298
Views
4
CrossRef citations to date
0
Altmetric
Review

Combinations of chemo-, immuno-, and gene therapies using nanocarriers as a multifunctional drug platform

, , , , &
Pages 1337-1349 | Received 28 Mar 2022, Accepted 09 Aug 2022, Published online: 26 Sep 2022

References

  • Hoelder S, Clarke PA, Workman P. Discovery of small molecule cancer drugs: successes, challenges and opportunities. Mol Oncol. 2012 Apr;6(2):155–176.
  • Pommier Y, Sordet O, Antony S, et al. Apoptosis defects and chemotherapy resistance: molecular interaction maps and networks. Oncogene. 2004 Apr 12;23(16):2934–2949.
  • Schuster M, Nechansky A, Kircheis R. Cancer immunotherapy. Biotechnol J. 2006 Feb 1;1(2):138–147.
  • Chan HY, Choi J, Jackson C, et al. Combination immunotherapy strategies for glioblastoma. J Neurooncol. 2021 Feb;151(3):375–391.
  • Pico de Coaña Y, Choudhury A, Kiessling R. Checkpoint blockade for cancer therapy: revitalizing a suppressed immune system. Trends Mol Med. 2015 Aug;21(8):482–491.
  • Sharma P, Hu-Lieskovan S, Wargo JA, et al. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell. 2017 Feb 09;168(4):707–723.
  • Kandel S, Adhikary P, Li G, et al. The TIM3/Gal9 signaling pathway: an emerging target for cancer immunotherapy. Cancer Lett. 2021 Jul 10;510:67–78.
  • Nam J, Son S, Park KS, et al. Cancer nanomedicine for combination cancer immunotherapy. Nat Rev Mater. 2019;4:398–414.
  • Sakaguchi S, Yamaguchi T, Nomura T, et al. Regulatory T cells and immune tolerance. Cell. 2008 May 30;133(5):775–787.
  • Kosti P, Maher J, Arnold JN. Perspectives on chimeric antigen receptor T-Cell immunotherapy for solid tumors. Front Immunol. 2018;9:1104.
  • Murciano-Goroff YR, Warner AB, Wolchok JD. The future of cancer immunotherapy: microenvironment-targeting combinations. Cell Res. 2020 Jun;30(6):507–519.
  • Tawbi HA, Schadendorf D, Lipson EJ, et al. Relatlimab and nivolumab versus nivolumab in untreated advanced melanoma. N Engl J Med. 2022 Jan 06;386(1):24–34.
  • Francis DM, Thomas SN. Progress and opportunities for enhancing the delivery and efficacy of checkpoint inhibitors for cancer immunotherapy. Adv Drug Deliv Rev. 2017 May;15(114):33–42.
  • Wolchok JD, Kluger H, Callahan MK, et al. Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med. 2013 Jul 11;369(2):122–133.
  • Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011 Mar 04;144(5):646–674.
  • Ruan H, Bu L, Hu Q, et al. Strategies of combination drug delivery for immune checkpoint blockades. Adv Healthc Mater. 2019 Feb;8(4):e1801099.
  • Emens LA, Middleton G. The interplay of immunotherapy and chemotherapy: harnessing potential synergies. Cancer Immunol Res. 2015 May;3(5):436–443.
  • Alard E, Butnariu AB, Grillo M, et al. Advances in anti-cancer immunotherapy: Car-T cell, checkpoint inhibitors, dendritic cell vaccines, and oncolytic viruses, and emerging cellular and molecular targets. Cancers (Basel). 2020 Jul 07;12(7):1826 .
  • Schneble E, Jinga DC, Peoples G. Breast cancer immunotherapy. Maedica (Bucur). 2015 Jun;10(2):185–191.
  • Barry ME, Pinto-González D, Orson FM, et al. Role of endogenous endonucleases and tissue site in transfection and CpG-mediated immune activation after naked DNA injection. Hum Gene Ther. 1999 10;10; Oct(15): 2461–2480.
  • Kulkarni JA, Witzigmann D, Thomson SB, et al. The current landscape of nucleic acid therapeutics. Nat Nanotechnol. 2021 Jun;16(6):630–643.
  • Kratzer RF, Kreppel F. Production, purification, and titration of first-generation adenovirus vectors. Methods Mol Biol. 2017;1654:377–388.
  • Zu H, Non-viral GD. Vectors in gene therapy: recent development, challenges, and prospects. AAPS J. 2021 Jun 02;23(4):78.
  • Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986 Dec;46(12 Pt 1):6387–6392.
  • Bu J, Nair A, Iida M, et al. An avidity-based PD-L1 antagonist using nanoparticle-antibody conjugates for enhanced immunotherapy. Nano Lett. 2020 Jul 08;20(7):4901–4909.
  • Jeong W-J, Bu J, Han Y, et al. Nanoparticle conjugation stabilizes and multimerizes β-hairpin peptides to effectively target PD-1/PD-L1 β-sheet-rich interfaces. J Am Chem Soc. 2020 Jan 29;142(4):1832–1837.
  • Pearson RM, Sen S, Hsu HJ, et al. Tuning the selectivity of dendron micelles through variations of the poly(ethylene glycol) Corona. ACS Nano. 2016 Jul 26; 10(7):6905–6914.
  • Bazylińska U, Wawrzyńczyk D, Kulbacka J, et al. Hybrid theranostic cubosomes for efficient NIR-induced photodynamic therapy. ACS Nano. 2022 Mar 26;16(4):5427–5438.
  • Korangath P, Barnett JD, Sharma A, et al. Nanoparticle interactions with immune cells dominate tumor retention and induce T cell-mediated tumor suppression in models of breast cancer. Sci Adv. 2020 Mar;6(13):eaay1601.
  • Duan X, Chan C, Lin W. Nanoparticle-mediated immunogenic cell death enables and potentiates cancer immunotherapy. Angew Chem Int Ed Engl. 2019 Jan 14;58(3):670–680.
  • Tanaka K, Ito A, Kobayashi T, et al. Heat immunotherapy using magnetic nanoparticles and dendritic cells for T-lymphoma. J Biosci Bioeng. 2005 Jul;100(1):112–115.
  • Zhang N, Wang J, Foiret J, et al. Synergies between therapeutic ultrasound, gene therapy and immunotherapy in cancer treatment. Adv Drug Deliv Rev. 2021;178:113906.
  • Borghaei H, Hellmann MD, Paz-Ares LG, et al. Nivolumab (Nivo) + platinum-doublet chemotherapy (Chemo) vs chemo as first-line (1L) treatment (Tx) for advanced non-small cell lung cancer (NSCLC) with <1% tumor PD-L1 expression: results from checkmate 227. J clin oncol. 2018;36:9001.
  • Gandhi L, Rodríguez-Abreu D, Gadgeel S, et al. Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer. N Engl J Med. 2018 May 31;378(22):2078–2092.
  • Mu W, Chu Q, Liu Y, et al. A review on nano-based drug delivery system for cancer chemoimmunotherapy. Nano-Micro Lett. 2020 Dec 01;12(1):1–24.
  • Brody J, Kohrt H, Marabelle A, et al. Active and passive immunotherapy for lymphoma: proving principles and improving results. J clin oncol. 2011 May 10;29(14):1864–1875.
  • He Q, Liu Z, Liu Z, et al. TCR-like antibodies in cancer immunotherapy. J Hematol Oncol. 2019 Dec 01;12:(1):1–3.
  • Pegram MD, Baly D, Wirth C Antibody dependent cell-mediated cytotoxicity in breast cancer patients in phase III clinical trial of humanized antiHER-2 antibody. Proc Am Assoc Cancer Res. 1997;38:602.
  • Yarden Y. Biology of HER2 and its importance in breast cancer. Oncology. 2001;61(Suppl 2):1–13.
  • U.S. BL 103792 Supplement: Trastuzumab - Genentech, Inc. 103791 of 103732/Regional (STN: BL 103792/105256): Final labelling 10292010. 1998.
  • Codony-Servat J, Albanell J, Lopez-Talavera JC, et al. Cleavage of the HER2 ectodomain is a pervanadate-activable process that is inhibited by the tissue inhibitor of metalloproteases-1 in breast cancer cells. Cancer Res. 1999 Mar 15;59(6):1196–1201.
  • Krasniqi E, Barchiesi G, Pizzuti L, et al. Immunotherapy in HER2-positive breast cancer: state of the art and future perspectives. J Hematol Oncol. 2019 Oct 29;12(1):111.
  • Valabrega G, Montemurro F, Aglietta M. Trastuzumab: mechanism of action, resistance and future perspectives in HER2-overexpressing breast cancer. Ann Oncol. 2007 Jun;18(6):977–984.
  • Varchetta S, Gibelli N, Oliviero B, et al. Elements related to heterogeneity of antibody-dependent cell cytotoxicity in patients under trastuzumab therapy for primary operable breast cancer overexpressing Her2. Cancer Res. 2007 Dec 15;67(24):11991–11999.
  • Akiyama K, Ebihara S, Yada A, et al. Targeting apoptotic tumor cells to Fc gamma R provides efficient and versatile vaccination against tumors by dendritic cells. J Immunol. 2003 Feb 15;170(4):1641–1648.
  • Nejadmoghaddam MR, Minai-Tehrani A, Ghahremanzadeh R, et al. Antibody-drug conjugates: possibilities and challenges. Avicenna J Med Biotechnol. 2019 Jan-Mar;11(1):3–23.
  • Sumer Bolu B, Golba B, Sanyal A, et al. Trastuzumab targeted micellar delivery of docetaxel using dendron–polymer conjugates. Biomater Sci. 2020 Jan 01;8(9):2600–2610.
  • Kumar A, Ahmad A, Vyawahare A, et al. Membrane trafficking and subcellular drug targeting pathways. Front Pharmacol. 2020;11:629.
  • Myung JH, Eblan MJ, Caster JM, et al. Multivalent binding and biomimetic cell rolling improves the sensitivity and specificity of circulating tumor cell capture. Clin Cancer Res. 2018 Jun 01;24(11):2539–2547.
  • Lee ALZ, Wang Y, Cheng HY, et al. The co-delivery of paclitaxel and Herceptin using cationic micellar nanoparticles. Biomaterials. 2009 Feb 01;30(5):919–927.
  • Zhou Z, Badkas A, Stevenson M, et al. Herceptin conjugated PLGA-PHis-PEG pH sensitive nanoparticles for targeted and controlled drug delivery. Int J Pharm. 2015 Jun 01;487(1–2):81–90.
  • Espelin CW, Leonard SC, Geretti E, et al. Dual HER2 targeting with trastuzumab and liposomal-encapsulated doxorubicin (MM-302) demonstrates synergistic antitumor activity in breast and gastric cancer. Cancer Res. 2016 Mar 15;76(6):1517–1527.
  • Huang W, Shi C, Shao Y, et al. The core-inversible micelles for hydrophilic drug delivery. Chem Comm. 2013 Jan 01;49(59):6674.
  • Rios-Doria J, Carie A, Costich T, et al. A versatile polymer micelle drug delivery system for encapsulation and In Vivo stabilization of hydrophobic anticancer drugs. J Drug Deliv. 2012 Feb 01;2012:1–8.
  • Lu Y, Zhang E, Yang J, et al. Strategies to improve micelle stability for drug delivery. Nano Res. 2018 Oct 01;11(10):4985–4998.
  • Jiang Y, Chen M, Nie H, et al. PD-1 and PD-L1 in cancer immunotherapy: clinical implications and future considerations. Hum Vaccin Immunother. 2019 May 04;15(5):1111–1122.
  • Yang Q, Shi G, Chen X, et al. Nanomicelle protects the immune activation effects of paclitaxel and sensitizes tumors to anti-PD-1 immunotherapy. Theranostics. 2020;10(18):8382–8399.
  • Wang Y, Zhao H, Peng J, et al. Targeting therapy of neuropilin-1 receptors overexpressed breast cancer by paclitaxel-loaded CK3-conjugated polymeric micelles. J Biomed Nanotechnol. 2016;Dec;12(12):2097–2111.
  • Lan X, Zhu W, Huang X, et al. Microneedles loaded with anti-PD-1–cisplatin nanoparticles for synergistic cancer immuno-chemotherapy. Nanoscale. 2020 Jan 01;12(36):18885–18898.
  • Pham LM, Poudel K, Ou W, et al. Combination chemotherapeutic and immune-therapeutic anticancer approach via anti-PD-L1 antibody conjugated albumin nanoparticles. Int J Pharm. 2021 Aug 01;605:120816.
  • Jiang M, Li W, Zhu C, et al. Perdurable PD-1 blockage awakes anti-tumor immunity suppressed by precise chemotherapy. J Control Release. 2021 Jan 01;329:1023–1036.
  • Luo L, Zhu C, Yin H, et al. Laser immunotherapy in combination with perdurable PD-1 blocking for the treatment of metastatic tumors. ACS Nano. 2018 Aug 28;12(8):7647–7662.
  • Luo L, Yang J, Zhu C, et al. Sustained release of anti-PD-1 peptide for perdurable immunotherapy together with photothermal ablation against primary and distant tumors. J Control Release. 2018 May 28;278:87–99.
  • Resnier P, Montier T, Mathieu V, et al. A review of the current status of siRNA nanomedicines in the treatment of cancer. Biomaterials. 2013 Sep;34(27):6429–6443.
  • Khan M, Ong ZY, Wiradharma N, et al. Advanced materials for co-delivery of drugs and genes in cancer therapy. Adv Healthc Mater. 2012 Jul;1(4):373–392.
  • Teo PY, Cheng W, Hedrick JL, et al. Co-delivery of drugs and plasmid DNA for cancer therapy. Adv Drug Deliv Rev. 2016 Mar;01(98):41–63.
  • Wang Y, Chen-Mayfield T-J, Li Z, et al. Harnessing DNA for immunotherapy: cancer, infectious diseases, and beyond. Adv Funct Mater. 2022;2112273.
  • Zhang CG, Zhu WJ, Liu Y, et al. Novel polymer micelle mediated co-delivery of doxorubicin and P-glycoprotein siRNA for reversal of multidrug resistance and synergistic tumor therapy. Sci Rep. 2016 Mar;31(6):23859.
  • Nair A, Bu J, Bugno J, et al. Size-dependent drug loading, gene complexation, cell uptake, and transfection of a novel dendron-lipid nanoparticle for drug/gene co-delivery. Biomacromolecules. 2021 Sep 13;22(9):3746–3755.
  • Tsuruo T, Naito M, Tomida A, et al. Molecular targeting therapy of cancer: drug resistance, apoptosis and survival signal. Cancer Sci. 2003 Jan;94(1):15–21.
  • Igney FH, Krammer PH. Death and anti-death: tumour resistance to apoptosis. Nat Rev Cancer. 2002 Apr;2(4):277–288.
  • Cao N, Cheng D, Zou S, et al. The synergistic effect of hierarchical assemblies of siRNA and chemotherapeutic drugs co-delivered into hepatic cancer cells. Biomaterials. 2011 Mar;32(8):2222–2232.
  • Yang Z, Gao D, Cao Z, et al. Drug and gene co-delivery systems for cancer treatment. Biomater Sci. 2015 Jul;3(7):1035–1049.
  • Zhao Z, Li Y, Liu H, et al. Co-delivery of IKBKE siRNA and cabazitaxel by hybrid nanocomplex inhibits invasiveness and growth of triple-negative breast cancer. Sci Adv. 2020 Jul;6(29):eabb0616.
  • Chen Q, Wang C, Chen G, et al. Delivery strategies for immune checkpoint blockade. Adv Healthc Mater. 2018 10;7(20):e1800424.
  • Jeong WJ, Bu J, Kubiatowicz LJ, et al. Peptide-nanoparticle conjugates: a next generation of diagnostic and therapeutic platforms? Nano Converg. 2018 Dec 12;5(1):38.
  • Navath RS, Kurtoglu YE, Wang B, et al. Dendrimer-drug conjugates for tailored intracellular drug release based on glutathione levels. Bioconjug Chem. 2008 Dec;19(12):2446–2455.
  • Bertrand N, Wu J, Xu X, et al. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev. 2014;66:2–25.
  • Wang S, Liu X, Chen S, et al. Regulation of Ca. ACS Nano. 2019 Jan 22;13(1):274–283.
  • Meng H, Liong M, Xia T, et al. Engineered design of mesoporous silica nanoparticles to deliver doxorubicin and P-glycoprotein siRNA to overcome drug resistance in a cancer cell line. ACS Nano. 2010 Aug 24;4(8):4539–4550.
  • Bonaventura P, Shekarian T, Alcazer V, et al. Cold tumors: a therapeutic challenge for immunotherapy. Front Immunol. 2019;10:168.
  • Li Z, Wang Y, Shen Y, et al. Targeting pulmonary tumor microenvironment with CXCR4-inhibiting nanocomplex to enhance anti-PD-L1 immunotherapy. Sci Adv. 2020 May;6(20):eaaz9240.
  • Sleightholm RL, Neilsen BK, Li J, et al. Emerging roles of the CXCL12/CXCR4 axis in pancreatic cancer progression and therapy. Pharmacol Ther. 2017;179:158–170.
  • Gatenby RA, Gillies RJ. Why do cancers have high aerobic glycolysis? Nat Rev Cancer. 2004 Nov;4(11):891–899.
  • Zhang YX, Zhao YY, Shen J, et al. Nanoenabled modulation of acidic tumor microenvironment reverses anergy of infiltrating T cells and potentiates Anti-PD-1 therapy. Nano Lett. 2019 May 08;19(5):2774–2783.
  • Angelin A, Gil-de-Gómez L, Dahiya S, et al. Foxp3 reprograms T cell metabolism to function in low-glucose, high-lactate environments. Cell Metab. 2017 Jun 06;25(6):1282–1293.e7.
  • Salas-Benito D, Pérez-Gracia JL, Ponz-Sarvisé M, et al. Paradigms on immunotherapy combinations with chemotherapy. Cancer Discov. 2021 Jun 01;11(6):1353–1367.
  • Wilailak S, Dangprasert S, Srisupundit S. Phase I clinical trial of chemoimmunotherapy in combination with radiotherapy in stage IIIB cervical cancer patients. Int J Gynecological Cancer. 2003 Sep 01;13(5):652–656.
  • Liang C, Xu L, Song G, et al. Emerging nanomedicine approaches fighting tumor metastasis: animal models, metastasis-targeted drug delivery, phototherapy, and immunotherapy. Chem Soc Rev. 2016 Jan 01;45(22):6250–6269.
  • Liu Y, Chen X-G, Yang -P-P, et al. Tumor microenvironmental pH and enzyme dual responsive polymer-liposomes for synergistic treatment of cancer immuno-chemotherapy. Biomacromolecules. 2019 Feb 11;20(2):882–892.
  • Gu Z, Wang Q, Shi Y, et al. Nanotechnology-mediated immunochemotherapy combined with docetaxel and PD-L1 antibody increase therapeutic effects and decrease systemic toxicity. J Control Release. 2018 Sep 01;286:369–380.
  • Chen XJ, Zhang XQ, Tang MX, et al. Anti-PD-L1-modified and ATRA-loaded nanoparticles for immuno-treatment of oral dysplasia and oral squamous cell carcinoma. Nanomedicine (Lond). 2020 04;15(10):951–968.
  • Gao S, Ding, Gao S. Anti-DR5 monoclonal antibody-mediated DTIC-loaded nanoparticles combining chemotherapy and immunotherapy for malignant melanoma: target formulation development and in vitro anticancer activity. Int J Nanomedicine. 2011 Sep 01;6:1991.
  • Ding B, Zhang W, Wu X, et al. DR5 mAb-conjugated, DTIC-loaded immuno-nanoparticles effectively and specifically kill malignant melanoma cells in vivo. Oncotarget. 2016 Aug 30;7(35):57160–57170.
  • Lang T, Liu Y, Zheng Z, et al. Cocktail strategy based on spatio–temporally controlled nano device improves therapy of breast cancer. Adv Mater. 2019 Aug 01;31(33):1903844.
  • Dai L, Li X, Yao M, et al. Programmable prodrug micelle with size-shrinkage and charge-reversal for chemotherapy-improved IDO immunotherapy. Biomaterials. 2020 May 01;241:119901.
  • Su Z, Xiao Z, Wang Y, et al. Codelivery of Anti-PD-1 antibody and paclitaxel with matrix metalloproteinase and pH dual-sensitive micelles for enhanced tumor chemoimmunotherapy. Small. 2020 Feb 01;16(7):1906832.
  • Tang S, Yin Q, Su J, et al. Inhibition of metastasis and growth of breast cancer by pH-sensitive poly (β-amino ester) nanoparticles co-delivering two siRNA and paclitaxel. Biomaterials. 2015;48:1–15.
  • Ott PA, Hodi FS, Kaufman HL, et al. Combination immunotherapy: a road map. J Immunother Cancer. 2017;5:16.
  • Wang YJ, Fletcher R, Yu J, et al. Immunogenic effects of chemotherapy-induced tumor cell death. Genes Dis. 2018 Sep;5(3):194–203.
  • Wu J, Chen J, Feng Y, et al. An immune cocktail therapy to realize multiple boosting of the cancer-immunity cycle by combination of drug/gene delivery nanoparticles. Sci Adv. 2020 Sep;6(40). DOI:10.1126/sciadv.abc7828.
  • He C, Tang Z, Tian H, et al. Co-delivery of chemotherapeutics and proteins for synergistic therapy. Adv Drug Deliv Rev. 2016 Mar 01;98:64–76.
  • Mendonça LS, Moreira JN, de Lima MC, et al. Co-encapsulation of anti-BCR-ABL siRNA and imatinib mesylate in transferrin receptor-targeted sterically stabilized liposomes for chronic myeloid leukemia treatment. Biotechnol Bioeng. 2010 Dec 01;107(5):884–893.
  • van Nostrum CF. Covalently cross-linked amphiphilic block copolymer micelles. Soft Matter. 2011;7(7):3246–3259.
  • Moretton MA, Chiappetta DA, Sosnik A. Cryoprotection-lyophilization and physical stabilization of rifampicin-loaded flower-like polymeric micelles. J R Soc Interface. 2012 Mar 07;9(68):487–502.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.