3,274
Views
2
CrossRef citations to date
0
Altmetric
Review

New insight into brain disease therapy: nanomedicines-crossing blood–brain barrier and extracellular space for drug delivery

, , , , , , , , , , , , & ORCID Icon show all
Pages 1618-1635 | Received 24 Aug 2022, Accepted 19 Oct 2022, Published online: 31 Oct 2022

References

  • Abbott NJ, Patabendige AA, Dolman DE, et al. Structure and function of the blood-brain barrier. Neurobiol Dis. 2010 Jan;37(1):13–25.
  • Sweeney MD, Sagare AP, Zlokovic BV. Blood-brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat Rev Neurol. 2018 Mar;14(3):133–150.
  • Nicholson C, Hrabětová S. Brain extracellular space: the final frontier of neuroscience. Biophys J. 2017 Nov 21;113(10):2133–2142.
  • Edwards TN, Meinertzhagen IA. The functional organisation of glia in the adult brain of drosophila and other insects. Prog Neurobiol. 2010 Apr;90(4):471–497.
  • Deco G, Rolls ET, Albantakis L, et al. Brain mechanisms for perceptual and reward-related decision-making. Prog Neurobiol. 2013 Apr;103:194–213.
  • Kastellakis G, Cai DJ, Mednick SC, et al. Synaptic clustering within dendrites: an emerging theory of memory formation. Prog Neurobiol. 2015 Mar;126:19–35.
  • Lei Y, Han H, Yuan F, et al. The brain interstitial system: anatomy, modeling, in vivo measurement, and applications. Prog Neurobiol. 2017 Oct;157:230–246.
  • Zhang C, Zhou Z, Qian Q, et al. Glutathione-capped fluorescent gold nanoclusters for dual-modal fluorescence/X-ray computed tomography imaging. J Mater Chem B. 2013 Oct 14;1(38):5045–5053.
  • Agrawal M, Ajazuddin, Tripathi DK, et al. Recent advancements in liposomes targeting strategies to cross blood-brain barrier (BBB) for the treatment of Alzheimer’s disease. J Control Release. 2017 Aug 28;260:61–77.
  • Singh I, Swami R, Pooja D, et al. Lactoferrin bioconjugated solid lipid nanoparticles: a new drug delivery system for potential brain targeting. J Drug Target. 2016;24(3):212–223.
  • Saesoo S, Sathornsumetee S, Anekwiang P, et al. Characterization of liposome-containing SPIONs conjugated with anti-CD20 developed as a novel theranostic agent for central nervous system lymphoma. Colloids Surf B Biointerfaces. 2018 Jan 1;161:497–507.
  • Kong L, Li XT, Ni YN, et al. Transferrin-modified osthole pegylated liposomes travel the blood-brain barrier and mitigate Alzheimer’s disease-related pathology in APP/PS-1 mice. Int J Nanomedicine. 2020;15:2841–2858.
  • Lin CY, Lin YC, Huang CY, et al. Ultrasound-responsive neurotrophic factor-loaded microbubble- liposome complex: preclinical investigation for Parkinson’s disease treatment. J Control Release. 2020 May 10;321:519–528. DOI:10.1016/j.jconrel.2020.02.044.
  • Moon H, Hwang K, Nam KM, et al. Enhanced delivery to brain using sonosensitive liposome and microbubble with focused ultrasound. Biomater Adv. 2022 Sep 6;141:213102. DOI:10.1016/j.bioadv.2022.213102.
  • Saha S, Yakati V, Shankar G, et al. Amphetamine decorated cationic lipid nanoparticles cross the blood-brain barrier: therapeutic promise for combating glioblastoma. J Mater Chem B. 2020 May 21;8(19):4318–4330.
  • Salvati E, Re F, Sesana S, et al. Liposomes functionalized to overcome the blood-brain barrier and to target amyloid-β peptide: the chemical design affects the permeability across an in vitro model. Int J Nanomedicine. 2013;8:1749–1758.
  • Wu S, Yang X. OEA loaded liposomes with the neuroprotective effect for stroke therapy. Front Chem. 2022;10:1014208.
  • Almeida B, Nag OK, Rogers KE, et al. Recent progress in bioconjugation strategies for liposome-mediated drug delivery. Molecules. 2020;25(23):5672.
  • Kapoor DN, Bhatia A, Kaur R, et al. PLGA: a unique polymer for drug delivery. Ther Deliv. 2015 Jan;6(1):41–58.
  • Tabatabaei Mirakabad F S, Nejati-Koshki K, Akbarzadeh A, et al. PLGA-based nanoparticles as cancer drug delivery systems. Asian Pac J Cancer Prev. 2014;15(2):517–535.
  • Xu K, An N, Zhang H, et al. Sustained-release of PDGF from PLGA microsphere embedded thermo-sensitive hydrogel promoting wound healing by inhibiting autophagy. J Drug Delivery Sci Technol. 2020;55:101405.
  • Cai Q, Qiao C, Ning J, et al. A polysaccharide-based hydrogel and PLGA microspheres for sustained P24 peptide delivery: an in vitro and in vivo study based on osteogenic capability. Chem Res Chin Univ. 2019;35(5):908–915.
  • Lu Y, Wu F, Duan W, et al. Engineering a “PEG-g-PEI/DNA nanoparticle-in-PLGA microsphere” hybrid controlled release system to enhance immunogenicity of DNA vaccine. Mater Sci Eng C. 2020;106:110294.
  • Su Y, Zhang B, Sun R, et al. PLGA-based biodegradable microspheres in drug delivery: recent advances in research and application. Drug Deliv. 2021;28(1):1397–1418.
  • Shakeri S, Ashrafizadeh M, Zarrabi A, et al. Multifunctional polymeric nanoplatforms for brain diseases diagnosis, therapy and theranostics. Biomedicines. 2020;8(1):13.
  • Shah SR, Kim J, Schiapparelli P, et al. Verteporfin-loaded polymeric microparticles for intratumoral treatment of brain cancer. Mol Pharm. 2019 Apr 1;16(4):1433–1443.
  • Cunha A, Gaubert A, Verget J, et al. Trehalose-based nucleolipids as nanocarriers for autophagy modulation: an in vitro study. Pharmaceutics. 2022 Apr 13;14(4).
  • Gajbhiye KR, Gajbhiye V, Siddiqui IA, et al. Ascorbic acid tethered polymeric nanoparticles enable efficient brain delivery of galantamine: an in vitro-in vivo study. Sci Rep. 2017 Sep 11;7(1):11086.
  • Gholamzad M, Baharlooi H, Shafiee Ardestani M, et al. Prophylactic and therapeutic effects of MOG-Conjugated PLGA nanoparticles in C57Bl/6 mouse model of multiple sclerosis. Adv Pharm Bull. 2021 May;11(3):505–513.
  • Loureiro JA, Gomes B, Fricker G, et al. Cellular uptake of PLGA nanoparticles targeted with anti-amyloid and anti-transferrin receptor antibodies for Alzheimer’s disease treatment. Colloids Surf B Biointerfaces. 2016 Sep 1;145:8–13.
  • Smiley SB, Yun Y, Ayyagari P, et al. Development of CD133 targeting multi-drug polymer micellar nanoparticles for glioblastoma - in vitro evaluation in glioblastoma stem cells. Pharm Res. 2021 Jun;38(6):1067–1079.
  • Mansur HS. Quantum dots and nanocomposites. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2010;2(2):113–129.
  • Ekimov AI, Onushchenko AA. Quantum size effect in three-dimensional microscopic semiconductor crystals. ZhETF Pisma Redaktsiiu. 1981;34:363.
  • Perini G, Palmieri V, Ciasca G, et al. Unravelling the potential of graphene quantum dots in biomedicine and neuroscience. Int J Mol Sci. 2020;21(10):3712.
  • Edis Z, Wang J, Waqas MK, et al. Nanocarriers-mediated drug delivery systems for anticancer agents: an overview and perspectives. Int J Nanomedicine. 2021;16:1313–1330.
  • Matea CT, Mocan T, Tabaran F, et al. Quantum dots in imaging, drug delivery and sensor applications. Int J Nanomedicine. 2017;12:5421.
  • Díaz-González M, de la Escosura-Muñiz A, Fernandez-Argüelles MT, et al. Quantum dot bioconjugates for diagnostic applications. Top Curr Chem (Cham). 2020 Mar 26;378(2):35.
  • Li H, Zhang Y, Ding J, et al. Synthesis of carbon quantum dots for application of alleviating amyloid-β mediated neurotoxicity. Colloids Surf B Biointerfaces. 2022 Apr;212:112373.
  • Y-P H, Leong KW. Quantum dot-based theranostics. Nanoscale. 2010;2(1):60–68.
  • Sukhanova A, Bozrova S, Gerasimovich E, et al. Dependence of quantum dot toxicity in vitro on their size, chemical composition, and surface charge. Nanomaterials (Basel). 2022 Aug 9;12(16). 10.3390/nano12162734
  • Liu N, Tang M. Toxicity of different types of quantum dots to mammalian cells in vitro: an update review. J Hazard Mater. 2020 Nov 15;399:122606.10.1016/j.jhazmat.2020.122606
  • Liang Y, Zhang T, Tang M. Toxicity of quantum dots on target organs and immune system. J Appl Toxicol. 2022 Jan;42(1):17–40.
  • Li S, Skromne I, Peng Z, et al. “Dark” carbon dots specifically “light-up” calcified zebrafish bones. J Mater Chem B. 2016 Dec 14;4(46):7398–7405.
  • Kresge A, Leonowicz M, Roth WJ, et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature. 1992;359(6397):710–712.
  • Singh P, Srivastava S, Singh SK. Nanosilica: recent progress in synthesis, functionalization, biocompatibility, and biomedical applications. ACS Biomater Sci Eng. 2019;5(10):4882–4898.
  • IUPAC. Manual of symbols and terminology ApPCaSCPaAC. 1972;31:579–638.
  • Song Y, Du D, Li L, et al. In vitro study of receptor-mediated silica nanoparticles delivery across blood-brain barrier. ACS Appl Mater Interfaces. 2017 Jun 21;9(24):20410–20416.
  • Pellen-Mussi P, Tricot-Doleux S, Neaime C, et al. Evaluation of functional SiO2 nanoparticles toxicity by a 3D culture model. J Nanosci Nanotechnol. 2018;18(5):3148–3157.
  • Qian ZM, Tang PL. Mechanisms of iron uptake by mammalian cells. Biochim Biophys Acta Mol Cell Res. 1995;1269(3):205–214.
  • Z-q Y, Wu Q, Zhou X-M, et al. Receptor-mediated delivery of Astaxanthin-loaded nanoparticles to neurons: an enhanced potential for subarachnoid hemorrhage treatment. Front Neurosci. 2019;13:989.
  • Nilsson KG. Preparation of nanoparticles conjugated with enzyme and antibody and their use in heterogeneous enzyme immunoassays. J Immunol Methods. 1989;122(2):273–277.
  • Ramalho MJ, Loureiro JA, Coelho MAN, et al. Transferrin receptor-targeted nanocarriers: overcoming barriers to treat glioblastoma. Pharmaceutics. 2022 Jan 25;14(2). DOI:10.3390/pharmaceutics14020279.
  • Neves A, van der Putten L, Queiroz J, et al. Transferrin-functionalized lipid nanoparticles for curcumin brain delivery. J Biotechnol. 2021;331:108–117.
  • Lan W, Zhang H, Yang B. Preliminary study on the therapeutic effect of doxorubicin-loaded targeting nanoparticles on glioma. Appl Bionics Biomech. 2022;2022. DOI:10.1155/2022/6405400.
  • Loureiro JA, Gomes B, Coelho MA, et al. Targeting nanoparticles across the blood–brain barrier with monoclonal antibodies. Nanomedicine. 2014;9(5):709–722.
  • Kuang Y, An S, Guo Y, et al. T7 peptide-functionalized nanoparticles utilizing RNA interference for glioma dual targeting. Int J Pharm. 2013;454(1):11–20.
  • Kucharz K, Kristensen K, Johnsen KB, et al. Post-capillary venules are the key locus for transcytosis-mediated brain delivery of therapeutic nanoparticles. Nat Commun. 2021 Jul 5;12(1):4121.
  • Johnsen KB, Bak M, Kempen PJ, et al. Antibody affinity and valency impact brain uptake of transferrin receptor-targeted gold nanoparticles. Theranostics. 2018;8(12):3416–3436.
  • Johnsen KB, Bak M, Melander F, et al. Modulating the antibody density changes the uptake and transport at the blood-brain barrier of both transferrin receptor-targeted gold nanoparticles and liposomal cargo. J Control Release. 2019 Feb 10;295:237–249.
  • Herz J, Hamann U, Rogne S, et al. Surface location and high affinity for calcium of a 500‐kd liver membrane protein closely related to the LDL‐receptor suggest a physiological role as lipoprotein receptor. EMBO J. 1988;7(13):4119–4127.
  • Lillis AP, Van Duyn LB, Murphy-Ullrich JE, et al. LDL receptor-related protein 1: unique tissue-specific functions revealed by selective gene knockout studies. Physiol Rev. 2008;88(3):887–918.
  • Maletínská L, Blakely EA, Bjornstad KA, et al. Human glioblastoma cell lines: levels of low-density lipoprotein receptor and low-density lipoprotein receptor-related protein. Cancer Res. 2000;60(8):2300–2303.
  • Anami Y, Xiong W, Yamaguchi A, et al. Homogeneous antibody–angiopep 2 conjugates for effective brain targeting. RSC Adv. 2022;12(6):3359–3364.
  • Regina A, Demeule M, Tripathy S, et al. ANG4043, a novel brain-penetrant peptide–mAb conjugate, is efficacious against HER2-positive intracranial tumors in mice. Mol Cancer Ther. 2015;14(1):129–140.
  • Zhang B, Xue R, Sun C. Rational design of ROS-responsive nanocarriers for targeted X-ray-induced photodynamic therapy and cascaded chemotherapy of intracranial glioblastoma. Nanoscale. 2022;14:5054–5067.
  • Fillebeen C, Descamps L, Dehouck MP, et al. Receptor-mediated transcytosis of lactoferrin through the blood-brain barrier. J Biol Chem. 1999 Mar 12;274(11):7011–7017.
  • Qi N, Zhang S, Zhou X, et al. Combined integrin α(v)β(3) and lactoferrin receptor targeted docetaxel liposomes enhance the brain targeting effect and anti-glioma effect. J Nanobiotechnology. 2021 Dec 23;19(1):446.
  • Teixeira MI, Lopes CM, Gonçalves H, et al. Formulation, characterization, and cytotoxicity evaluation of lactoferrin functionalized lipid nanoparticles for riluzole delivery to the brain. Pharmaceutics. 2022;14(1):185.
  • Ahmad F, Sun Q, Patel D, et al. Cholesterol metabolism: a potential therapeutic target in glioblastoma. Cancers (Basel). 2019 Jan 26;11(2). DOI:10.3390/cancers11020146.
  • Hong DY, Lee DH, Lee JY, et al. Relationship between brain metabolic disorders and cognitive impairment: LDL receptor defect. Int J Mol Sci. 2022 Jul 29;23(15). DOI:10.3390/ijms23158384.
  • Lee J, Pilch PF. The insulin receptor: structure, function, and signaling. Am J Physiol Cell Physiol. 1994;266(2):C319–C334.
  • Rechler MM, Nissley SP. Insulin-like growth factor (IGF)/somatomedin receptor subtypes: structure, function, and relationships to insulin receptors and IGF carrier proteins. Horm Res. 1986;24(2–3):152–159.
  • Messier C, Teutenberg K. The role of insulin, insulin growth factor, and insulin-degrading enzyme in brain aging and Alzheimer’s disease. Neural Plast. 2005;12(4):311–328.
  • Shilo M, Motiei M, Hana P, et al. Transport of nanoparticles through the blood–brain barrier for imaging and therapeutic applications. Nanoscale. 2014;6(4):2146–2152.
  • Boado RJ, Zhang Y, Zhang Y, et al. Humanization of anti-human insulin receptor antibody for drug targeting across the human blood-brain barrier. Biotechnol Bioeng. 2007 Feb 1;96(2):381–391.
  • Giugliani R, Giugliani L, de Oliveira Poswar F, et al. Neurocognitive and somatic stabilization in pediatric patients with severe mucopolysaccharidosis type I after 52 weeks of intravenous brain-penetrating insulin receptor antibody-iduronidase fusion protein (valanafusp alpha): an open label phase 1-2 trial. Orphanet J Rare Dis. 2018 Jul 5;13(1):110.
  • Rip J, Schenk G, De Boer A. Differential receptor-mediated drug targeting to the diseased brain. Expert Opin Drug Deliv. 2009;6(3):227–237.
  • Shukla RK, Tiwari A. Carbohydrate molecules: an expanding horizon in drug delivery and biomedicine. Critical Reviews™ in Therapeutic Drug Carrier Systems. 2011;28:255–292.
  • Chen F, Huang G, Huang H. Sugar ligand-mediated drug delivery. Future Med Chem. 2020;12(2):161–171.
  • Holman GD. Chemical biology probes of mammalian GLUT structure and function. Biochem J. 2018;475(22):3511–3534.
  • Anraku Y, Kuwahara H, Fukusato Y, et al. Glycaemic control boosts glucosylated nanocarrier crossing the BBB into the brain. Nat Commun. 2017 Oct 17;8(1):1001.
  • Zhang CX, Zhao WY, Liu L, et al. A nanostructure of functional targeting epirubicin liposomes dually modified with aminophenyl glucose and cyclic pentapeptide used for brain glioblastoma treatment. Oncotarget. 2015 Oct 20;6(32):32681–32700.
  • Agrawal P, Singh RP, Sonali, et al. TPGS-chitosan cross-linked targeted nanoparticles for effective brain cancer therapy. Mater Sci Eng C Mater Biol Appl. 2017 May 1;74:167–176. 10.1016/j.msec.2017.02.008
  • Bao Q, Hu P, Xu Y, et al. Simultaneous blood-brain barrier crossing and protection for stroke treatment based on edaravone-loaded ceria nanoparticles. ACS Nano. 2018 Jul 24;12(7):6794–6805.
  • Cui Y, Xu Q, Chow PK, et al. Transferrin-conjugated magnetic silica PLGA nanoparticles loaded with doxorubicin and paclitaxel for brain glioma treatment. Biomaterials. 2013 Nov;34(33):8511–8520.
  • Di Mauro PP, Cascante A, Brugada Vilà P, et al. Peptide-functionalized and high drug loaded novel nanoparticles as dual-targeting drug delivery system for modulated and controlled release of paclitaxel to brain glioma. Int J Pharm. 2018 Dec 20;553(1–2):169–185.
  • Fu S, Liang M, Wang Y, et al. Dual-modified novel biomimetic nanocarriers improve targeting and therapeutic efficacy in glioma. ACS Appl Mater Interfaces. 2019 Jan 16;11(2):1841–1854.
  • Jiang X, Xin H, Ren Q, et al. Nanoparticles of 2-deoxy-D-glucose functionalized poly(ethylene glycol)-co-poly(trimethylene carbonate) for dual-targeted drug delivery in glioma treatment. Biomaterials. 2014 Jan;35(1):518–529.
  • Pardridge WM, Boado RJ, Giugliani R, et al. Plasma pharmacokinetics of valanafusp alpha, a human insulin receptor antibody-iduronidase fusion protein, in patients with mucopolysaccharidosis type I. BioDrugs. 2018 Apr;32(2):169–176.
  • Patil R, Portilla-Arias J, Ding H, et al. Temozolomide delivery to tumor cells by a multifunctional nano vehicle based on poly(β-L-malic acid). Pharm Res. 2010 Nov;27(11):2317–2329.
  • Porru M, Zappavigna S, Salzano G, et al. Medical treatment of orthotopic glioblastoma with transferrin-conjugated nanoparticles encapsulating zoledronic acid. Oncotarget. 2014 Nov 15;5(21):10446–10459.
  • Shen J, Zhao Z, Shang W, et al. Fabrication and evaluation a transferrin receptor targeting nano-drug carrier for cerebral infarction treatment. Artif Cells Nanomed Biotechnol. 2019 Dec;47(1):192–200.
  • Shen Y, Cao B, Snyder NR, et al. ROS responsive resveratrol delivery from LDLR peptide conjugated PLA-coated mesoporous silica nanoparticles across the blood-brain barrier. J Nanobiotechnology. 2018 Feb 13;16(1):13.
  • Wang W, Lin X, Dong X, et al. A multi-target theranostic nano-composite against Alzheimer’s disease fabricated by conjugating carbon dots and triple-functionalized human serum albumin. Acta Biomater. 2022 Aug;148:298–309.
  • Xie J, Gonzalez-Carter D, Tockary TA, et al. Dual-sensitive nanomicelles enhancing systemic delivery of therapeutically active antibodies specifically into the brain. ACS Nano. 2020 Jun 23;14(6):6729–6742.
  • Syková E, Nicholson C. Diffusion in brain extracellular space. Physiol Rev. 2008 Oct;88(4):1277–1340.
  • Wang A, Wang R, Cui D, et al. The drainage of interstitial fluid in the deep brain is controlled by the integrity of myelination. Aging Dis. 2019 Oct;10(5):937–948.
  • Wang R, Han H, Shi K, et al. The alteration of brain interstitial fluid drainage with myelination development. Aging Dis. 2021 Oct;12(7):1729–1740.
  • Gitler AD, Lu MM, Epstein JA. PlexinD1 and semaphorin signaling are required in endothelial cells for cardiovascular development. Dev Cell. 2004 Jul;7(1):107–116.
  • Torres-Vazquez J, Gitler AD, Fraser SD, et al. Semaphorin-plexin signaling guides patterning of the developing vasculature. Dev Cell. 2004 Jul;7(1):117–123.
  • Xianjie Cai QH, Wang W, Chunlin L, et al. Epidural pulsation accelerates the drainage of brain interstitial fluid. Aging Dis. 2022. DOI:10.14336/AD.2022.0609
  • Zanotti-Fregonara P, Leroy C, Roumenov D, et al. Kinetic analysis of [11C]befloxatone in the human brain, a selective radioligand to image monoamine oxidase A. EJNMMI Res. 2013 Nov 25;3(1):78.
  • Bourasset F, Auvity S, Thorne RG, et al. Brain distribution of drugs: brain morphology, delivery routes, and species differences. Handb Exp Pharmacol. 2022;273:97–120.
  • Pardridge WM. Drug transport across the blood-brain barrier. J Cereb Blood Flow Metab. 2012 Nov;32(11):1959–1972.
  • Liu Y, Zou Y, Feng C, et al. Charge conversional biomimetic nanocomplexes as a multifunctional platform for boosting orthotopic glioblastoma RNAi therapy. Nano Lett. 2020 Mar 11;20(3):1637–1646.
  • Paviolo C, Cognet L. Near-infrared nanoscopy with carbon-based nanoparticles for the exploration of the brain extracellular space. Neurobiol Dis. 2021 Jun;153:105328.
  • Lau LW, Cua R, Keough MB, et al. Pathophysiology of the brain extracellular matrix: a new target for remyelination. Nat Rev Neurosci. 2013 Oct;14(10):722–729.
  • Hrabetova S, Nicholson C. Contribution of dead-space microdomains to tortuosity of brain extracellular space. Neurochem Int. 2004 Sep;45(4):467–477.
  • KT FJ. Drug “diffusion” within the brain . Ann N Y Acad Sci. 1988;531:29–39.
  • Godin AG, Varela JA, Gao Z, et al. Single-nanotube tracking reveals the nanoscale organization of the extracellular space in the live brain. Nat Nanotechnol. 2017 Mar;12(3):238–243.
  • Tonnesen J, Inavalli V, Nagerl UV. Super-resolution imaging of the extracellular space in living brain tissue. Cell. 2018 Feb 22;172(5):1108–1121 e15.
  • Soria FN, Miguelez C, Penagarikano O, et al. Current techniques for investigating the brain extracellular space. Front Neurosci. 2020;14:570750.
  • Tao CNPK-ZL. Brain extracellular space as a diffusion barrier. Comput Visual Sci. 2011;14(7):309–325.
  • Stern P. Tracking extracellular space in the brain. Science. 2016 Dec 23;354(6319):1547–1548.
  • Xie L, Kang H, Xu Q, et al. Sleep drives metabolite clearance from the adult brain. Science. 2013 Oct 18;342(6156):373–377.
  • Mansor NI, Nordin N, Mohamed F, et al. Crossing the blood-brain barrier: a review on drug delivery strategies for treatment of the central nervous system diseases. Curr Drug Deliv. 2019;16(8):698–711.
  • Misra A, Ganesh S, Shahiwala A, et al. Drug delivery to the central nervous system: a review. J Pharm Pharm Sci. 2003 May-Aug;6(2):252–273.
  • Hoshyar N, Gray S, Han H, et al. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine (Lond). 2016 Mar;11(6):673–692.
  • Fisher M, Feuerstein G, Howells DW, et al. Update of the stroke therapy academic industry roundtable preclinical recommendations. Stroke. 2009 Jun;40(6):2244–2250.
  • Han H, Li K, Yan J, et al. An in vivo study with an MRI tracer method reveals the biophysical properties of interstitial fluid in the rat brain. Sci China Life Sci. 2012 Sep;55(9):782–787.
  • Han HB. In vivo quantitative measurement of diffusion parameters in brain extracellular space of rat by using magnetic resonance imaging. Beijing Da Xue Xue Bao Yi Xue Ban. 2012 Oct 18;44(5):770–775.
  • Zuo LLK, Han H. Comparative analysis by magnetic resonance imaging of extracellular space diffusion and interstitial fluid flow in the rat striatum and thalamus. Appl Magn Reson. 2015;46(6):623–632.
  • Han H, Shi C, Fu Y, et al. A novel MRI tracer-based method for measuring water diffusion in the extracellular space of the rat brain. IEEE J Biomed Health Inform. 2014 May;18(3):978–983.
  • Pardridge WM. Drug transport in brain via the cerebrospinal fluid. Fluids Barriers CNS. 2011 Jan 18;8(1):7.
  • Shi CLY, Han H. Transportation in the interstitial space of the brain can be regulated by neuronal excitation. Sci Rep. 2015;3(5):17673.
  • Naseri Kouzehgarani PK G, Bolin SE, Reilly EB, et al. Biodistribution analysis of an anti-egfr antibody in the rat brain: validation of CSF microcirculation as a viable pathway to circumvent the blood-brain barrier for drug delivery. Pharmaceutics. 2022;14(7):1441.
  • Sykova E, Vorisek I, Antonova T, et al. Changes in extracellular space size and geometry in APP23 transgenic mice: a model of Alzheimer’s disease. Proc Natl Acad Sci U S A. 2005 Jan 11;102(2):479–484.
  • Hong S, Ostaszewski BL, Yang T, et al. Soluble Abeta oligomers are rapidly sequestered from brain ISF in vivo and bind GM1 ganglioside on cellular membranes. Neuron. 2014 Apr 16;82(2):308–319.
  • Jessen NA, Munk AS, Lundgaard I, et al. The glymphatic system: a beginner’s guide. Neurochem Res. 2015 Dec;40(12):2583–2599.
  • Thrane AS, Rangroo Thrane V, Nedergaard M. Drowning stars: reassessing the role of astrocytes in brain edema. Trends Neurosci. 2014 Nov;37(11):620–628.
  • Yue X, Mei Y, Zhang Y, et al. New insight into Alzheimer’s disease: light reverses Abeta-obstructed interstitial fluid flow and ameliorates memory decline in APP/PS1 mice. Alzheimers Dement (N Y). 2019;5(1):671–684.
  • Cummings J, Lee G, Ritter A, et al. Alzheimer’s disease drug development pipeline: 2018. Alzheimers Dement (N Y). 2018;4:195–214. DOI:10.1016/j.trci.2018.03.009.
  • Mangialasche F, Solomon A, Winblad B, et al. Alzheimer’s disease: clinical trials and drug development. Lancet Neurol. 2010 Jul;9(7):702–716.
  • Tran HT, Chung CH, Iba M, et al. Α-synuclein immunotherapy blocks uptake and templated propagation of misfolded α-synuclein and neurodegeneration. Cell Rep. 2014 Jun 26;7(6):2054–2065.
  • Moretto E, Stuart S, Surana S, et al The role of extracellular matrix components in the spreading of pathological protein aggregates. Front Cell Neurosci. 2022;16:844211.
  • Soria FN, Paviolo C, Doudnikoff E, et al. Synucleinopathy alters nanoscale organization and diffusion in the brain extracellular space through hyaluronan remodeling. Nat Commun. 2020 Jul 10;11(1):3440.
  • Lv D, Li J, Li H, et al. Imaging and quantitative analysis of the interstitial space in the caudate nucleus in a rotenone-induced rat model of Parkinson’s disease using tracer-based MRI. Aging Dis. 2017 Feb;8(1):1–6.
  • Zámecník J, Vargová L, Homola A, et al. Extracellular matrix glycoproteins and diffusion barriers in human astrocytic tumours. Neuropathol Appl Neurobiol. 2004 Aug;30(4):338–350.
  • Syková E, Vargová L. Extrasynaptic transmission and the diffusion parameters of the extracellular space. Neurochem Int. 2008 Jan;52(1–2):5–13.
  • Verkman AS. Diffusion in the extracellular space in brain and tumors. Phys Biol. 2013 Aug;10(4):045003.
  • Papadopoulos MC, Binder DK, Verkman AS. Enhanced macromolecular diffusion in brain extracellular space in mouse models of vasogenic edema measured by cortical surface photobleaching. FASEB J. 2005 Mar;19(3):425–427.
  • Guan X, Wang W, Wang A, et al. Brain interstitial fluid drainage alterations in glioma-bearing rats. Aging Dis. 2018;9(2):228–234.
  • Li K, Han H, Zhu K, et al. Real-time magnetic resonance imaging visualization and quantitative assessment of diffusion in the cerebral extracellular space of C6 glioma-bearing rats. Neurosci Lett. 2013 May 24;543:84–89. 10.1016/j.neulet.2013.02.071
  • Davalos D, Akassoglou K. Fibrinogen as a key regulator of inflammation in disease. Semin Immunopathol. 2012 Jan;34(1):43–62.
  • Ghorbani S, Yong VW. The extracellular matrix as modifier of neuroinflammation and remyelination in multiple sclerosis. Brain. 2021 Aug 17;144(7):1958–1973.
  • Back SA, Tuohy TM, Chen H, et al. Hyaluronan accumulates in demyelinated lesions and inhibits oligodendrocyte progenitor maturation. Nat Med. 2005 Sep;11(9):966–972.
  • Mohan H, Krumbholz M, Sharma R, et al. Extracellular matrix in multiple sclerosis lesions: fibrillar collagens, biglycan and decorin are upregulated and associated with infiltrating immune cells. Brain Pathol. 2010 Sep;20(5):966–975.
  • Simon MJ, Iliff JJ. Regulation of cerebrospinal fluid (CSF) flow in neurodegenerative, neurovascular and neuroinflammatory disease. Biochim Biophys Acta. 2016 Mar;1862(3):442–451.
  • Simon M, Wang MX, Ismail O, et al. Loss of perivascular aquaporin-4 localization impairs glymphatic exchange and promotes amyloid beta plaque formation in mice. Alzheimers Res Ther. 2022 Apr 26;14(1):59.
  • Teng Z, Wang A, Wang P, et al. The effect of aquaporin-4 knockout on interstitial fluid flow and the structure of the extracellular space in the deep brain. Aging Dis. 2018 Oct;9(5):808–816.
  • Tosi G, Thomas Duskey J, Angela Vandelli M, et al. Nanomedicines for brain diseases: where we are and where we are going. Ther Deliv. 2021 Sep;12(9):631–635.
  • Emamgholizadeh Minaei S, Khoei S, Khoee S, et al. Tri-block copolymer nanoparticles modified with folic acid for temozolomide delivery in glioblastoma. Int J Biochem Cell Biol. 2019 Mar;108:72–83.
  • Zhao P, Wang Y, Kang X, et al. Dual-targeting biomimetic delivery for anti-glioma activity via remodeling the tumor microenvironment and directing macrophage-mediated immunotherapy. Chem Sci. 2018 Mar 14;9(10):2674–2689.
  • Sukumar UK, Bose RJC, Malhotra M, et al. Intranasal delivery of targeted polyfunctional gold-iron oxide nanoparticles loaded with therapeutic microRNAs for combined theranostic multimodality imaging and presensitization of glioblastoma to temozolomide. Biomaterials. 2019 Oct;218:119342.
  • Liu H, Dong X, Liu F, et al. Iminodiacetic acid-conjugated nanoparticles as a bifunctional modulator against Zn(2+)-mediated amyloid β-protein aggregation and cytotoxicity. J Colloid Interface Sci. 2017 Nov 1;505:973–982. DOI:10.1016/j.jcis.2017.06.093.
  • Jung H, Chung YJ, Wilton R, et al. Silica nanodepletors: targeting and clearing Alzheimer’s β‐amyloid plaques. Adv Funct Mater. 2020;30(15):1910475.
  • Han G, Bai K, Yang X, et al. “Drug-Carrier” synergy therapy for Amyloid- β clearance and inhibition of tau phosphorylation via biomimetic lipid nanocomposite assembly. Adv Sci. 2022;9(14):2106072.
  • Arisoy S, Sayiner O, Comoglu T, et al. In vitro and in vivo evaluation of levodopa-loaded nanoparticles for nose to brain delivery. Pharm Dev Technol. 2020 Jul;25(6):735–747.
  • Liu Y, Liu W, Xiong S, et al. Highly stabilized nanocrystals delivering ginkgolide B in protecting against the Parkinson’s disease. Int J Pharm. 2020 Mar 15;577:119053. 10.1016/j.ijpharm.2020.119053
  • Chen T, Liu W, Xiong S, et al. Nanoparticles mediating the sustained puerarin release facilitate improved brain delivery to treat Parkinson’s disease. ACS Appl Mater Interfaces. 2019 Dec 4;11(48):45276–45289.
  • Baumhefner RW, Leng M. Standard dose weekly intramuscular beta interferon-1a may be inadequate for some patients with multiple sclerosis: a 19-year clinical experience using twice a week dosage. Neurol Ther. 2022 Jul 7;113. 10.1007/s40120-022-00377-1
  • van Ballegooijen H, van der Hiele K, Enzinger C, et al. The longitudinal relationship between fatigue, depression, anxiety, disability, and adherence with cognitive status in patients with early multiple sclerosis treated with interferon beta-1a. eNeurologicalSci. 2022 Sep;28:100409.
  • Fodor-Kardos A, Kiss ÁF, Monostory K, et al. Sustained in vitro interferon-beta release and in vivo toxicity of PLGA and PEG-PLGA nanoparticles. RSC Adv. 2020;10(27):15893–15900.
  • Greer JM, Trifilieff E, Pender MP. Correlation between anti-myelin proteolipid protein (PLP) antibodies and disease severity in multiple sclerosis patients with PLP response-permissive HLA types. Front Immunol. 2020;11:1891.
  • Lima AF, Amado IR, Pires LR. Poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles loaded with proteolipid protein (PLP)-exploring a new administration route. Polymers (Basel). 2020 Dec 21;12(12). DOI:10.3390/polym12123063.
  • Wong XY, Sena-Torralba A, Alvarez-Diduk R, et al. Nanomaterials for nanotheranostics: tuning their properties according to disease needs. ACS nano. 2020;14(3):2585–2627.
  • Najahi-Missaoui W, Arnold RD, Cummings BS. Safe nanoparticles: are we there yet?. Int J Mol Sci. 2020 Dec 31;221. DOI:10.3390/ijms22010385.
  • Awasthi R, Roseblade A, Hansbro PM, et al. Nanoparticles in cancer treatment: opportunities and obstacles. Curr Drug Targets. 2018;19(14):1696–1709.
  • Chen KS, Chen R. Invasive and noninvasive brain stimulation in Parkinson’s disease: clinical effects and future perspectives. Clin Pharmacol Ther. 2019 Oct;106(4):763–775.
  • He QY, Han HB, Xu FJ, et al. Imaging and quantitative measurement of brain extracellular space using MRI Gd-DTPA tracer method. Beijing Da Xue Xue Bao Yi Xue Ban. 2010 Apr 18;42(2):188–191.
  • Xu F, Hongbin H, Yan J, et al. Greatly improved neuroprotective efficiency of citicoline by stereotactic delivery in treatment of ischemic injury. Drug Deliv. 2011 Sep-Oct;18(7):461–467.
  • Fan C, Tian F, Zhao X, et al. The effect of thymoquinone on the characteristics of the brain extracellular space in transient middle cerebral artery occlusion rats. Biol Pharm Bull. 2020;43(9):1306–1314.
  • Deplanque D, Lavallee PC, Labreuche J, et al. Cerebral and extracerebral vasoreactivity in symptomatic lacunar stroke patients: a case-control study. Int J Stroke. 2013 Aug;8(6):413–421.
  • Hua S. Advances in nanoparticulate drug delivery approaches for sublingual and buccal administration. Front Pharmacol. 2019;10:1328.
  • Bhirud PH, Kate JA. Perioperative sublingual levodopa in Parkisnon’s Disease: a useful alternative!. Indian J Anaesth. 2017 May;61(5):432–434.
  • Kanazawa T. Development of noninvasive drug delivery systems to the brain for the treatment of brain/central nervous system diseases. Yakugaku Zasshi. 2018;138(4):443–450.
  • Abdul Razzak R, Florence GJ, Gunn-Moore FJ. Approaches to CNS drug delivery with a focus on transporter-mediated transcytosis. Int J Mol Sci. 2019 Jun 25;20 12. DOI:10.3390/ijms20123108.
  • Hennessy M, Hamblin MR. Photobiomodulation and the brain: a new paradigm. J Opt. 2017 Jan;19(1):013003.
  • Stepanov YV, Golovynska I, Zhang R, et al. Near-infrared light reduces beta-amyloid-stimulated microglial toxicity and enhances survival of neurons: mechanisms of light therapy for Alzheimer’s disease. Alzheimers Res Ther. 2022 Jun 18;14(1):84.
  • Johnstone DM, Moro C, Stone J, et al. Turning on lights to stop neurodegeneration: the potential of near infrared light therapy in Alzheimer’s and Parkinson’s disease. Front Neurosci. 2015;9:500.
  • Henderson TA, Morries LD. Near-infrared photonic energy penetration: can infrared phototherapy effectively reach the human brain?. Neuropsychiatr Dis Treat. 2015;11:2191–2208.
  • Iaccarino HF, et al. Gamma frequency entrainment attenuates amyloid load and modifies microglia. Nature. 2016;540(7632):230–235.
  • Hamblin MR. Photobiomodulation for Alzheimer’s disease: has the light dawned?. Photonics. 2019 Sep;6(3).
  • Enengl J, Hamblin MR, Dungel P. Photobiomodulation for Alzheimer’s disease: translating basic research to clinical application. J Alzheimers Dis. 2020;75(4):1073–1082.
  • Terman M. Bright light therapy: side effects and benefits across the symptom spectrum. J Clin Psychiatry. 1999;60(11):799–808.
  • Huang N, Yao D, Jiang W, et al. Safety and efficacy of 630-nm red light on cognitive function in older adults with mild to moderate Alzheimer’s disease: protocol for a randomized controlled study. Front Aging Neurosci. 2020;12:143.
  • Salehpour F, Farajdokht F, Mahmoudi J, et al. Photobiomodulation and coenzyme Q10 treatments attenuate cognitive impairment associated with model of transient global brain ischemia in artificially aged mice. Front Cell Neurosci. 2019;13:74.
  • Salehpour F, Hamblin MR, DiDuro JO. Rapid reversal of cognitive decline, olfactory dysfunction, and quality of life using multi-modality photobiomodulation therapy: case report. Photobiomodul Photomed Laser Surg. 2019;37(3):159–167.
  • Zhang J, Yue X, Luo H, et al. Illumination with 630 nm red light reduces oxidative stress and restores memory by photo-activating catalase and formaldehyde dehydrogenase in SAMP8 mice. Antioxid Redox Signal. 2019 Apr 10;30(11):1432–1449.
  • Fei X, Zhang Y, Mei Y, et al. Degradation of FA reduces abeta neurotoxicity and Alzheimer-related phenotypes. Mol Psychiatry. 2020 Dec 16;26(10). 10.1038/s41380-020-00929-7
  • Luan X, Pan Y, Gao Y, et al. Recent near-infrared light-activated nanomedicine toward precision cancer therapy. J Mater Chem B. 2021 Sep 15;9(35):7076–7099.
  • Wang C, Dai C, Hu Z, et al. Photonic cancer nanomedicine using the near infrared-II biowindow enabled by biocompatible titanium nitride nanoplatforms. Nanoscale Horiz. 2019 Mar 1;4(2):415–425.
  • Xiong H, Li X, Kang P, et al. Near-infrared light triggered-release in deep brain regions using ultra-photosensitive nanovesicles. Angew Chem Int Ed Engl. 2020 May 25;59(22):8608–8615.
  • Black CE, Zhou E, DeAngelo C, et al. Cyanine nanocage activated by near-IR light for the targeted delivery of cyclosporine A to traumatic brain injury sites. Mol Pharm. 2020 Dec 7;17(12):4499–4509.
  • Farokhi M, Mottaghitalab F, Saeb MR, et al. Functionalized theranostic nanocarriers with bio-inspired polydopamine for tumor imaging and chemo-photothermal therapy. J Control Release. 2019 Sep 10;309:203–219.
  • Ragelle H, Danhier F, Préat V, et al. Nanoparticle-based drug delivery systems: a commercial and regulatory outlook as the field matures. Expert Opin Drug Deliv. 2017;14(7):851–864.
  • Bhavna MS, Ali M, Baboota S, et al. Preparation, characterization, in vivo biodistribution and pharmacokinetic studies of donepezil-loaded PLGA nanoparticles for brain targeting. Drug Dev Ind Pharm. 2014;40(2):278–287.
  • Peer D, Karp JM, Hong S, et al. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol. 2007;2(12):751–760.
  • Rip J, Schenk GJ, de Boer AG. Differential receptor-mediated drug targeting to the diseased brain. Expert Opin Drug Deliv. 2009 Mar;6(3):227–237.
  • Hrabetova S, Cognet L, Rusakov DA, et al. Unveiling the extracellular space of the brain: from super-resolved microstructure to in vivo function. J Neurosci. 2018 Oct 31;38(44):9355–9363.
  • Salamanna F, Gambardella A, Contartese D, et al. Nano-based biomaterials as drug delivery systems against osteoporosis: a systematic review of preclinical and clinical evidence. Nanomaterials (Basel). 2021 Feb 19;11(2). 10.3390/nano11020530