Control Release. 2016;240:541–543.
  • Meng T, Kulkarni V, Simmers R, et al. Therapeutic implications of nanomedicine for ocular drug delivery. Drug Discov Today. 2019;24(8):1524–1538. DOI:10.1016/j.drudis.2019.05.006.
  • Navratil T, Garcia A, Tully J, et al. Preclinical evaluation of ENV515 (travoprost) intracameral implant - clinical candidate for treatment of glaucoma targeting six-month duration of action. Invest Ophthalmol Vis Sci. 2014;55(13):3548.
  • Navratil T, Garcia A, Verhoeven RS, et al. Advancing ENV515 (travoprost) intracameral implant into clinical development: nonclinical evaluation of ENV515 in support of first-time-in-human phase 2a clinical study. Invest Ophthalmol Vis Sci. 2015;56(7):5706. DOI:10.1167/iovs.14-16338.
  • Pegoraro T, Tully J, Trevino L, et al. Evaluation of incorporation efficiency of dexamethasone in a polymer matrix for sustained release implant manufacturing. Invest Ophthalmol Vis Sci. 2019;60(9):3369.
  • Tully J, Williams S, Melton D, et al. AR-1105. Dexamethasone extended release and pharmacokinetics in the non-human primate. Invest Ophthalmol Vis Sci. 2018;59(9):5673.
  • Sulistio A, Mansfeld FM, Reyes-Ortega F, et al. Intra-articular treatment of osteoarthritis with diclofenac-conjugated polymer reduces inflammation and pain. ACS Appl Bio Mater. 2019;2(7):2822–2832. DOI:10.1021/acsabm.9b00232.
  • O’Shea MS, Graichen FHM, Tait RJ, et al. inventors; PolyActiva Pty Ltd, assignee. Biodegradable polymer—bioactive moiety conjugates. United States patent US8535655B2. 2013.
  • Battiston K, Parrag I, Statham M, et al. Polymer-free corticosteroid dimer implants for controlled and sustained drug delivery. Nat Commun. 2021;12(1):2875. DOI:10.1038/s41467-021-23232-7.
  • Kuppermann BD, Parrag I, Louka D, et al. Pharmacokinetics and pharmacodynamics of a novel dexamethasone intravitreal implant. Invest Ophthalmol Vis Sci. 2019;60(9):1702.
  • Parrag I, Louka D, Fischer H, et al. Ocular pharmacokinetics, pharmacodynamics, and safety analysis of a novel dexamethasone intravitreal implant. Invest Ophthalmol Vis Sci. 2020;61(7):28.
  • Parrag IC, Statham MAJ, Battison K, et al. inventors; Ripple Therapeutics Corp, assignee. Dexamethasone prodrug compositions and uses thereof. United States patent US10588862B2. 2020.
  • Yang M, Peterson WM, Yu Y, et al. GB-102 for wet AMD: a novel injectable formulation that safely delivers active levels of sunitinib to the retina and RPE/choroid for over four months. Invest Ophthalmol Vis Sci. 2016;57(12):5037.
  • Chang D, Park K, Famili A. Hydrogels for sustained delivery of biologics to the back of the eye. Drug Discov Today. 2019;24(8):1470–1482.
  • Lee A, Blair HA. Dexamethasone intracanalicular insert: a review in treating post-surgical ocular pain and inflammation. Drugs. 2020;80(11):1101–1108.
  • Tyson SL, Bafna S, Gira JP, et al. Multicenter randomized phase 3 study of a sustained-release intracanalicular dexamethasone insert for treatment of ocular inflammation and pain after cataract surgery. J Cataract Refract Surg. 2019;45(2):204–212. DOI:10.1016/j.jcrs.2018.09.023.
  • Blizzard C, Desai A, Driscoll A. Pharmacokinetic studies of sustained-release depot of dexamethasone in beagle dogs. J Ocul Pharmacol Ther. 2016;32(9):595–600.
  • McGrath M, Blizzard CD, Desai A, et al. In vivo drug delivery of low solubility drugs from biodegradable hydrogel punctum plugs. Invest Ophthalmol Vis Sci. 2014;55(13):472.
  • Sawhney AS, Jarrett P, Bassett M, et al. inventors; Incept LLC, assignee. Drug delivery through hydrogel plugs. United States patent US8409606B2. 2013.
  • Blizzard CD, Desai A, Driscoll A, et al. Ocular pharmacokinetics of OTX-DED, a sustained-release intracanalicular insert delivering dexamethasone, in a canine model. Invest Ophthalmol Vis Sci. 2021;62(8):1323.
  • Vanslette A, Haberman P, Blizzard CD, et al. Evaluating safety and pharmacokinetics of OTX-CSI, a sustained release intracanalicular cyclosporine insert in beagles. Invest Ophthalmol Vis Sci. 2020;61(7):3258.
  • Jarrett PK, Elhayek RF, Kahn E, et al. Efficacy & tolerability of OTX-TKI, a sustained hydrogel delivery system for a tyrosine kinase inhibitor, in a VEGF induced retinal leakage model: 1 year results. Invest Ophthalmol Vis Sci. 2019;60(9):372.
  • Wong JG, Chang A, Guymer RH, et al. Phase 1 study of an intravitreal axitinib hydrogel-based implant for the treatment of neovascular age-related macular degeneration (nAMD). Invest Ophthalmol Vis Sci. 2021;62(8):218.
  • Jarrett T, Elhayek RF, Lattrell Z, et al. Pharmacokinetics of a 6 month sustained hydrogel delivery system for tyrosine kinase inhibitors in Dutch belted rabbits. Invest Ophthalmol Vis Sci. 2017;58(8):1984.
  • Blizzard CD, Desai A, Langh J, et al. Pharmacokinetics of OTX-TIC, a sustained release travoprost intracameral implant in rabbits. Invest Ophthalmol Vis Sci. 2019;60(9):3777.
  • Langh J, Blizzard CD, Driscoll A, et al. Effect of hydrogel persistence on pharmacodynamics and tolerability of OTX-TIC, travoprost intracameral implant in Beagles. Invest Ophthalmol Vis Sci. 2020;61(7):1242.
  • Blizzard CD, Desai A, D’Abbraccio S, et al. Efficacy and pharmacokinetics of a sustained release travoprost intracameral hydrogel implant in Beagle dogs. Invest Ophthalmol Vis Sci. 2018;59(9):1245.
  • Goldstein MH, Goldberg D, Walters TR, et al. Evaluating safety, tolerability and efficacy of an intracameral hydrogel-based travoprost implant in subjects with glaucoma - phase 1 trial. Invest Ophthalmol Vis Sci. 2020;61(7):4266.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.