3,201
Views
3
CrossRef citations to date
0
Altmetric
Review

Long-acting HIV pre-exposure prophylaxis (PrEP) approaches: recent advances, emerging technologies, and development challenges

, , , , , & show all
Pages 1365-1380 | Received 30 Jun 2022, Accepted 10 Oct 2022, Published online: 25 Oct 2022

References

  • UNAIDS. Global HIV & AIDS statistics - fact sheet [Internet]. UNAIDS. 2021 [cited June 28 2022]. cited: https://www.unaids.org/en/resources/fact-sheet.
  • UNAIDS; Sabin K. The prevention gap report. 2016.
  • Global AIDS Strategy 2021-2026 — end Inequalities. End AIDS. [Internet]. UNAIDS. 2021 [cited Sep 15, 2022]. Available from: https://aidstargets2025.unaids.org.
  • Granich R, Crowley S, Vitoria M, et al. Highly active antiretroviral treatment as prevention of HIV transmission: review of scientific evidence and update. Curr Opin HIV AIDS. 2010;5(4):298–304.
  • Saag MS, Benson CA, Gandhi RT, et al. Antiretroviral drugs for treatment and prevention of HIV infection in adults: 2018 recommendations of the international antiviral society-USA panel. JAMA. 2018;320(4):379–396.
  • Sosnik A, Augustine R. Challenges in oral drug delivery of antiretrovirals and the innovative strategies to overcome them. Adv Drug Deliv Rev. 2016 ;103:105–120.
  • Hobson JJ, Owen A, Rannard SP. The potential value of nanomedicine and novel oral dosage forms in the treatment of HIV. Nanomedicine (Lond). 2018 Aug;13(16):1963–1965.
  • Krovi SA, Johnson LM, Luecke E, et al. Advances in long-acting injectables, implants, and vaginal rings for contraception and HIV prevention. Adv Drug Deliv Rev. 2021;176:113849.
  • Young IC, Benhabbour SR. Multipurpose prevention technologies: oral, parenteral, and vaginal dosage forms for prevention of HIV/STIs and unplanned pregnancy. Polymers (Basel). 2021;13(15):2450.
  • Thoueille P, Choong E, Cavassini M, et al. Long-acting antiretrovirals: a new era for the management and prevention of HIV infection. J Antimicrob Chemother. 2022;77(2):290–302.
  • Flexner C, Owen A, Siccardi M, et al. Long-acting drugs and formulations for the treatment and prevention of HIV infection. Int J Antimicrob Agents. 2021 ;57(1):106220.
  • Philbin MM, Perez-Brumer A. Promise, perils and cautious optimism: the next frontier in long-acting modalities for the treatment and prevention of HIV. Curr Opin HIV AIDS. 2022;17(2):72–88.
  • Pre-Exposure Prophylaxis (PrEP) [Internet]. Centers for disease control and prevention 2019 [cited July 24, 2019]. cited: https://www.cdc.gov/hiv/risk/prep/.
  • Anderson PL, Glidden DV, Liu A, et al. Emtricitabine-tenofovir concentrations and pre-exposure prophylaxis efficacy in men who have sex with men. Sci Transl Med. 2012;4(151):151ra125–151ra125.
  • Baeten JM, Donnell D, Ndase P, et al. Antiretroviral prophylaxis for HIV prevention in heterosexual men and women. N Engl J Med. 2012;367(5):399–410.
  • Riddell J, Amico KR, Mayer KH. HIV preexposure prophylaxis: a review. Jama. 2018;319(12):1261–1268.
  • Access to the dapivirine vaginal ring: a timeline on progress [Internet]. AVAC 2022 cited August 17, 2022]. Available from: https://www.avac.org/infographic/access-dapivirine-vaginal-ring-timeline-progress.
  • Population Council Acquires the Monthly Dapivirine Ring and Other Woman-centered HIV Prevention Technologies from the International Partnership for Microbicides. [Internet]. Population Council; 2022; 21 July 2022. Available from: https://www.popcouncil.org/news/population-council-acquires-the-monthly-dapivirine-ring-and-other-woman-cen
  • Baeten JM, Palanee-Phillips T, Brown ER, et al. Use of a vaginal ring containing dapivirine for HIV-1 prevention in women. N Engl J Med. 2016;375(22):2121–2132.
  • Nel A, Bekker LG, Bukusi E, et al. Safety, acceptability and adherence of dapivirine vaginal ring in a microbicide clinical trial conducted in multiple countries in Sub-Saharan Africa. PLoS One. 2016;11(3):e0147743.
  • Brown ER, Hendrix CW, van der Straten A, et al. Greater dapivirine release from the dapivirine vaginal ring is correlated with lower risk of HIV-1 acquisition: a secondary analysis from a randomized, placebo-controlled trial. J Int AIDS Soc. 2020;23(11):e25634.
  • Baeten JM, Palanee-Phillips T, Mgodi NM, et al. Safety, uptake, and use of a dapivirine vaginal ring for HIV-1 prevention in African women (HOPE): an open-label, extension study. Lancet HIV. 2021 Feb;8(2):e87–e95.
  • Nel A, van Niekerk N, Van Baelen B, et al. Safety, adherence, and HIV-1 seroconversion among women using the dapivirine vaginal ring (DREAM): an open-label, extension study. Lancet HIV. 2021 Feb;8(2):e77–e86.
  • Nair G, Ngure K, Szydlo D, et al. Adherence to the dapivirine vaginal ring and oral PrEP among adolescent girls and young women in Africa: interim results from the REACH study. 11th IAS Conference on HIV Science2021, Berlin, Germany. Jul 18-21 2021; Virtual.
  • Trezza C, Ford SL, Spreen W, et al. Formulation and pharmacology of long-acting cabotegravir. Curr Opin HIV AIDS. 2015 Jul;10(4):239–245.
  • Cabotegravir (Apretude) for HIV-1 pre-exposure prophylaxis. Med Lett Drugs Ther. 2022;64:29–31. Feb 21.
  • Delany-Moretlwe S, Hughes JP, Bock P, et al. Cabotegravir for the prevention of HIV-1 in women: results from HPTN 084, a phase 3, randomised clinical trial. Lancet. 2022;399(10337):1779–1789.
  • Marzinke MA, Grinsztejn B, Fogel JM, et al. Characterization of HIV infection in cisgender men and transgender women who have sex with men receiving injectable cabotegravir for HIV prevention: HPTN 083. J Infect Dis. 2021;224(9):1581–1592.
  • Landovitz RJ, Li S, Eron JJ Jr., et al. Tail-phase safety, tolerability, and pharmacokinetics of long-acting injectable cabotegravir in HIV-uninfected adults: a secondary analysis of the HPTN 077 trial. Lancet HIV. 2020;7(7):e472–e481.
  • Neilan AM, Landovitz RJ, Le MH, et al. Cost-Effectiveness of Long-Acting Injectable HIV Preexposure Prophylaxis in the United States. Ann Intern Med. 2022 [2022 April 19];175(4):479–489.
  • ViiV healthcare and the medicines patent pool sign new voluntary licensing agreement to expand access to innovative long-acting HIV prevention medicine [Internet]. Medicines Patent Pool; 2022; 28 July 2022. Available from: https://medicinespatentpool.org/news-publications-post/viiv-healthcare-and-the-medicines-patent-pool-sign-new-voluntary-licensing-agreement-to-expand-access-to-innovative-long-acting-hiv-prevention-medicine
  • Markowitz M, Sarafianos SG. 4’-Ethynyl-2-fluoro-2’-deoxyadenosine, MK-8591: a novel HIV-1 reverse transcriptase translocation inhibitor. Curr Opin HIV AIDS. 2018 Jul;13(4):294–299.
  • Stoddart CA, Galkina SA, Joshi P, et al. Oral administration of the nucleoside EFdA (4′-Ethynyl-2-Fluoro-2′-Deoxyadenosine) provides rapid suppression of HIV viremia in humanized mice and favorable pharmacokinetic properties in mice and the rhesus macaque. Antimicrob Agents Chemother. 2015;59(7):4190–4198.
  • Merck announces clinical holds on studies evaluating islatravir for the treatment and prevention of HIV-1 infection [Internet]. 2021; December 13, 2021. Available from: https://www.merck.com/news/merck-announces-clinical-holds-on-studies-evaluating-islatravir-for-the-treatment-and-prevention-of-hiv-1-infection/
  • Barrett SE, Teller RS, Forster SP, et al. Extended-duration MK-8591-eluting implant as a candidate for HIV treatment and prevention. Antimicrob Agents Chemother. 2018 Oct;62(10).
  • Tse WC, Link JO, Mulato A et al. Discovery of novel potent HIV capsid inhibitors with long-acting potential. Conference on Retroviruses and Opportunistic Infections (CROI), Feb 14-17, 2017. Seattle, WA.
  • Singh K, Gallazzi F, Hill KJ, et al. GS-CA compounds: first-in-class HIV-1 capsid inhibitors covering multiple grounds [Original research]. Front Microbiol. 2019 10:1227 doi: 10.3389/fmicb.2019.01227.
  • Dvory-Sobol H, Shaik N, Callebaut C, et al. Lenacapavir: a first-in-class HIV-1 capsid inhibitor. Curr Opin HIV AIDS. 2022;17(1):15–21.
  • Gilead Announces First Global Regulatory Approval of Sunlenca® (Lenacapavir). The only twice-yearly HIV treatment option [Internet]. Gilead Sciences; 2022; 22 August 2022. Available from: https://www.gilead.com/news-and-press/press-room/press-releases/2022/8/gilead-announces-first-global-regulatory-approval-of-sunlenca-lenacapavir-the-only-twiceyearly-hiv-treatment-option
  • HPTN Annual Meeting Presentations. The HIV prevention trials network (HPTN) annual meeting. 2022 June 5-8. Washington D.C: The HIV Prevention Trials Network; 2022.
  • FDA Lifts Clinical Hold on Investigational Lenacapavir for the Treatment and Prevention of HIV [Internet]. Gilead; 2022; May 16, 2022. Available from: https://www.gilead.com/news-and-press/press-room/press-releases/2022/5/fda-lifts-clinical-hold-on-investigational-lenacapavir-for-the-treatment-and-prevention-of-hiv
  • Grobben M, Stuart RAL, van Gils MJ. The potential of engineered antibodies for HIV-1 therapy and cure. Curr Opin Virol. 2019 ;38:70–80.
  • Pegu A, Hessell AJ, Mascola JR, et al. Use of broadly neutralizing antibodies for HIV-1 prevention. Immunol Rev. 2017;275(1): 296–312.
  • Gautam R, Nishimura Y, Pegu A, et al. A single injection of anti-HIV-1 antibodies protects against repeated SHIV challenges. Nature. 2016;533(7601):105–109.
  • Mahomed S, Garrett N, Baxter C, et al. Clinical trials of broadly neutralizing monoclonal antibodies for human immunodeficiency virus prevention: a review. J Infect Dis. 2021;223(3):370–380.
  • Walsh SR, Seaman MS. Broadly neutralizing antibodies for HIV-1 prevention [Review]. Front Immunol. 2021;12(2903). doi: 10.3389/fimmu.2021.712122.
  • Gautam R, Nishimura Y, Gaughan N, et al. A single injection of crystallizable fragment domain–modified antibodies elicits durable protection from SHIV infection. Nat Med. 2018;24(5):610–616.
  • Gaudinski MR, Coates EE, Houser KV, et al. Safety and pharmacokinetics of the Fc-modified HIV-1 human monoclonal antibody VRC01LS: a Phase 1 open-label clinical trial in healthy adults. PLoS Med. 2018;15(1):e1002493.
  • Gaudinski MR, Houser KV, Doria-Rose NA, et al. Safety and pharmacokinetics of broadly neutralising human monoclonal antibody VRC07-523LS in healthy adults: a phase 1 dose-escalation clinical trial. Lancet HIV. 2019;6(10):e667–e679.
  • Steinhardt JJ, Guenaga J, Turner HL, et al. Rational design of a trispecific antibody targeting the HIV-1 Env with elevated anti-viral activity. Nat Commun. 2018;9(1):877.
  • Davis-Gardner ME, Alfant B, Weber JA, et al. A bispecific antibody that simultaneously recognizes the V2- and V3-glycan epitopes of the HIV-1 envelope glycoprotein is broader and more potent than its parental antibodies. mBio. 2020;11(1).
  • Mahomed S, Garrett N, Karim QA, et al. Assessing the safety and pharmacokinetics of the anti-HIV monoclonal antibody CAP256V2LS alone and in combination with VRC07-523LS and PGT121 in South African women: study protocol for the first-in-human CAPRISA 012B phase I clinical trial. BMJ open. 2020;10(11):e042247.
  • Cohen YZ, Butler AL, Millard K, et al. Safety, pharmacokinetics, and immunogenicity of the combination of the broadly neutralizing anti-HIV-1 antibodies 3BNC117 and 10-1074 in healthy adults: a randomized, phase 1 study. PloS one. 2019;14(8):e0219142–e0219142.
  • Julg B, Stephenson KE, Wagh K, et al. Safety and antiviral activity of triple combination broadly neutralizing monoclonal antibody therapy against HIV-1: a phase 1 clinical trial. Nat Med. 2022;28(6):1288–1296.
  • Wagh K, Bhattacharya T, Williamson C, et al. Optimal combinations of broadly neutralizing antibodies for prevention and treatment of HIV-1 clade C infection. PLoS Pathog. 2016;12(3):e1005520.
  • Rautio J, Kumpulainen H, Heimbach T, et al. Prodrugs: design and clinical applications. Nat Rev Drug Discov. 2008 Mar;7(3):255–270.
  • Rautio J, Meanwell NA, Di L, et al. The expanding role of prodrugs in contemporary drug design and development. Nat Rev Drug Discov. 2018;17(8):559–587.
  • Mehellou Y, Rattan HS, Balzarini J. The ProTide prodrug technology: from the concept to the clinic. J Med Chem. 2018; 61(6):2211–2226.
  • Mehellou Y. The ProTides Boom. ChemMedChem. 2016;11(11):1114–1116.
  • Serpi M, Pertusati F. An overview of ProTide technology and its implications to drug discovery. Expert Opin Drug Discov. 2021 May;24:1–13.
  • Ray AS, Fordyce MW, Hitchcock MJM. Tenofovir alafenamide: a novel prodrug of tenofovir for the treatment of human immunodeficiency virus. Antiviral Res. 2016 ;125:63–70.
  • Soni D, Bade AN, Gautam N, et al. Synthesis of a long acting nanoformulated emtricitabine ProTide. Biomaterials. 2019;222:119441.
  • Smith N, Bade AN, Soni D, et al. A long acting nanoformulated lamivudine ProTide. Biomaterials. 2019;223:119476.
  • Cobb DA, Smith N, Deodhar S, et al. Transformation of tenofovir into stable ProTide nanocrystals with long-acting pharmacokinetic profiles. Nat Commun. 2021 [2021 September 16];12(1):5458.
  • Cihlar T, Ray AS, Boojamra CG, et al. Design and profiling of GS-9148, a novel nucleotide analog active against nucleoside-resistant variants of human immunodeficiency virus type 1, and its orally bioavailable phosphonoamidate prodrug, GS-9131. Antimicrob Agents Chemother. 2008;52(2):655–665.
  • Ray AS, Vela JE, Boojamra CG, et al. Intracellular metabolism of the nucleotide prodrug GS-9131, a potent anti-human immunodeficiency virus agent. Antimicrob Agents Chemother. 2008;52(2):648–654.
  • Mackman RL, Ray AS, Hui HC, et al. Discovery of GS-9131: design, synthesis and optimization of amidate prodrugs of the novel nucleoside phosphonate HIV reverse transcriptase (RT) inhibitor GS-9148. Bioorg Med Chem. 2010;18(10):3606–3617.
  • Agarwal HK, Chhikara BS, Bhavaraju S, et al. Emtricitabine prodrugs with improved anti-HIV activity and cellular uptake. Mol Pharm. 2013;10(2):467–476.
  • Agarwal HK, Chhikara BS, Hanley MJ, et al. Synthesis and biological evaluation of fatty acyl ester derivatives of (-)-2’,3’-dideoxy-3’-thiacytidine. J Med Chem. 2012;55(10):4861–4871.
  • Zhou T, Su H, Dash P, et al. Creation of a nanoformulated cabotegravir prodrug with improved antiretroviral profiles. Biomaterials. 2018;151:53–65. doi: 10.1016/j.biomaterials.2017.10.023
  • Sillman B, Bade AN, Dash PK, et al. Creation of a long-acting nanoformulated dolutegravir. Nat Commun. 2018;9(1):443.
  • McMillan J, Szlachetka A, Slack L, et al. Pharmacokinetics of a long-acting nanoformulated dolutegravir prodrug in rhesus macaques. Antimicrob Agents Chemother. 2018;62(1). doi:10.1128/AAC.01316-17.
  • McMillan J, Szlachetka A, Zhou T, et al. Pharmacokinetic testing of a first-generation cabotegravir prodrug in rhesus macaques. AIDS. 2019;33(3):585–588.
  • Khuroo T, Dharani S, Mohamed EM, et al. Ultra-long acting prodrug of dolutegravir and delivery system - physicochemical, pharmacokinetic and formulation characterizations. Int J Pharm. 2021;607:120889.
  • Krovi SA, Gallovic MD, Keller AM, et al. Injectable long-acting human immunodeficiency virus antiretroviral prodrugs with improved pharmacokinetic profiles. Int J Pharm. 2018;552(1–2):371–377.
  • D-K H, LeGuyader C, Srinivasan S, et al. Fully synthetic injectable depots with high drug content and tunable pharmacokinetics for long-acting drug delivery. J Control Release. 2021;329:257–269.
  • Pemmaraju BP, Malekar S, Agarwal HK, et al. Design, synthesis, antiviral activity, and pre-formulation development of poly-L-arginine-fatty acyl derivatives of nucleoside reverse transcriptase inhibitors. Nucleosides Nucleotides Nucleic Acids. 2015;34(1):1–15.
  • Agarwal HK, Chhikara BS, Quiterio M, et al. Synthesis and Anti-HIV activities of glutamate and peptide conjugates of nucleoside reverse transcriptase inhibitors. J Med Chem. 2012;55(6):2672–2687.
  • Agarwal HK, Kumar A, Doncel GF, et al. Synthesis, antiviral and contraceptive activities of nucleoside–sodium cellulose sulfate acetate and succinate conjugates. Bioorg Med Chem Lett. 2010 ;20(23):6993–6997.
  • New Phase 3 Data Support the Sustained, Long-acting efficacy of lenacapavir, gilead’s investigational HIV-1 capsid inhibitor. [Internet]; Foster City, CA: Gilead Sciences, Inc. 2021.
  • Matthews RP, Barrett SE, Patel M, et al. First-in-human trial of MK-8591-eluting implants demonstrates concentrations suitable for HIV prophylaxis for at least one year. 10th IAS Conference on HIV Science; July 21-24 Mexico City, Mexico: The International AIDS Conference (IAS); 2019.
  • Matthews RP, Zang X, Barrett S, et al. Next-generation islatravir implants projected to provide yearly HIV prophylaxis. Conference on Retroviruses and Opportunistic Infections (CROI); 2021 March 6-10.
  • Matthews RP, Patel M, Barrett SE, et al. Safety and pharmacokinetics of islatravir subdermal implant for HIV-1 pre-exposure prophylaxis: a randomized, placebo-controlled phase 1 trial. Nat Med. 2021;27(10):1712–1717.
  • Schlesinger E, Johengen D, Luecke E, et al. A tunable, biodegradable, thin-film polymer device as a long-acting implant delivering tenofovir alafenamide fumarate for HIV pre-exposure prophylaxis. Pharm Res. 2016 Jul;33(7):1649–1656.
  • Johnson LM, Krovi SA, Li L, et al. Characterization of a reservoir-style implant for sustained release of tenofovir alafenamide (TAF) for HIV Pre-Exposure Prophylaxis (PrEP). Pharmaceutics. 2019;11(7):315.
  • Li L, Johnson LM, Krovi SA, et al. Performance and stability of tenofovir alafenamide formulations within subcutaneous biodegradable implants for HIV Pre-exposure prophylaxis (PrEP). Pharmaceutics. 2020;12(11):1057.
  • Massud I, Krovi A, Ruone S, et al. Pharmacokinetics and safety of long-acting tenofovir alafenamide implants in macaques for HIV prevention. PEA0087. AIDS 2020.
  • Massud I. High protection against vaginal SHIV infection in macaques by a biodegradable implant releasing tenofovir alafenamide. J Int AIDS Soc. 2021;24:11.
  • Simpson SM, Widanapathirana L, Su JT, et al. Design of a drug-eluting subcutaneous implant of the antiretroviral tenofovir alafenamide fumarate. Pharm Res. 2020;37(4):83.
  • Su JT, Simpson SM, Sung S, et al. A subcutaneous implant of tenofovir alafenamide fumarate causes local inflammation and tissue necrosis in rabbits and macaques. Antimicrob Agents Chemother. 2020;64(3): e01893–19.
  • Romano JW, Baum MM, Demkovich ZR, et al. Tenofovir alafenamide for HIV prevention: review of the proceedings from the gates foundation long-acting TAF product development meeting. AIDS Res Hum Retroviruses. 2021;37(6):409–420.
  • Zane D, Roller S, Shelton J, et al. A 28-day toxicity study of tenofovir alafenamide hemifumarate by subcutaneous infusion in rats and dogs. Microbiol Spectr. 2021;9(1):e0033921.
  • Chua CYX, Jain P, Ballerini A, et al. Transcutaneously refillable nanofluidic implant achieves sustained level of tenofovir diphosphate for HIV pre-exposure prophylaxis. J Control Release. 2018;286:315–325.
  • Pons-Faudoa FP, Sizovs A, Shelton KA, et al. Preventive efficacy of a tenofovir alafenamide fumarate nanofluidic implant in SHIV-challenged nonhuman primates. Adv Ther. 2021;4(3). doi:10.1002/adtp.202000163.
  • Gunawardana M, Remedios-Chan M, Miller CS, et al. Pharmacokinetics of long-acting tenofovir alafenamide (GS-7340) subdermal implant for HIV prophylaxis. Antimicrob Agents Chemother. 2015;59(7):3913–3919.
  • Gunawardana M, Remedios-Chan M, Sanchez D, et al. Multispecies evaluation of a long-acting tenofovir alafenamide subdermal implant for HIV prophylaxis [Original Research]. Front Pharmacol. 2020;11(1866). Doi:10.3389/fphar.2020.569373.
  • Gengiah TN, Abdool Karim Q, Harkoo I, et al. CAPRISA 018: a phase I/II clinical trial study protocol to assess the safety, acceptability, tolerability and pharmacokinetics of a sustained-release tenofovir alafenamide subdermal implant for HIV prevention in women. BMJ open. 2022;12(1):e052880–e052880.
  • Pons-Faudoa FP, Sizovs A, Di Trani N, et al. 2-Hydroxypropyl-β-cyclodextrin-enhanced pharmacokinetics of cabotegravir from a nanofluidic implant for HIV pre-exposure prophylaxis. J Control Release. 2019;306:89–96.
  • Karunakaran D, Simpson SM, Su JT, et al. Design and testing of a cabotegravir implant for HIV prevention. J Control Release. 2021;330:658–668. DOI:10.1016/j.jconrel.2020.12.024
  • Little KM, Flomen L, Hanif H, et al. HIV pre-exposure prophylaxis implant stated preferences and priorities: results of a discrete choice experiment among women and adolescent girls in Gauteng Province, South Africa. AIDS Behav. 2022;26(9):3099–3109.
  • Krogstad EA, Atujuna M, Montgomery ET, et al. Perspectives of South African youth in the development of an implant for HIV prevention. J Int AIDS Soc. 2018;21(8):e25170.
  • Ngure K, Mugo NR, Bukusi EA, et al. Pills, injections, rings, or implants? PrEP formulation preferences of PrEP-experienced African women for HIV prevention. J Acquir Immune Defic Syndr. 2021;88(4):e30–e32.
  • Sizovs A, Pons-Faudoa FP, Malgir G, et al. Trans-urocanic acid enhances tenofovir alafenamide stability for long-acting HIV applications. Int J Pharm. 2020;587:119623.
  • Di Trani N, Pons-Faudoa FP, Sizovs A, et al. Extending drug release from implants via transcutaneous refilling with solid therapeutics. Adv Ther. 2022;5(2):2100214.
  • Kovarova M, Benhabbour SR, Massud I, et al. Ultra-long-acting removable drug delivery system for HIV treatment and prevention. Nat Commun. 2018;9(1):4156.
  • Benhabbour SR, Kovarova M, Jones C, et al. Ultra-long-acting tunable biodegradable and removable controlled release implants for drug delivery. Nat Commun. 2019;10(1):4324.
  • Ivana M, Kovarova, M, Wong-Sam A. In situ forming implants with cabotegravir for ultra-long-acting PrEP. Conference on Retroviruses and Opportunistic Infections (CROI), Feb 12-16, 2022.
  • Maturavongsadit P, Paravyan G, Kovarova M, et al. A new engineering process of biodegradable polymeric solid implants for ultra-long-acting drug delivery. Int J Pharm X. 2021;3:100068.
  • Maturavongsadit P, Shrivastava R, Sykes C, et al. Biodegradable polymeric solid implants for ultra-long-acting delivery of single or multiple antiretroviral drugs. Int J Pharm. 2021;605:120844.
  • Kovarova M, Manse K, Wessel SE, et al. Long acting doravirine for treatment and prevention of vaginal HIV transmission. Conference on Retroviruses and Opportunistic Infections (CROI), Feb 12-16, 2022; 12–16.
  • Khuroo T, Mohamed EM, Dharani S, et al. In-situ implant formulation of laurate and myristate prodrugs of dolutegravir for ultra-long delivery. J Pharm Sci. 2022;111(8):2312–2321.
  • Project horizon: hydrogel injectable depot system for next-generation long-acting HIV prevention and contraception [Internet]. National Institute of Health (NIH), National Institute of Allergy and Infectious Diseases (NIAID). 2019-2022 [cited August 10 2022]. Available from: https://grantome.com/grant/NIH/R61-AI142685-03.
  • DelSiTech Ltd announces the development of novel long-acting injectable biologics for HIV prevention [Internet]. Turku, Finland: DelSiTech. March 12, 2021.
  • Mandal S, Prathipati PK, Belshan M, et al. A potential long-acting bictegravir loaded nano-drug delivery system for HIV-1 infection: a proof-of-concept study. Antiviral Res. 2019 Jul;167:83–88.
  • Mandal S, Prathipati PK, Sunagawa SW, et al. A concept evaluation study of a new combination bictegravir plus tenofovir alafenamide nanoformulation with prolonged sustained-drug-release potency for HIV-1 preexposure prophylaxis. Antimicrob Agents Chemother. 2021;65(4). doi: 10.1128/AAC.02320-20.
  • Al-Salama ZT. Elsulfavirine: first global approval. Drugs. 2017 Oct;77(16):1811–1816.
  • Viriom announces initiation of phase 2 study investigating efficacy of intramuscular long-acting injectable nanoformulation of VM1500A in HIV-infected patients. [Internet]. San Diego (CA): Viriom, Inc.; May 4, 2020.
  • Deodhar S, Sillman B, Bade AN, et al. Transformation of dolutegravir into an ultra-long-acting parenteral prodrug formulation. Nat Commun. 2022;13(1):3226.
  • Kulkarni TA, Bade AN, Sillman B, et al. A year-long extended release nanoformulated cabotegravir prodrug. Nat Mater. 2020;19(8):910–920.
  • Gautam N, McMillan JM, Kumar D, et al. Lipophilic nanocrystal prodrug-release defines the extended pharmacokinetic profiles of a year-long cabotegravir. Nat Commun. 2021;12(1):3453.
  • Markowitz M, Gettie A, St. Bernard L, et al. Once-weekly oral dosing of MK-8591 protects male rhesus macaques from intrarectal challenge with SHIV109CP3. J Infect Dis. 2020;221(9):1398–1406.
  • Kirtane AR, Abouzid O, Minahan D, et al. Development of an oral once-weekly drug delivery system for HIV antiretroviral therapy. Nat Commun. 2018;9(1):2.
  • Puri A, Bhattaccharjee SA, Zhang W, et al. Development of a transdermal delivery system for tenofovir alafenamide, a prodrug of tenofovir with potent antiviral activity against HIV and HBV. Pharmaceutics. 2019;11(4):173.
  • Puri A, Sivaraman A, Zhang W, et al. Expanding the domain of drug delivery for HIV prevention: exploration of the transdermal route. Crit Rev Ther Drug Carrier Syst. 2017;34(6):551–587.
  • Waghule T, Singhvi G, Dubey SK, et al. Microneedles: a smart approach and increasing potential for transdermal drug delivery system. Biomed Pharmacother. 2019;109:1249–1258.
  • Jiang Y, Gao X, Singh ON, et al. Pharmacokinetics of a weekly transdermal delivery system of tenofovir alafenamide in hairless rats. Int J Pharm. 2020;582:119342. doi: 10.1016/j.ijpharm.2020.119342.
  • Tuan-Mahmood TM, McCrudden MT, Torrisi BM, et al. Microneedles for intradermal and transdermal drug delivery. Eur J Pharm Sci. 2013;50(5):623–637.
  • Larrañeta E, Lutton REM, Woolfson AD, et al. Microneedle arrays as transdermal and intradermal drug delivery systems: materials science, manufacture and commercial development. Mater Sci Eng R Rep. 2016;104:1–32.
  • Mc Crudden MTC, Larraneta E, Clark A, et al. Design, formulation and evaluation of novel dissolving microarray patches containing a long-acting rilpivirine nanosuspension. J Control Release. 2018;292:119–129. doi: 10.1016/j.jconrel.2018.11.002.
  • Tekko IA, Vora LK, Volpe-Zanutto F, et al. Novel bilayer microarray patch-assisted long-acting micro-depot cabotegravir intradermal delivery for HIV pre-exposure prophylaxis. Adv Funct Mater. 2022;32(9):2106999.
  • Paredes AJ, Volpe-Zanutto F, Vora LK, et al. Systemic delivery of tenofovir alafenamide using dissolving and implantable microneedle patches. Mater Today Bio. 2022 ;13:100217.
  • Palombo MS, Singh Y, Sinko PJ. Prodrug and conjugate drug delivery strategies for improving HIV/AIDS therapy. J Drug Deliv Sci Technol. 2009;19(1):3–14.
  • Liang Z, Giles MB, Stenslik MJ, et al. Direct visualization of the drug release process of non-conductive polymeric implants via molecular imaging. Anal Chim Acta. 2022;1230:340395.
  • Nagapudi K, Zhu A, Chang DP, et al. Microstructure, quality, and release performance characterization of long-acting polymer implant formulations with X-ray microscopy and quantitative AI analytics. J Pharm Sci. 2021;110(10):3418–3430.
  • Rajoli RKR, Back DJ, Rannard S, et al. Physiologically based pharmacokinetic modelling to inform development of intramuscular long-acting nanoformulations for HIV. Clin Pharmacokinet. 2015;54(6):639–650.
  • Rajoli RKR, Demkovich ZR, Flexner C, et al. Predicting pharmacokinetics of a tenofovir alafenamide subcutaneous implant using physiologically based pharmacokinetic modelling. Antimicrob Agents Chemother. 2020;64(8). doi: 10.1128/AAC.00155-20.
  • Rajoli RKR, Flexner C, Chiong J, et al. Modelling the intradermal delivery of microneedle array patches for long-acting antiretrovirals using PBPK. Eur J Pharm Biopharm. 2019;144:101–109.
  • Nkanga CI, Fisch A, Rad-Malekshahi M, et al. Clinically established biodegradable long acting injectables: an industry perspective. Adv Drug Deliv Rev. 2020;167:19–46.
  • Faisant N, Siepmann J, Oury P, et al. The effect of gamma-irradiation on drug release from bioerodible microparticles: a quantitative treatment. Int J Pharm. 2002;242(1–2):281–284.
  • Parsons TL, Gwenden KN, Marzinke MA. Interspecies differences in tenofovir alafenamide fumarate stability in plasma. Antimicrob Agents Chemother. 2020;64(9):e00930–20.
  • Bao Q, Wang X, Zou Y, et al. In vitro release testing method development for long-acting injectable suspensions. Int J Pharm. 2022;622:121840.
  • Li D, Chow PY, Lin TP, et al. Simulate SubQ: the methods and the media. J Pharm Sci. 2021. DOI: 10.1016/j.xphs.2021.10.031
  • van ‘t Klooster G, Hoeben E, Borghys H, et al. Pharmacokinetics and disposition of rilpivirine (TMC278) nanosuspension as a long-acting injectable antiretroviral formulation. Antimicrob Agents Chemother. 2010;54(5):2042–2050.
  • Das Neves J, Notario-Pérez F, Sarmento B. Women-specific routes of administration for drugs: a critical overview. Adv Drug Deliv Rev. 2021;16:113865.
  • Sharifi S, Caracciolo G, Pozzi D, et al. The role of sex as a biological variable in the efficacy and toxicity of therapeutic nanomedicine. Adv Drug Deliv Rev. 2021;174:337–347.
  • Minnis AM, Atujuna M, Browne EN, et al. Preferences for long-acting pre-exposure prophylaxis (PrEP) for HIV prevention among South African youth: results of a discrete choice experiment. J Int AIDS Soc. 2020;23(6):e25528.
  • Ngure K, Mugo NR, Bukusi EA, et al. Pills, injections, rings, or implants? PrEP formulation preferences of PrEP-experienced African women for HIV prevention. J Acquir Immune Defic Syndr. 2021;88(4):e30–e32.
  • Golla VM, Kurmi M, Shaik K, et al. Stability behaviour of antiretroviral drugs and their combinations. 4: characterization of degradation products of tenofovir alafenamide fumarate and comparison of its degradation and stability behaviour with tenofovir disoproxil fumarate. J Pharm Biomed Anal. 2016;131:146–155. doi: 10.1016/j.jpba.2016.08.022.
  • ViiV Healthcare is working with medicines patent pool to progress voluntary licensing for cabotegravir long-acting for prep. [Internet]. Brentford, UK: ViiV Healthcare; 2022.