3,735
Views
1
CrossRef citations to date
0
Altmetric
Editorial

Biodegradable and removable implants for controlled drug delivery and release application

ORCID Icon, , ORCID Icon & ORCID Icon
Pages 1177-1181 | Received 31 May 2022, Accepted 02 Aug 2022, Published online: 11 Aug 2022

References

  • Liu L, Yao WD, Rao YF, et al. pH-Responsive carriers for oral drug delivery: challenges and opportunities of current platforms. Drug Deliv. 2017;24(1):569–581.
  • Vhora I, Khatri N, Misra A. Applications of polymers in parenteral drug delivery. Appl Polym Drug Deliv. 2021;221–261. DOI:10.1016/B978-0-12-819659-5.00008-2.
  • Jeong WY, Kwon M, Choi HE, et al. Recent advances in transdermal drug delivery systems: a review. Biomater Res. 2021;25:1–15.
  • García-Estrada P, García-Bon MA, López-Naranjo EJ, et al. Polymeric implants for the treatment of intraocular eye diseases: trends in biodegradable and non-biodegradable materials. J Polymeric. 2021;13(5):701.
  • Sharma B, Sharma S, Jain P. Leveraging advances in chemistry to design biodegradable polymeric implants using chitosan and other biomaterials. Int J Biol. 2021;169:414–427.
  • Johnson AR, Forster SP, White D, et al. Drug eluting implants in pharmaceutical development and clinical practice. Expert Opin Drug Deliv. 2021;18:577–593.
  • Teo AJT, Mishra A, Park I, et al. Polymeric biomaterials for medical implants and devices. ACS Biomater Sci Eng. 2016;2. DOI:10.1021/acsbiomaterials.5b00429.
  • Coulter FB, Schaffner M, Faber JA, et al. Bioinspired heart valve prosthesis made by silicone additive manufacturing. Matter. 2019;1(1):266–279.
  • Kumar Dubey A, Gupta VK, Kujawska M, et al. Exploring nano-enabled CRISPR-Cas-powered strategies for efficient diagnostics and treatment of infectious diseases. J Nanostructure Chem. n.d. DOI:10.1007/s40097-022-00472-7.
  • Kaushik A. Manipulative magnetic nanomedicine: the future of COVID-19 pandemic/endemic therapy. 2020;18:531–534. DOI:10.1080/17425247.2021.1860938.
  • Pooja Varahachalam S, Lahooti B, Chamaneh M, et al. Nanomedicine for the SARS-CoV-2: state-of-the-art and future prospects. Int J Nanomed. 2021;16:539–560.
  • Johnson AR, Forster SP, White D, et al. Drug eluting implants in pharmaceutical development and clinical practice. 2021;18:577–593. DOI:10.1080/17425247.2021.1856072.
  • Stewart SA, Domínguez-Robles J, Donnelly RF, et al. Implantable polymeric drug delivery devices: classification, manufacture materials, and clinical applications. Polymers (Basel). 2018;10(12):1379.
  • Ramachandran R, Junnuthula VR, Gowd GS, et al. Theranostic 3-dimensional nano brain-implant for prolonged and localized treatment of recurrent glioma. Sci Rep. 2017;7(1):43271.
  • Mangano F, Raspanti M, Maghaireh H, et al. Scanning electron microscope (SEM) evaluation of the interface between a nanostructured calcium-incorporated dental implant surface and the human bone. Mater. 2017; 10. DOI:10.3390/ma10121438.
  • Dubbers D, Saul H, Märkisch B, et al. Exotic decay channels are not the cause of the neutron lifetime anomaly. Phys Lett B. 2019;791:6–10.
  • Dias FJ, Fuentes R, Navarro P, et al. Assessment of the chemical composition in different dental implant types: an analysis through EDX system. Coatings. 2020;10:882.
  • First-in-human trial of MK-8591-eluting implants. - Google Scholar; n.d.
  • Adusei KM, Ngo TB, Sadtler K. T lymphocytes as critical mediators in tissue regeneration, fibrosis, and the foreign body response. Acta Biomater. 2021;133:17–33.
  • Kutner N, Kunduru KR, Rizik L, et al. Recent advances for improving functionality, biocompatibility, and longevity of implantable medical devices and deliverable drug delivery systems. Adv Funct Mater. 2021;31:2010929.
  • Leelakanok N, Geary S, Salem AK. Antitumor efficacy and toxicity of 5-fluorouracil-loaded poly (lactide co-glycolide) pellets. J Pharm Sci. undefined 2018;107:690–7. Elsevier. (n.d).
  • Manoukian OS, Arul MR, Sardashti N, et al. Biodegradable polymeric injectable implants for long-term delivery of contraceptive drugs. J Appl Polym Sci. 2018;135:46068.
  • Shilo M, Shabat D, Green O, et al. Injectable nanocomposite implants reduce ros accumulation and improve heart function after infarction. Adv Sci. 2021;8:2102919.
  • Amini-Fazl MS. Biodegradation study of PLGA as an injectable in situ depot-forming implant for controlled release of paclitaxel. Polym Bull. 2021;795(79):2763–2776.
  • Dadgar N, Ghiaseddin A, Irani S, et al. Bioartificial injectable cartilage implants from demineralized bone matrix/PVA and related studies in rabbit animal model. J Biomater Appl. 2021;35:1315–1326.
  • Cimen Z, Babadag S, Odabas S, et al. Injectable and self-healable pH-responsive gelatin-PEG/laponite hybrid hydrogels as long-acting implants for local cancer treatment. ACS Appl Polym Mater. 2021;3:3504–3518.
  • Bandyopadhyay A, Bose S, Narayan R. Translation of 3D printed materials for medical applications. MRS Bull. 2022;47:39–48.
  • Kim H, Woo SJ. Ocular drug delivery to the retina: current innovations and future perspectives. Pharmaceutics. undefined 2021;13:108. Mdpi.Com. (n.d).
  • Muhammad N, Azli AA, Saleh MS, et al. A review on additive manufacturing in bioresorbable stent manufacture. AIP Conf Proc. 2021;2347. DOI:10.1063/5.0051941
  • Lv H, Tang D, Sun Z, et al. Electrospun PCL-based polyurethane/HA microfibers as drug carrier of dexamethasone with enhanced biodegradability and shape memory performances. Colloid Polym Sci. 2019;2981(298):103–111.
  • Sun L, Gao X, Wu D, et al. Advances in physiologically relevant actuation of shape memory polymers for biomedical applications. MRS Bull. 2020;61:280–318.
  • Jahangiri M, Kalajahi AE, Rezaei M, et al. Shape memory hydroxypropyl cellulose-g-poly (ε-caprolactone) networks with controlled drug release capabilities. J Polym Res. 2019;266(26):1–14.
  • Behl M, Lendlein A. Shape-memory polymers. Mater Today. 2007;10:20–28.
  • Fu YQ, Huang WM, Luo JK, et al. Polyurethane shape-memory polymers for biomedical applications. Shape Mem Polym Biomed Appl. 2015;167–195. DOI:10.1016/B978-0-85709-698-2.00009-X
  • Chen MC, Tsai HW, Chang Y, et al. Rapidly self-expandable polymeric stents with a shape-memory property. Biomacromolecules. 2007;8:2774–2780.
  • Chen MC, Chang Y, Liu CT, et al. The characteristics and in vivo suppression of neointimal formation with sirolimus-eluting polymeric stents. Biomaterials. 2009;30:79–88.
  • Liaskoni A, Wildman RD, Roberts CJ. 3D printed polymeric drug-eluting implants. Int J Pharm. 2021;597:120330.
  • Do AV, Akkouch A, Green B, et al. Controlled and sequential delivery of fluorophores from 3D printed alginate-PLGA tubes. Ann Biomed Eng. 2017;45:297.
  • Domsta V, Seidlitz A. 3D-printing of drug-eluting implants: an overview of the current developments described in the literature. Molecules. 2021;26:4066.
  • Picco CJ, Domínguez-Robles J, Utomo E, et al 3D-printed implantable devices with biodegradable rate-controlling membrane for sustained delivery of hydrophobic drugs. Drug Deliv. 2022;29:1038–1048.
  • Gião T, Teixeira T, Almeida MR, et al. Choroid plexus in Alzheimer’s disease – the current state of knowledge. Biomed. 2022;10:224.
  • Ohta Y, Imai T, Maekawa Y, et al. The effect of cochlear implants on cognitive function in older adults: a prospective, longitudinal 2-year follow-up study. Auris Nasus Larynx. 2022;49:360–367.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.