537
Views
3
CrossRef citations to date
0
Altmetric
Review

State-of-the-art of ultrasound-triggered drug delivery from ultrasound-responsive drug carriers

, , , , &
Pages 997-1009 | Received 06 Jun 2022, Accepted 03 Aug 2022, Published online: 10 Aug 2022

References

  • Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021 May;71(3):209–249.
  • Papac RJ. Origins of cancer therapy. Yale J Biol Med. 2001 Nov-Dec;74(6):391–398.
  • Traverso LW. Pancreatic cancer: surgery alone is not sufficient. Surg Endosc. 2006 Apr;20(2):S446–9.
  • Chabner BA, Roberts TG. Timeline: chemotherapy and the war on cancer. Nat Rev Cancer. 2005 Jan;5(1):65–72.
  • Ventola CL. Cancer immunotherapy, part 3: challenges and future trends. Pharm Ther. 2017 Aug;42(8):514–521.
  • Leinenga G, Langton C, Nisbet R, et al. Ultrasound treatment of neurological diseases—current and emerging applications. Nat Rev Neurol. 2016;12(3):161–174.
  • Rabut C, Yoo S, Hurt RC, et al. Ultrasound technologies for imaging and modulating neural activity. Neuron. 2020;108(1):93–110.
  • Kooiman K, Roovers S, Langeveld SA, et al. Ultrasound-responsive cavitation nuclei for therapy and drug delivery. Ultrasound Med Biol. 2020;46(6):1296–1325.
  • Chandan R, Mehta S, Banerjee R. Ultrasound-responsive carriers for therapeutic applications. ACS Biomater Sci Eng. 2020;6(9):4731–4747.
  • Shin Low S, Nong Lim C, Yew M, et al. Recent ultrasound advancements for the manipulation of nanobiomaterials and nanoformulations for drug delivery. Ultrason Sonochem. 2021 Dec;80:105805.
  • Aarli SJ, Novotny V, Thomassen L, et al. Persistent microembolic signals in the cerebral circulation on transcranial doppler after intravenous sulfur hexafluoride microbubble infusion. J Neuroimaging. 2020 Mar;30(2):146–149.
  • Chandan R, Mehta S, Banerjee R. Ultrasound-responsive carriers for therapeutic applications. ACS Biomater Sci Eng. 2020 Sep 14;6(9):4731–4747.
  • Kooiman K, Roovers S, Langeveld SAG, et al. Ultrasound-responsive cavitation nuclei for therapy and drug delivery. Ultrasound Med Biol. 2020 Jun;46(6):1296–1325.
  • Lentacker I, De Cock I, Deckers R, et al. Understanding ultrasound induced sonoporation: definitions and underlying mechanisms. Adv Drug Deliv Rev. 2014 Jun;72:49–64.
  • Escoffre JM, Bouakaz A. Minireview: biophysical mechanisms of cell membrane sonopermeabilization. Knowns and Unknowns. Langmuir. 2019 Aug 6;35(31):10151–10165.
  • Hu Y, Wan JM, Yu AC. Membrane perforation and recovery dynamics in microbubble-mediated sonoporation. Ultrasound Med Biol. 2013 Dec;39(12):2393–2405.
  • Ho YJ, Huang CC, Fan CH, et al. Ultrasonic technologies in imaging and drug delivery. Cell Mol Life Sci. 2021 Sep;78(17–18):6119–6141.
  • Deprez J, Lajoinie G, Engelen Y, et al. Opening doors with ultrasound and microbubbles: beating biological barriers to promote drug delivery. Adv Drug Deliv Rev. 2021 May;172:9–36.
  • Lea-Banks H, O’Reilly MA, Hynynen K. Ultrasound-responsive droplets for therapy: a review. J Control Release. 2019 Jan 10;293:144–154.
  • Thomas RG, Jonnalagadda US, Kwan JJ. Biomedical applications for gas-stabilizing solid cavitation agents. Langmuir. 2019 Aug 6;35(31):10106–10115.
  • An J, Hu YG, Li C, et al. A pH/Ultrasound dual-response biomimetic nanoplatform for nitric oxide gas-sonodynamic combined therapy and repeated ultrasound for relieving hypoxia. Biomaterials. 2020 Feb;230:119636.
  • Bourdeau RW, Lee-Gosselin A, Lakshmanan A, et al. Acoustic reporter genes for noninvasive imaging of microorganisms in mammalian hosts. Nature. 2018;553(7686):86–90
  • Allen TM, Cullis PR. Drug delivery systems: entering the mainstream. Science. 2004 Mar 19;303(5665):1818–1822
  • Dayton P, Klibanov A, Brandenburger G, et al. Acoustic radiation force in vivo: a mechanism to assist targeting of microbubbles. Ultrasound Med Biol. 1999 Oct;25(8):1195–1201.
  • Shortencarier MJ, Dayton PA, Bloch SH, et al. A method for radiation-force localized drug delivery using gas-filled lipospheres. IEEE Trans Ultrason Ferroelectr Freq Control. 2004 Jul;51(7):822–831.
  • Collis J, Manasseh R, Liovic P, et al. Cavitation microstreaming and stress fields created by microbubbles. Ultrasonics. 2010 Feb;50(2):273–279.
  • Beekers I, Vegter M, Lattwein KR, et al. Opening of endothelial cell-cell contacts due to sonoporation. J Control Release. 2020 Jun 10;322:426–438.
  • Presset A, Bonneau C, Kazuyoshi S, et al. Endothelial cells, first target of drug delivery using microbubble-assisted ultrasound. Ultrasound Med Biol. 2020 Jul;46(7):1565–1583.
  • Chen KT, Wei KC, Liu HL. Focused ultrasound combined with microbubbles in central nervous system applications. Pharmaceutics. 2021 Jul 15;13(7):1084.
  • ter Haar G. Safety and bio-effects of ultrasound contrast agents. Med Biol Eng Comput. 2009 Aug;47(8):893–900.
  • Ho YJ, Wang TC, Fan CH, et al. Current progress in antivascular tumor therapy. Drug Discov Today. 2017 Oct;22(10):1503–1515.
  • Ingram N, McVeigh LE, Abou-Saleh RH, et al. Ultrasound-triggered therapeutic microbubbles enhance the efficacy of cytotoxic drugs by increasing circulation and tumor drug accumulation and limiting bioavailability and toxicity in normal tissues. Theranostics. 2020;10(24):10973–10992.
  • Fan CH, Ting CY, Liu HL, et al. Antiangiogenic-targeting drug-loaded microbubbles combined with focused ultrasound for glioma treatment. Biomaterials. 2013 Mar;34(8):2142–2155.
  • Charalambous A, Mico V, McVeigh LE, et al. Targeted microbubbles carrying lipid-oil-nanodroplets for ultrasound-triggered delivery of the hydrophobic drug, combretastatin A4. Nanomedicine. 2021 Aug;36:102401.
  • Zhang J, Wang S, Deng Z, et al. Ultrasound-triggered drug delivery for breast tumor therapy through iRGD-targeted paclitaxel-loaded liposome-microbubble complexes. J Biomed Nanotechnol. 2018 Aug 1;14(8):1384–1395.
  • Prausnitz MR, Mitragotri S, Langer R. Current status and future potential of transdermal drug delivery. Nat Rev Drug Discov. 2004 Feb;3(2):115–124.
  • Vedadghavami A, Zhang C, Bajpayee AG. Overcoming negatively charged tissue barriers: drug delivery using cationic peptides and proteins. Nano Today. 2020 Oct;34:100898.
  • Garg N, Perry L, Deodhar A. Intra-articular and soft tissue injections, a systematic review of relative efficacy of various corticosteroids. Clin Rheumatol. 2014 Dec;33(12):1695–1706.
  • Ma Y, Tao W, Krebs SJ, et al. Vaccine delivery to the oral cavity using coated microneedles induces systemic and mucosal immunity. Pharm Res. 2014 Sep;31(9):2393–2403.
  • Schoellhammer CM, Blankschtein D, Langer R. Skin permeabilization for transdermal drug delivery: recent advances and future prospects. Expert Opin Drug Deliv. 2014 Mar;11(3):393–407.
  • Park D, Park H, Seo J, et al. Sonophoresis in transdermal drug deliverys. Ultrasonics. 2014 Jan;54(1):56–65.
  • Y-J H, Hsu H-C, Kang S-T, et al. Ultrasonic transdermal delivery system with acid–base neutralization-generated CO2 microbubble cavitation. ACS Appl Bio Mater. 2020;3(4):1968–1975.
  • Liao AH, Ma WC, Wang CH, et al. Penetration depth, concentration and efficiency of transdermal alpha-arbutin delivery after ultrasound treatment with albumin-shelled microbubbles in mice. Drug Deliv. 2016 Sep;23(7):2173–2182.
  • Mehta AM, Sonabend AM, Bruce JN. Convection-enhanced delivery. Neurotherapeutics. 2017 Apr;14(2):358–371.
  • Olbricht W, Sistla M, Ghandi G, et al. Time-reversal acoustics and ultrasound-assisted convection-enhanced drug delivery to the brain. J Acoust Soc Am. 2013 Aug;134(2):1569–1575.
  • Mano Y, Saito R, Haga Y, et al. Intraparenchymal ultrasound application and improved distribution of infusate with convection-enhanced delivery in rodent and nonhuman primate brain. J Neurosurg. 2016 May;124(5):1490–1500.
  • Hobbs SK, Monsky WL, Yuan F, et al. Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc Natl Acad Sci U S A. 1998 Apr 14;95(8):4607–4612.
  • Li Y, Wang J, Wientjes MG, et al. Delivery of nanomedicines to extracellular and intracellular compartments of a solid tumor. Adv Drug Deliv Rev. 2012 Jan;64(1):29–39.
  • Williams R, Wright C, Cherin E, et al. Characterization of submicron phase-change perfluorocarbon droplets for extravascular ultrasound imaging of cancer. Ultrasound Med Biol. 2013 Mar;39(3):475–489.
  • Helfield BL, Yoo K, Liu J, et al. Investigating the accumulation of submicron phase-change droplets in tumors. Ultrasound Med Biol. 2020 Oct;46(10):2861–2870.
  • Fang J, Nakamura H, Maeda H. The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev. 2011 Mar 18;63(3):136–151.
  • Xu X, Ho W, Zhang X, et al. Cancer nanomedicine: from targeted delivery to combination therapy. Trends Mol Med. 2015 Apr;21(4):223–232.
  • Martin JD, Seano G, Jain RK. Normalizing function of tumor vessels: progress, opportunities, and challenges. Annu Rev Physiol. 2019 Feb 10;81:505–534.
  • Ho YJ, Li JP, Fan CH, et al. Ultrasound in tumor immunotherapy: current status and future developments. J Control Release. 2020 Apr 14;323:12–23.
  • Qiu Y, Ren K, Zhao W, et al. A “dual-guide” bioinspired drug delivery strategy of a macrophage-based carrier against postoperative triple-negative breast cancer recurrence. J Control Release. 2021 Jan 10;329:191–204.
  • Krueger TEG, Thorek DLJ, Denmeade SR, et al. Concise review: mesenchymal stem cell-based drug delivery: the good, the bad, the ugly, and the promise. Stem Cells Transl Med. 2018 Sep;7(9):651–663.
  • Ho YJ, Chang HC, Lin CW, et al. Oscillatory behavior of microbubbles impacts efficacy of cellular drug delivery. J Control Release. 2021 May 10;333:316–327.
  • Fan CH, Lee YH, Ho YJ, et al. Macrophages as drug delivery carriers for acoustic phase-change droplets. Ultrasound Med Biol. 2018 Jul;44(7):1468–1481.
  • Ho YJ, Chiang YJ, Kang ST, et al. Camptothecin-loaded fusogenic nanodroplets as ultrasound theranostic agent in stem cell-mediated drug-delivery system. J Control Release. 2018 May 28;278:100–109.
  • Yang YY, Li QY, Guo XS, et al. Mechanisms underlying sonoporation: interaction between microbubbles and cells. Ultrason Sonochem. 2020 Oct;67:105096.
  • Upadhyay A, Dalvi SV. Microbubble formulations: synthesis, stability, modeling and biomedical applications. Ultrasound Med Biol. 2019 Feb;45(2):301–343.
  • Yang Q, Zhou Y, Chen J, et al. Gene therapy for drug-resistant glioblastoma via lipid-polymer hybrid nanoparticles combined with focused ultrasound. Int J Nanomedicine. 2021;16:185–199.
  • Lu S, Zhao P, Deng Y, et al. Mechanistic insights and therapeutic delivery through micro/nanobubble-assisted ultrasound. Pharmaceutics. 2022 Feb 22;14(3):480.
  • Diakova GB, Wang M, Unnikrishnan S, et al. Preparation and characterization of targeted microbubbles. J Vis Exp. 2021 Sep;4(175):e62370.
  • Kim D, Lee SS, Moon H, et al. PD-L1 targeting immune-microbubble complex enhances therapeutic index in murine colon cancer models. Pharmaceuticals (Basel). 2020 Dec 23;14(1):6.
  • Caskey CF, Qin S, Dayton PA, et al. Microbubble tunneling in gel phantoms. J Acoust Soc Am. 2009 May;125(5):El183–9.
  • Arvanitis CD, Bazan-Peregrino M, Rifai B, et al. Cavitation-enhanced extravasation for drug delivery. Ultrasound Med Biol. 2011 Nov;37(11):1838–1852.
  • De Cock I, Lajoinie G, Versluis M, et al. Sonoprinting and the importance of microbubble loading for the ultrasound mediated cellular delivery of nanoparticles. Biomaterials. 2016 Mar;83:294–307.
  • Liao AH, Hung CR, Chen HK, et al. Ultrasound-mediated EGF-coated-microbubble cavitation in dressings for wound-healing applications. Sci Rep. 2018 May 29;8(1):8327.
  • Wang P, Yin T, Li J, et al. Ultrasound-responsive microbubbles for sonography-guided siRNA delivery. Nanomedicine. 2016 May;12(4):1139–1149.
  • Liao AH, Lin KH, Chuang HC, et al. Low-frequency dual-frequency ultrasound-mediated microbubble cavitation for transdermal minoxidil delivery and hair growth enhancement. Sci Rep. 2020 Mar 9;10(1):4338.
  • Nittayacharn P, Yuan HX, Hernandez C, et al. Enhancing tumor drug distribution with ultrasound-triggered nanobubbles. J Pharm Sci. 2019 Sep;108(9):3091–3098.
  • Chen M, Liang X, Gao C, et al. Ultrasound triggered conversion of porphyrin/camptothecin-fluoroxyuridine triad microbubbles into nanoparticles overcomes multidrug resistance in colorectal cancer. ACS Nano. 2018 Jul 24;12(7):7312–7326.
  • Huynh E, Leung BY, Helfield BL, et al. In situ conversion of porphyrin microbubbles to nanoparticles for multimodality imaging. Nat Nanotechnol. 2015 Apr;10(4):325–332.
  • Prabhakar A, Banerjee R. Nanobubble liposome complexes for diagnostic imaging and ultrasound-triggered drug delivery in cancers: a theranostic approach. ACS Omega. 2019 Sep 24;4(13):15567–15580.
  • Gao S, Cheng X, Li J. Lipid nanobubbles as an ultrasound-triggered artesunate delivery system for imaging-guided, tumor-targeted chemotherapy. Onco Targets Ther. 2019;12:1841–1850.
  • Song W, Luo Y, Zhao Y, et al. Magnetic nanobubbles with potential for targeted drug delivery and trimodal imaging in breast cancer: an in vitro study. Nanomedicine (Lond). 2017 May;12(9):991–1009.
  • Xie X, Lin W, Li M, et al. Efficient siRNA delivery using novel cell-penetrating peptide-siRNA conjugate-loaded nanobubbles and ultrasound. Ultrasound Med Biol. 2016 Jun;42(6):1362–1374.
  • Li H, Wu Z, Zhang J, et al. Instant ultrasound-evoked precise nanobubble explosion and deep photodynamic therapy for tumors guided by molecular imaging. ACS Appl Mater Interfaces. 2021 May 12;13(18):21097–21107.
  • Perera RH, Abenojar E, Nittayacharn P, et al. Intracellular vesicle entrapment of nanobubble ultrasound contrast agents targeted to PSMA promotes prolonged enhancement and stability in vivo and in vitro. Nanotheranostics. 2022;6(3):270–285.
  • Jose AD, Wu Z, Thakur SS. A comprehensive update of micro-and nanobubbles as theranostics in oncology. Eur J Pharm Biopharm. 2022;172:123–133.
  • Kang ST, Huang YL, Yeh CK. Characterization of acoustic droplet vaporization for control of bubble generation under flow conditions. Ultrasound Med Biol. 2014 Mar;40(3):551–561.
  • Zhang WQ, Shi YH, Abd Shukor S, et al. Phase-shift nanodroplets as an emerging sonoresponsive nanomaterial for imaging and drug delivery applications. Nanoscale. 2022 Feb 24;14(8):2943–2965.
  • Zhong Q, Yoon BC, Aryal M, et al. Polymeric perfluorocarbon nanoemulsions are ultrasound-activated wireless drug infusion catheters. Biomaterials. 2019 Jun;206:73–86.
  • Sheeran PS, Yoo K, Williams R, et al. More than bubbles: creating phase-shift droplets from commercially available ultrasound contrast agents. Ultrasound Med Biol. 2016 Oct 07;43(2):531–540.
  • Hannah AS, Luke GP, Emelianov SY. Blinking phase-change nanocapsules enable background-free ultrasound imaging. Theranostics. 2016;6(11):1866–1876.
  • Lea-Banks H, Hynynen K. Sub-millimetre precision of drug delivery in the brain from ultrasound-triggered nanodroplets. J Control Release. 2021 Oct 10;338:731–741.
  • Airan RD, Meyer RA, Ellens NP, et al. Noninvasive targeted transcranial neuromodulation via focused ultrasound gated drug release from nanoemulsions. Nano Lett. 2017 Feb 8;17(2):652–659.
  • Ho YJ, Chang YC, Yeh CK. Improving nanoparticle penetration in tumors by vascular disruption with acoustic droplet vaporization. Theranostics. 2016;6(3):392–403.
  • Feng Y, Qin D, Zhang J, et al. Occlusion and rupture of ex vivo capillary bifurcation due to acoustic droplet vaporization. Appl Phys Lett. 2018 Jun 4;112(23):233701.
  • Ho YJ, Yeh CK. Concurrent anti-vascular therapy and chemotherapy in solid tumors using drug-loaded acoustic nanodroplet vaporization. Acta Biomater. 2017 Feb;49:472–485.
  • Hu YX, Xue S, Long T, et al. Opto-acoustic synergistic irradiation for vaporization of natural melanin-cored nanodroplets at safe energy levels and efficient sono-chemo-photothermal cancer therapy. Theranostics. 2020;10(23):10448–10465.
  • Rouco H, García-García P, Évora C, et al. Screening strategies for surface modification of lipid-polymer hybrid nanoparticles. Int J Pharm. 2022 Jul;7:121973.
  • Xue J, Zhu Y, Bai S, et al. Nanoparticles with rough surface improve the therapeutic effect of photothermal immunotherapy against melanoma. Acta Pharm Sin B. 2022 Jun;12(6):2934–2949.
  • Ishibashi K, Shimada K, Kawato T, et al. Inhibitory effects of low-energy pulsed ultrasonic stimulation on cell surface protein antigen C through heat shock proteins GroEL and DnaK in Streptococcus mutans. Appl Environ Microbiol. 2010;76(3):751–756.
  • Pecha R, Gompf B. Microimplosions: cavitation collapse and shock wave emission on a nanosecond time scale. Phys Rev Lett. 2000 Feb 07;84(6):1328–1330.
  • Jin Q, Lin C-Y, Kang S-T, et al. Superhydrophobic silica nanoparticles as ultrasound contrast agents. Ultrason Sonochem. 2017 May 01;36:262–269.
  • Paris JL, Cabañas MV, Manzano M, et al. Polymer-grafted mesoporous silica nanoparticles as ultrasound-responsive drug carriers. ACS Nano. 2015 Nov 24;9(11):11023–11033.
  • Paris JL, Villaverde G, Cabañas MV, et al. From proof-of-concept material to PEGylated and modularly targeted ultrasound-responsive mesoporous silica nanoparticles. J Mat Chem B. 2018;6(18):2785–2794.
  • Zhao J, Shi J, Meng X, et al. ROS-activated nanoscale coordination polymers for enhanced ultrasound-mediated therapy for the treatment of cancer. Acta Biomater. 2022 Feb 25;143(15): 372–380 .
  • Yildirim A, Chattaraj R, Blum NT, et al. Understanding acoustic cavitation initiation by porous nanoparticles: toward nanoscale agents for ultrasound imaging and therapy. Chem Mater. 2016;28(16):5962–5972.
  • Kwan JJ, Myers R, Coviello CM, et al. Ultrasound-propelled nanocups for drug delivery. Small. 2015 Oct 01;11(39):5305–5314.
  • Kwan JJ, Graham S, Myers R, et al. Ultrasound-induced inertial cavitation from gas-stabilizing nanoparticles. Phys Rev E. 2015 Aug 19;92(2):023019.
  • Min HS, Son S, You DG, et al. Chemical gas-generating nanoparticles for tumor-targeted ultrasound imaging and ultrasound-triggered drug delivery. Biomaterials. 2016;108:57–70.
  • Chen K-J, Liang H-F, Chen H-L, et al. A thermoresponsive bubble-generating liposomal system for triggering localized extracellular drug delivery. ACS nano. 2013;7(1):438–446.
  • Liu T, Zhang N, Wang Z, et al. Endogenous catalytic generation of O(2) bubbles for in situ ultrasound-guided high intensity focused ultrasound ablation. ACS Nano. 2017 Sep 26;11(9):9093–9102.
  • Pfeifer F. Distribution, formation and regulation of gas vesicles. Nature Rev Microbiol. 2012;10(10):705–715.
  • Hou X, Qiu Z, Xian Q, et al. Precise ultrasound neuromodulation in a deep brain region using nano gas vesicles as actuators. Adv Sci. 2021;8(21):2101934.
  • Bar-Zion A, Nourmahnad A, Mittelstein DR, et al. Acoustically triggered mechanotherapy using genetically encoded gas vesicles. Nat Nanotechnol. 2021;16(12):1403–1412.
  • Song L, Hou X, Wong KF, et al. Gas-filled protein nanostructures as cavitation nuclei for molecule-specific sonodynamic therapy. Acta Biomater. 2021;136:533–545.
  • Paris JL, de la Torre P, Cabañas MV, et al. Suicide-gene transfection of tumor-tropic placental stem cells employing ultrasound-responsive nanoparticles. Acta Biomater. 2019 Jan 01;83:372–378.
  • Wang D, Yao Y, Xiao Y, et al. Ultrasound responsive erythrocyte membrane-derived hybrid nanovesicles with controlled drug release for tumor therapy. Nanoscale. 2021;13(22):9945–9951.
  • Liu X, Zhao K, Cao J, et al. Ultrasound responsive self-assembled micelles loaded with hypocrellin for cancer sonodynamic therapy. Int J Pharm. 2021 Oct 25;608:121052.
  • Wu P, Dong W, Guo X, et al. ROS-responsive blended nanoparticles: cascade-amplifying synergistic effects of sonochemotherapy with on-demand boosted drug release during SDT process. Adv Healthc Mater. 2019 Sep 01;8(18):1900720.
  • Y-J H, C-H W, Q-f J, et al. Superhydrophobic drug-loaded mesoporous silica nanoparticles capped with β-cyclodextrin for ultrasound image-guided combined antivascular and chemo-sonodynamic therapy. Biomaterials. 2020 Feb 01;232:119723.
  • Min KH, Min HS, Lee HJ, et al. pH-controlled gas-generating mineralized nanoparticles: a theranostic agent for ultrasound imaging and therapy of cancers. ACS nano. 2015;9(1):134–145.
  • Min B, Bae IY, Lee HG, et al. Utilization of pectin-enriched materials from apple pomace as a fat replacer in a model food system. Bioresour Technol. 2010 Jul;101(14):5414–5418.
  • Chung MF, Chen KJ, Liang HF, et al. A liposomal system capable of generating CO2 bubbles to induce transient cavitation, lysosomal rupturing, and cell necrosis. Angew Chem Int Ed Engl. 2012 Oct 1;51(40):10089–10093.
  • Bar-Zion A, Nourmahnad A, Mittelstein DR, et al. Acoustically triggered mechanotherapy using genetically encoded gas vesicles. Nat Nanotechnol. 2021 Dec;16(12):1403–1412.
  • Du Y, Lin L, Zhang Z, et al. Drug-loaded nanoparticles conjugated with genetically engineered bacteria for cancer therapy. Biochem Biophys Res Commun. 2022;606:29–34.
  • Huebsch N, Kearney CJ, Zhao X, et al. Ultrasound-triggered disruption and self-healing of reversibly cross-linked hydrogels for drug delivery and enhanced chemotherapy. Proc Nat Acad Sci. 2014;111(27):9762–9767.
  • Jin H, Tan H, Zhao L, et al. Ultrasound-triggered thrombolysis using urokinase-loaded nanogels. Int J Pharm. 2012;434(1–2):384–390.
  • Liao A-H, Chung H-Y, Chen W-S, et al. Efficacy of combined ultrasound-and-microbubbles-mediated diclofenac gel delivery to enhance transdermal permeation in adjuvant-induced rheumatoid arthritis in the rat. Ultrasound Med Biol. 2016;42(8):1976–1985.
  • Lima EG, Durney KM, Sirsi SR, et al. Microbubbles as biocompatible porogens for hydrogel scaffolds. Acta Biomater. 2012;8(12):4334–4341.
  • Durney K, Sirsi S, Nover A, et al. editors. Using microbubbles to modulate hydrogel scaffold properties for cartilage tissue engineering. Rosemont, IL, USA: Orthopaedic Research Society; 2010.
  • Epstein-Barash H, Orbey G, Polat BE, et al. A microcomposite hydrogel for repeated on-demand ultrasound-triggered drug delivery. Biomaterials. 2010;31(19):5208–5217.
  • Fabiilli ML, Wilson CG, Padilla F, et al. Acoustic droplet–hydrogel composites for spatial and temporal control of growth factor delivery and scaffold stiffness. Acta Biomater. 2013;9(7):7399–7409.
  • Ozdas MS, Shah AS, Johnson PM, et al. Non-invasive molecularly-specific millimeter-resolution manipulation of brain circuits by ultrasound-mediated aggregation and uncaging of drug carriers. Nat Commun. 2020 Oct 1;11(1):4929.
  • Kheirolomoom A, Dayton PA, Lum AF, et al. Acoustically-active microbubbles conjugated to liposomes: characterization of a proposed drug delivery vehicle. J Control Release. 2007 Apr 23;118(3):275–284.
  • van Wamel A, Sontum PC, Healey A, et al. Acoustic Cluster Therapy (ACT) enhances the therapeutic efficacy of paclitaxel and Abraxane® for treatment of human prostate adenocarcinoma in mice. J Control Release. 2016 Aug 28;236:15–21.
  • Ksotopoulis S, Stigen E, Popa M, et al. Sonoporation with Acoustic Cluster Therapy (ACT®) induces transient tumour volume reduction in a subcutaneous xenograft model of pancreatic ductal adenocarcinoma. J Control Release. 2017 Jan 10;245:70–80.
  • Bush N, Healey A, Shah A, et al. Theranostic attributes of acoustic cluster therapy and its use for enhancing the effectiveness of liposomal doxorubicin treatment of human triple negative breast cancer in mice. Front Pharmacol. 2020;11:75.
  • Wamel AV, Healey A, Sontum PC, et al. Acoustic Cluster Therapy (ACT) - pre-clinical proof of principle for local drug delivery and enhanced uptake. J Control Release. 2016 Feb 28;224:158–164.
  • Banerji U, Tiu CD, Curcean A, et al. Phase I trial of acoustic cluster therapy (ACT) with chemotherapy in patients with liver metastases of gastrointestinal origin (ACTIVATE study). J Clin Oncol. 2021;39(15): TPS3145.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.