479
Views
1
CrossRef citations to date
0
Altmetric
Review

Synthetic biodegradable polyesters for implantable controlled-release devices

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1351-1364 | Received 17 Jun 2022, Accepted 28 Sep 2022, Published online: 25 Oct 2022

References

  • Hoffman AS. The origins and evolution of “controlled” drug delivery systems. J Control Release. 2008;132(3):153–163.
  • Stewart SA, Domínguez-Robles J, Donnelly RF, et al. Implantable polymeric drug delivery devices: classification, manufacture, materials, and clinical applications. Polymers (Basel). 2018;10:12.
  • Wolfe AJ, Guasto JS, Omenetto FG, et al. Silk reservoir implants for sustained drug delivery. Acs Appl Bio Mater. 2021;4(1):869–880.
  • Zhang J, Xu J, Lim J, et al. Wearable glucose monitoring and implantable drug delivery systems for diabetes management. Adv Healthc Mater. 2021;10(17):e2100194.
  • Sora ND, Shashpal F, Bond EA, et al. Insulin pumps: review of technological advancement in diabetes management. Am J Med Sci. 2019;358(5):326–331.
  • Thiels CA, D’Angelica MI. Hepatic artery infusion pumps. J Surg Oncol. 2020;122(1):70–77.
  • Middleton JC, Tipton AJ. Synthetic biodegradable polymers as orthopedic devices. Biomaterials. 2000;21(23):2335–2346.
  • Ikada Y, Tsuji H. Biodegradable polyesters for medical and ecological applications. Macromol Rapid Comm. 2000;21(3):117–132.
  • Vert M. Aliphatic polyesters: great degradable polymers that cannot do everything. Biomacromolecules. 2005;6(2):538–546.
  • Shi C, Yuan Z, Han F, et al. Polymeric biomaterials for bone regeneration. Ann.Jt. 2016;1:9. 10.21037/aoj.2016.11.02
  • Reddy MSB, Ponnamma D, Choudhary R, et al. Review of natural and synthetic biopolymer composite scaffolds. Polymers (Basel). 2021;13:7.
  • Song R, Murphy M, Li C, et al. Current development of biodegradable polymeric materials for biomedical applications. Drug Des Devel Ther. 2018;12:3117–3145.
  • Ratner BD. Biomaterials: been there, done that, and evolving into the future. Annu Rev Biomed Eng. 2019;21:171–191.
  • Yu T, Tutwiler VJ, Spiller K. The role of macrophages in the foreign body response to implanted biomaterials. In: Santambrogio L, editor. Biomaterials in regenerative medicine and the immune system. Cham: Springer International Publishing; 2015. p. 17–34.
  • Klopfleisch R, Jung F. The pathology of the foreign body reaction against biomaterials. J Biomed Mater Res A. 2017;105(3):927–940.
  • Kyriakides TR, Kim HJ, Zheng C, et al. Foreign body response to synthetic polymer biomaterials and the role of adaptive immunity. Biomed Mater. 2022;17:2.
  • Sheikh Z, Brooks PJ, Barzilay O, et al. Foreign body giant cells and their response to implantable biomaterials. Materials. 2015;8:9.
  • Mariani E, Lisignoli G, Borzi RM, et al. Biomaterials: foreign bodies or tuners for the immune response? Int J Mol Sci. 2019;20:3.
  • Li C, Guo C, Fitzpatrick V, et al. Design of biodegradable, implantable devices towards clinical translation. Nat Rev Mater. 2020;5(1):61–81.
  • Butreddy A, Gaddam RP, Kommineni N, et al. PLGA/PLA-based long-acting injectable depot microspheres in clinical use: production and characterization overview for protein/peptide delivery. Int J Mol Sci. 2021;22:16.
  • Jansen LE, Amer LD, Chen EY, et al. Zwitterionic PEG-PC hydrogels modulate the foreign body response in a modulus-dependent manner. Biomacromolecules. 2018;19(7):2880–2888.
  • Matlaga BF, Yasenchak LP, Salthouse TN. Tissue response to implanted polymers: the significance of sample shape. J Biomed Mater Res. 1976;10(3):391–397.
  • Jordan SW, Fligor JE, Janes LE, et al. Porosity and the foreign body response. Plast reconstr surg. 2018;141. Implant. p. 1.
  • Whitaker R, Hernaez-Estrada B, Hernandez RM, et al. Immunomodulatory biomaterials for tissue repair. Chem Rev. 2021;121(18):11305–11335.
  • Chiellini E, Solaro R. Biodegradable polymeric materials. Adv Mater. 1996;8(4):305–313.
  • Schoenenberger AD, Foolen J, Moor P, et al. Substrate fiber alignment mediates tendon cell response to inflammatory signaling. Acta Biomater. 2018;71:306–317.
  • Schoenenberger AD, Tempfer H, Lehner C, et al. Macromechanics and polycaprolactone fiber organization drive macrophage polarization and regulate inflammatory activation of tendon in vitro and in vivo. Biomaterials. 2020;249:120034.
  • Lamichhane S, Anderson JA, Vierhout T, et al. Polytetrafluoroethylene topographies determine the adhesion, activation, and foreign body giant cell formation of macrophages. J Biomed Mater Res A. 2017;105(9):2441–2450.
  • Wood RC, Lecluyse EL, Fix JA. Assessment of a model for measuring drug diffusion through implant-generated fibrous capsule membranes. Biomaterials. 1995;16(12):957–959.
  • Blanco E, Qian F, Weinberg B, et al. Effect of fibrous capsule formation on doxorubicin distribution in radiofrequency ablated rat livers. J Biomed Mater Res A. 2004;69(3):398–406.
  • Anderson JM, Niven H, Pelagalli J, et al. The role of the fibrous capsule in the function of implanted drug-polymer sustained release systems. J Biomed Mater Res. 1981;15(6):889–902.
  • Capuani S, Malgir G, Chua CYX, et al. Advanced strategies to thwart foreign body response to implantable devices. Bioeng Transl Med. 2022;7(3): e10300. DOI: 10.1002/btm2.10300.
  • Liu J, Jiang Z, Zhang S, et al. Biodegradation, biocompatibility, and drug delivery in poly(ω-pentadecalactone-co-p-dioxanone) copolyesters. Biomaterials. 2011;32(27):6646–6654.
  • Beloor J, Kudalkar SN, Buzzelli G, et al. Long-acting and extended-release implant and nanoformulations with a synergistic antiretroviral two-drug combination controls HIV-1 infection in a humanized mouse model. Bioeng Transl Med. 2022;7(1):e10237.
  • Saltzman W, Quijano E, Yang F, et al., inventorsBiodegradable contraceptive implants patent 2020/0054553. 2020 Feb 20.
  • Woodard LN, Grunlan MA . Hydrolytic Degradation and Erosion of polyester biomaterials. ACS Macro Lett. 2018;7(8):976–982.
  • Jiang Z. Lipase-catalyzed copolymerization of dialkyl carbonate with 1,4-butanediol and omega-pentadecalactone: synthesis of poly(omega-pentadecalactone-co-butylene-co-carbonate). Biomacromolecules. 2011;12(5):1912–1919.
  • Reinišová L, Hermanová S. Poly(trimethylene carbonate-co-valerolactone) copolymers are materials with tailorable properties: from soft to thermoplastic elastomers. RSC Adv. 2020;10(72):44111–44120.
  • Fernández J, Etxeberria A, Sarasua J.R. In vitro degradation of poly(lactide/δ-valerolactone) copolymers. Polym Degrad Stab. 2014;112:104–116.
  • Weitzul S, Taylor RS Chapter 16 - suturing technique and other closure materials. In: Robinson JK, Sengelmann RD, Hanke CW, et al., editors. Surgery of the Skin. Edinburgh: Mosby; 2005. p. 225–244.
  • Ahmann FR, Citrin DL, deHaan HA, et al. Zoladex: a sustained-release, monthly luteinizing hormone-releasing hormone analogue for the treatment of advanced prostate cancer. J Clin Oncol. 1987;5(6):912–917.
  • Schliecker G, Schmidt C, Fuchs S, et al. In vitro and in vivo correlation of buserelin release from biodegradable implants using statistical moment analysis. J Control Release. 2004;94(1):25–37.
  • Sequeira JAD, Santos AC, Serra J, et al. Poly(lactic-co-glycolic acid) (PLGA) matrix implants. In: Grumezescu AM, eds. Nanostructures for the engineering of cells. Tissues and Organs: William Andrew Publishing; 2018. p. 375–402. Available from: http://kinampark.com/PL/files/Sequeira%202018%2C%20PLGA%20matrix%20implants.pdf
  • Sartor O. Eligard: leuprolide acetate in a novel sustained-release delivery system. Urology. 2003;61(2):25–31.
  • Elstad NL, Fowers KD. OncoGel (ReGel/paclitaxel) — clinical applications for a novel paclitaxel delivery system. Adv Drug Deliv Rev. 2009;61(10):785–794.
  • Sirinek PE, Lin MM. Intracameral sustained release bimatoprost implants (Durysta). Semin Ophthalmol. 2022;37(3):385–390.
  • Beig A, Feng L, Walker J, et al. Development and characterization of composition-equivalent formulations to the Sandostatin LAR® by the solvent evaporation method. Drug Deliv Transl Res. 2022;12(3):695–707.
  • Petersen H, Bizec J-C, Schuetz H, et al. Pharmacokinetic and technical comparison of Sandostatin® LAR® and other formulations of long-acting octreotide. BMC Res Notes. 2011;4:344.
  • Hua Y, Wang Z, Wang D, et al. Key factor study for generic long-acting plga microspheres based on a reverse engineering of vivitrol®. Molecules. 2021;26(5):1247.
  • Johnson BA. Naltrexone long-acting formulation in the treatment of alcohol dependence. Ther Clin Risk Manag. 2007;3(5):741–749.
  • Bobo WV, Shelton RC. Risperidone long-acting injectable (Risperdal Consta®) for maintenance treatment in patients with bipolar disorder. Expert Rev Neurother. 2010;10(11):1637–1658.
  • Dammerman R, Kim S, Adera M, et al. Safety of risperidone subcutaneous implants in stable patients with schizophrenia. Clin Pharmacol Drug De. 2018;7(3):298–310.
  • Paik J, Duggan ST, Keam SJ. Correction to: triamcinolone acetonide extended-release: a review in osteoarthritis pain of the knee. Drugs. 2019;79(14):1607.
  • Drug Approval Package: ZILRETTA (triamcinolone acetonide) [Internet]. fda.gov; 2017 [cited May 24, 2022]. Available from: https://www.accessdata.fda.gov/
  • Lee SY, Chee SP, Balakrishnan V, et al. Surodex in paediatric cataract surgery. Br J Ophthalmol. 2003;87(11):1424–1426.
  • Tan DTH, Chee S-P, Lim L, et al. Randomized clinical trial of a new dexamethasone delivery system (surodex) for treatment of post-cataract surgery inflammation. Ophthalmology. 1999;106(2):223–231.
  • J-E C-L, Attar M, Acheampong AA, et al. Pharmacokinetics and pharmacodynamics of a sustained-release dexamethasone intravitreal implant. Invest Ophthalmol Vis Sci. 2011;52(1):80–86.
  • Do M, Neut C, Delcourt E. In situ forming implants for the treatment of periodontitis. Eur J Pharm Biopharm. 2014;88(2):342–350.
  • Cg P, Schindler A, editors. Capronor–a biodegradable delivery system for levonorgestrel. Philadelphia, Pennsylvania: Harper & Row; 1984. Long-acting contraceptive delivery systems.
  • Darney PD, Monroe SE, Klaisle CM, et al. Clinical evaluation of the Capronor contraceptive implant: preliminary report. Am J Obstet Gynecol. 1989;160:1292–1295.
  • Brigham NC, Ji -R-R, Becker ML. Degradable polymeric vehicles for postoperative pain management. Nat Commun. 2021;12(1):1367.
  • Xing W-K, Shao C, Qi Z-Y, et al. The role of Gliadel wafers in the treatment of newly diagnosed GBM: a meta-analysis. Drug Des Devel Ther. 2015;9:3341–3348.
  • Doppalapudi S, Jain A, Khan W, et al. Biodegradable polymers—an overview. Polym Adv Technol. 2014;25(5):427–435.
  • FDA Approves First Extended-release, injectable drug regimen for adults living with HIV [Internet]. fda.gov; 2021; January 21 [cited May 24, 2022]. Available from: https://www.fda.gov/news-events/press-announcements/fda-approves-first-extended-release-injectable-drug-regimen-adults-living-hiv
  • Markowitz M, Grobler JA. Islatravir for the treatment and prevention of infection with the human immunodeficiency virus type 1. Curr Opin HIV AIDS. 2020;15(1):27–32.
  • Goldspiel BR, Kohler DR. Goserelin acetate implant: a depot luteinizing hormone-releasing hormone analog for advanced prostate cancer. Dicp. 1991;25(7–8):796–804.
  • Fleming AB, Saltzman WM. Pharmacokinetics of the carmustine implant. Clin Pharmacokinet. 2002;41(6):403–419.
  • Procopio A, Lagreca E, Jamaledin R, et al. Recent fabrication methods to produce polymer-based drug delivery matrices (experimental and in Silico approaches). Pharmaceutics. 2022;14(4):872.
  • Lee PW, Pokorski JK. Poly(lactic-co-glycolic acid) devices: production and applications for sustained protein delivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2018;10(5):e1516.
  • Wang X, Bao Q, Suh MS, et al. Novel adapter method for in vitro release testing of in situ forming implants. Int J Pharm. 2022;621:121777.
  • Kempe S, Mäder K. In situ forming implants - an attractive formulation principle for parenteral depot formulations. J Control Release. 2012;161(2):668–679.
  • Benhabbour SR, Kovarova M, Jones C, et al. Ultra-long-acting tunable biodegradable and removable controlled release implants for drug delivery. Nat Commun. 2019;10(1):4324.
  • Gupta A, Jadhav A, Moin P. An overview of in situ gel forming implants: current approach towards alternative drug delivery system. J Biol Chem Chron. 2019;5:14–21.
  • Li Z, Mu H, Weng Larsen S, et al. An in vitro gel-based system for characterizing and predicting the long-term performance of PLGA in situ forming implants. Int J Pharm. 2021;609:121183.
  • Le Devedec F, Boucher H, Dubins D, et al. Factors controlling drug release in cross-linked poly(valerolactone) based matrices. Mol Pharm. 2018;15(4):1565–1577.
  • Boucher H. Development and characterization of a polyester-based implant for controlled drug release [master’s thesis]. Toronto (CA): University of Toronto.; 2017
  • Malavia NK, Peter K. Overview of Sustained-Release Drug-Delivery Systems. Retina Today. 2015. Available from: https://retinatoday.com/articles/2015-mar/overview-of-sustained-release-drug-delivery-systems
  • Wang CK, Wang WY, Meyer RF, et al. A rapid method for creating drug implants: translating laboratory-based methods into a scalable manufacturing process. J Biomed Mater Res B Appl Biomater. 2010;93(2):562–572.
  • Li D, Guo G, Fan R, et al. PLA/F68/Dexamethasone implants prepared by hot-melt extrusion for controlled release of anti-inflammatory drug to implantable medical devices: iPreparation, characterization and hydrolytic degradation study. Int J Pharm. 2013;441(1):365–372.
  • Fan R, Chuan D, Hou H, et al. Development and evaluation of a novel biodegradable implants with excellent inflammatory response suppression effect by hot-melt extrusion. Eur J Pharm Sci. 2021;166:105981.
  • Rothen-Weinhold A, Besseghir K, Vuaridel E, et al. Injection-molding versus extrusion as manufacturing technique for the preparation of biodegradable implants. Eur J Pharm Biopharm. 1999;48(2):113–121.
  • Ghadge TA, Chavare SD, Kulkarni DA, et al. A review on parental implants. Int J Res Rev Pharm Appl Sci. 2014;4(2):1056–1072.
  • Dong Y, Liao S, Ngiam M, et al. Degradation behaviors of electrospun resorbable polyester nanofibers. Tissue Eng Part B Rev. 2009;15(3):333–351.
  • Zafar M, Najeeb S, Khurshid Z, et al. Potential of electrospun nanofibers for biomedical and dental applications. Materials (Basel). 2016;9:2.
  • Al-Enizi AM, Zagho MM, Elzatahry AA. Polymer-based electrospun nanofibers for biomedical applications. Nanomaterials (Basel). 2018;8:4.
  • Akombaetwa N, Bwanga A, Makoni PA, et al. Applications of electrospun drug-eluting nanofibers in wound healing: current and future perspectives. Polymers (Basel). 2022;14:14.
  • Torres-Martinez EJ, Cornejo Bravo JM, Serrano Medina A, et al. A summary of electrospun nanofibers as drug delivery system: drugs loaded and biopolymers used as matrices. Curr Drug Deliv. 2018;15(10):1360–1374.
  • Gunatillake PA, Adhikari R. Biodegradable synthetic polymers for tissue engineering. Eur Cell Mater. 2003;5:1–16.
  • Farah S, Anderson DG, Langer R. Physical and mechanical properties of PLA, and their functions in widespread applications — a comprehensive review. Adv Drug Deliv Rev. 2016;107:367–392
  • Oyama HT, Tanishima D, Ogawa R. Biologically safe poly(l-lactic acid) blends with tunable degradation rate: microstructure, degradation mechanism, and mechanical properties. Biomacromolecules. 2017;18(4):1281–1292.
  • da Silva D, Kaduri M, Poley M, et al. Biocompatibility, biodegradation and excretion of polylactic acid (PLA) in medical implants and theranostic systems. Chem Eng J. 2018;340:9–14.
  • Wang Y, Sun L, Mei Z, et al. 3D printed biodegradable implants as an individualized drug delivery system for local chemotherapy of osteosarcoma. Mater Des. 2020;186:108336.
  • Picco CJ, Domínguez-Robles J, Utomo E, et al. 3D-printed implantable devices with biodegradable rate-controlling membrane for sustained delivery of hydrophobic drugs. Drug Deliv. 2022;29(1):1038–1048.
  • Prasad LK, Smyth H. 3D Printing technologies for drug delivery: a review. Drug Dev Ind Pharm. 2016;42(7):1019–1031.
  • Fialho SL. da Silva Cunha A. Manufacturing techniques of biodegradable implants intended for intraocular application. Drug Deliv. 2005;12(2):109–116.
  • Kamath KR, Barry JJ, Miller KM. The Taxus drug-eluting stent: a new paradigm in controlled drug delivery. Adv Drug Deliv Rev. 2006;58(3):412–436.
  • Saltzman WM, Langer R. Transport rates of proteins in porous materials with known microgeometry. Biophys J. 1989;55(1):163–171.
  • Freese A, Sabel BA, Saltzman WM, et al. Controlled release of dopamine from a polymeric brain implant: in vitro characterization. Exp Neurol. 1989;103(3):234–238.
  • Engineer C, Parikh J, Raval A. Review on Hydrolytic Degradation Behavior of Biodegradable Polymers from Controlled Drug Delivery System. Trends Biomater Artif Organs. 2011;25:79–85.
  • Bose S, Vu AA, Emshadi K, et al. Effects of polycaprolactone on alendronate drug release from Mg-doped hydroxyapatite coating on titanium. Mater Sci Eng C. 2018;88:166–171.
  • Stewart SA, Domínguez-Robles J, McIlorum VJ, et al. Poly(caprolactone)-based coatings on 3D-printed biodegradable implants: a novel strategy to prolong delivery of hydrophilic drugs. Mol Pharm. 2020;17(9):3487–3500.
  • Alexis F. Factors affecting the degradation and drug-release mechanism of poly(lactic acid) and poly[(lactic acid)-co-(glycolic acid)]. Polym Int. 2005;54(1):36–46.
  • Numata K, Abe H, Iwata T. Biodegradability of Poly(hydroxyalkanoate) Materials. Materials. 2009;2(3):1104–1126.
  • Azevedo HS, Reis RL. Understanding the enzymatic degradation of biodegradable polymers and strategies to control their degradation rate. In: biodegradable systems in tissue engineering and regenerative medicine [Internet]. CRC Press; 2005. 177–201.
  • Mukai K, Doi Y, Sema Y, et al. Substrate specificities in hydrolysis of polyhydroxyalkanoates by microbial esterases. Biotechnol Lett. 1993;15(6):601–604.
  • Zumstein MT, Rechsteiner D, Roduner N, et al. Enzymatic hydrolysis of polyester thin films at the nanoscale: effects of polyester structure and enzyme active-site accessibility. Environ Sci Technol. 2017;51(13):7476–7485.
  • Gazvoda L, Visic B, Spreitzer M, et al. Hydrophilicity affecting the enzyme-driven degradation of piezoelectric poly-l-lactide films. Polymers (Basel). 2021;13:11.
  • Slor G, Olea AR, Pujals S, et al. Judging Enzyme-responsive micelles by their covers: direct comparison of dendritic amphiphiles with different hydrophilic blocks. Biomacromolecules. 2021;22(3):1197–1210.
  • Zhang X, Yang L, Zhang C, et al. Effect of polymer permeability and solvent removal rate on in situ forming implants: drug burst release and microstructure. Pharmaceutics. 2019;11:10.
  • Joiner JB, Prasher A, Young IC, et al. Effects of drug physicochemical properties on in-situ forming implant polymer degradation and drug release kinetics. Pharmaceutics. 2022;14:6.
  • Casalini T, Rossi F, Castrovinci A, et al. A Perspective on Polylactic Acid-Based Polymers Use for Nanoparticles Synthesis and Applications. Front Bioeng Biotechnol. 2019;7.
  • DeStefano V, Khan S, Tabada A. Applications of PLA in modern medicine. Eng Regen. 2020;1:76–87.
  • Kamber NE, Jeong W, Waymouth RM, et al. Organocatalytic ring-opening polymerization. Chem Rev. 2007;107(12):5813–5840.
  • Dechy-Cabaret O, Martin-Vaca B, Bourissou D. Controlled ring-opening polymerization of lactide and glycolide. Chem Rev. 2004;104(12):6147–6176.
  • Lin B, Waymouth RM. Urea anions: simple, fast, and selective catalysts for ring-opening polymerizations. J Am Chem Soc. 2017;139(4):1645–1652.
  • Zhong Z, Schneiderbauer S, Dijkstra PJ, et al. Initiators forthe controlled ring-opening polymerization of lactides and lactones. Polym Bull. 2003;51(3):175–182.
  • Save M, Schappacher M, Controlled Ring-Opening SA. Polymerization of lactones and lactides initiated by lanthanum isopropoxide, 1General aspects and kinetics. Macromol Chem Phys. 2002;203(5–6):889–899.
  • Singhvi MS, Zinjarde SS, Gokhale DV. Polylactic acid: synthesis and biomedical applications. J Appl Microbiol. 2019;127(6):1612–1626.
  • Stanford MJ, Dove AP. Stereocontrolled ring-opening polymerisation of lactide. Chem Soc Rev. 2010;39(2):486–494.
  • Li G, Zhao M, Xu F, et al. Synthesis and biological application of polylactic acid. Molecules. 2020;25(21):5023.
  • Walton M, Cotton NJ. Long-term in vivo degradation of poly-L-lactide (PLLA) in bone. J Biomater Appl. 2007;21(4):395–411.
  • Más B, Freire D, Cattani S, et al. Biological evaluation of pldla polymer synthesized as construct on bone tissue engineering application. Mater Res. 2016;19(2):300–307.
  • Li L, Ding S, Zhou C. Preparation and degradation of PLA/chitosan composite materials. J Appl Polym Sci. 2004;91(1):274–277.
  • Koutsamanis I, Spoerk M, Arbeiter F, et al. Development of porous polyurethane implants manufactured via hot-melt extrusion. Polymers (Basel). 2020;12:12.
  • Boia R, Dias PAN, Martins JM, et al. Porous poly(ε-caprolactone) implants: a novel strategy for efficient intraocular drug delivery. J Control Release. 2019;316:331–348.
  • Labet M, Thielemans W. Synthesis of polycaprolactone: a review. Chem Soc Rev. 2009;38(12):3484–3504.
  • Nair LS, Laurencin CT. Biodegradable polymers as biomaterials. Prog Polym Sci. 2007;32(8):762–798.
  • Ceonzo K, Gaynor A, Shaffer L, et al. Polyglycolic acid-induced inflammation: role of hydrolysis and resulting complement activation. Tissue Eng. 2006;12(2):301–308.
  • Makadia HK, Siegel SJ. Poly Lactic-co-Glycolic Acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers (Basel). 2011;3(3):1377–1397.
  • Félix Lanao RP, Jonker AM, Wolke JG, et al. Physicochemical properties and applications of poly(lactic-co-glycolic acid) for use in bone regeneration. Tissue Eng Part B Rev. 2013;19(4):380–390.
  • Ibrahim TM, El-Megrab NA, El-Nahas HM. An overview of PLGA in-situ forming implants based on solvent exchange technique: effect of formulation components and characterization. Pharm Dev Technol. 2021;26(7):709–728.
  • Jenkins MJ, Harrison KL, Silva MMCG, et al. Characterisation of microcellular foams produced from semi-crystalline PCL using supercritical carbon dioxide. Eur Polym J. 2006;42(11):3145–3151.
  • Xu L, Yamamoto A. Characteristics and cytocompatibility of biodegradable polymer film on magnesium by spin coating. Colloids Surf B Biointerfaces. 2012;93:67–74.
  • Yilmaz MS, Sahin E, Kaymaz R, et al. Histological study of the healing of traumatic tympanic membrane perforation after vivosorb and epifilm application. Ear Nose Throat J. 2021;100(2):90–96.
  • Girgin AP. The effectiveness of PLLA/PCL aptos thread on skin quality. Aesthet Med. 2019;5(3):14–24.
  • Morrison RJ, Hollister SJ, Niedner MF, et al. Mitigation of tracheobronchomalacia with 3D-printed personalized medical devices in pediatric patients. Sci Transl Med. 2015;7(285):285ra64.
  • Fialho SL, Behar-Cohen F, Silva-Cunha A. Dexamethasone-loaded poly(ε-caprolactone) intravitreal implants: a pilot study. Eur J Pharm Biopharm. 2008;68(3):637–646.
  • Rai A, Senapati S, Saraf SK, et al. Biodegradable poly(ε-caprolactone) as a controlled drug delivery vehicle of vancomycin for the treatment of MRSA infection. J Mater Chem B. 2016;4(30):5151–5160.
  • Manoukian OS, Arul MR, Sardashti N, et al. Biodegradable polymeric injectable implants for long-term delivery of contraceptive drugs. J Appl Polym Sci. 2018;135(14):46068.
  • Yang Y, Wu H, Fu Q, et al. 3D-printed polycaprolactone-chitosan based drug delivery implants for personalized administration. Mater Des. 2022;214:110394.
  • Moura SAL, Lima LDC, Andrade SP, et al. Local drug delivery system: inhibition of inflammatory angiogenesis in a murine sponge model by dexamethasone-loaded polyurethane implants. J Pharm Sci. 2011;100(7):2886–2895.
  • Schagemann JC, Chung HW, Mrosek EH, et al. Poly-epsilon-caprolactone/gel hybrid scaffolds for cartilage tissue engineering. J Biomed Mater Res A. 2010;93(2):454–463.
  • Semba T, Kitagawa K, Ishiaku US, et al. The effect of crosslinking on the mechanical properties of polylactic acid/polycaprolactone blends. J Appl Polym Sci. 2006;101(3):1816–1825.
  • Koch F, Thaden O, Conrad S, et al. Mechanical properties of polycaprolactone (PCL) scaffolds for hybrid 3D-bioprinting with alginate-gelatin hydrogel. J Mech Behav Biomed Mater. 2022;130:105219.
  • Pappalardo D, Mathisen T, Finne-Wistrand A. Biocompatibility of resorbable polymers: a historical perspective and framework for the future. Biomacromolecules. 2019;20(4):1465–1477.
  • Woodruff MA, Hutmacher DW. The return of a forgotten polymer—polycaprolactone in the 21st century. Prog Polym Sci. 2010;35(10):1217–1256.
  • Fernández J, Etxeberria A, Sarasua JR. In vitro degradation studies and mechanical behavior of poly(ε-caprolactone-co-δ-valerolactone) and poly(ε-caprolactone-co-L-lactide) with random and semi-alternating chain microstructures. Eur Polym J. 2015;71:585–595.
  • Faÿ F, Renard E, Langlois V, et al. Development of poly(epsilon-caprolactone-co-L-lactide) and poly(epsilon-caprolactone-co-delta-valerolactone) as new degradable binder used for antifouling paint. Eur Polym J. 2007;43:4800–4813.
  • Patrício T, Domingos M, Gloria A, et al. Characterisation of PCL and PCL/PLA scaffolds for tissue engineering. Procedia CIRP. 2013;5:110–114.
  • Zhu Y, Zhong M, Chen F. Preparation and properties of biocompatible PCL-PEG-PCL(PCEC). AIP Conf Proc. 2019;2065(1):040003.
  • Boffito M, Sirianni P, Di Rienzo AM, et al. Thermosensitive block copolymer hydrogels based on poly(ɛ-caprolactone) and polyethylene glycol for biomedical applications: state of the art and future perspectives. J Biomed Mater Res A. 2015;103(3):1276–1290.
  • Douglas P, Albadarin AB, Sajjia M, et al. Effect of poly ethylene glycol on the mechanical and thermal properties of bioactive poly(ε-caprolactone) melt extrudates for pharmaceutical applications. Int J Pharm. 2016;500(1–2):179–186.
  • Stanković M, Tomar J, Hiemstra C, et al. Tailored protein release from biodegradable poly(ε-caprolactone-PEG)-b-poly(ε-caprolactone) multiblock-copolymer implants. Eur J Pharm Biopharm. 2014;87(2):329–337.
  • Cooper A, Bhattarai N, Zhang M. Fabrication and cellular compatibility of aligned chitosan–PCL fibers for nerve tissue regeneration. Carbohydr Polym. 2011;85(1):149–156.
  • Kim M, Kim GH. Electrohydrodynamic direct printing of PCL/collagen fibrous scaffolds with a core/shell structure for tissue engineering applications. Chem Eng J. 2015;279:317–326.
  • Kim MS, Kim G. Three-dimensional electrospun polycaprolactone (PCL)/alginate hybrid composite scaffolds. Carbohydr Polym. 2014;114:213–221.
  • Aubin M, Prud’homme RE. Preparation and properties of poly(valerolactone). Polymer. 1981;22(9):1223–1226.
  • Parrish B, Quansah JK, Emrick T. Functional polyesters prepared by polymerization of α-allyl(valerolactone) and its copolymerization with ε-caprolactone and δ-valerolactone. J Polym Sci. Part A-1: Polym Chem 2002;40(12):1983–1990.
  • Hu Z, Chen Y, Huang H, et al. Well-defined poly(α-amino-δ-valerolactone) via living ring-opening polymerization. Macromolecules. 2018;51(7):2526–2532.
  • Bufton J, Jung S, Evans JC, et al. Cross-linked valerolactone copolymer implants with tailorable biodegradation, loading and in vitro release of paclitaxel. Eur J Pharm Sci. 2021;162:105808.
  • Liu X, Feng S, Wang X, et al. Tuning the mechanical properties and degradation properties of polydioxanone isothermal annealing. Turk J Chem. 2020;44(5):1430–1444.
  • Martins JA, Lach AA, Morris HL, et al. Polydioxanone implants: a systematic review on safety and performance in patients. J Biomater Appl. 2020;34(7):902–916.
  • Cho SW, Shin BH, Heo CY, et al. Efficacy study of the new polycaprolactone thread compared with other commercialized threads in a murine model. J Cosmet Dermatol. 2021;20(9):2743–2749.
  • Li G, Chen Y, Hu J, et al. A 5-fluorouracil-loaded polydioxanone weft-knitted stent for the treatment of colorectal cancer. Biomaterials. 2013;34(37):9451–9461.
  • Padmakumar S, Menon D. Nanofibrous polydioxanone depots for prolonged intraperitoneal paclitaxel delivery. Curr Drug Deliv. 2019;16(7):654–662.
  • van der Meulen I, de Geus M, Antheunis H, et al. Polymers from functional macrolactones as potential biomaterials: enzymatic ring opening polymerization, biodegradation, and biocompatibility. Biomacromolecules. 2008;9(12):3404–3410.
  • Fernández J, Etxeberria A, Varga AL, et al. Synthesis and characterization of ω-pentadecalactone-co-ε-decalactone copolymers: evaluation of thermal, mechanical and biodegradation properties. Polymer. 2015;81:12–22.
  • Mark Saltzman W, Fan Yang EQ, Jiang Z. Derek Owen, inventorBiodegradable contraceptive implants. United States patent US: 2020. 2020/0054553.
  • Niu W, Pan J. A model of polymer degradation and erosion for finite element analysis of bioresorbable implants. J Mech Behav Biomed Mater. 2020;112:104022.
  • Saltzman WM. Drug delivery: Engineering principles for drug therapy (Topics in Chemical Engineering). New York: Oxford University Press. 2001.
  • Weiser JR, Saltzman WM. Controlled release for local delivery of drugs: barriers and models. J Control Release. 2014;190:664–673.
  • Crank J. The mathematics of diffusion. Oxford (UK): Clarendon Press. 1979.
  • Sirianni RW, Jang E-H, Miller KM, et al. Parameter estimation methodology in a model of hydrophobic drug release from a polymer coating. J Control Release. 2010;142(3):474–482.
  • Casalini T, Rossi F, Lazzari S, et al. Mathematical modeling of PLGA microparticles: from polymer degradation to drug release. Mol Pharm. 2014;11(11):4036–4048.
  • Papadokostaki KG, Polishchuk AY, Petrou JK. Modeling of solute release from polymeric monoliths subject to linear structural relaxation. J Polym Sci B Polym Phys. 2002;40(12):1171–1188.
  • El Aissaoui A, El Afif A. Non-Fickian mass transfer in swelling polymeric non-porous membranes. J Membr Sci. 2017;543:172–183.
  • Korsmeyer RW, Gurny R, Doelker E, et al. Mechanisms of solute release from porous hydrophilic polymers. Int J Pharm. 1983;15(1):25–35.
  • Ritger PL, Peppas NA. A simple equation for description of solute release IFickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J Control Release. 1987;5(1):23–36.
  • Siepmann J, Siepmann F. Mathematical modeling of drug delivery. Int J Pharm. 2008;364(2):328–343.
  • Chen Y-C, Moseson DE, Richard CA, et al. Development of hot-melt extruded drug/polymer matrices for sustained delivery of meloxicam. J Control Release. 2022;342:189–200.
  • Zhang S, Nagapudi K, Shen M, et al. Release mechanisms and practical percolation threshold for long-acting biodegradable implants: an image to simulation study. J Pharm Sci. 2021;111(7):1896–1910.
  • Goldstein DM, Gray NS, Zarrinkar PP. High-throughput kinase profiling as a platform for drug discovery. Nat Rev Drug Discov. 2008;7(5):391–397.
  • Yang L, Pijuan-Galito S, Rho HS, et al. High-throughput methods in the discovery and study of biomaterials and materiobiology. Chem Rev. 2021;121(8):4561–4577.
  • Bracaglia LG, Piotrowski-Daspit AS, Lin CY, et al. High-throughput quantitative microscopy-based half-life measurements of intravenously injected agents. Proc Natl Acad Sci U S A. 2020;117(7):3502–3508.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.