194
Views
0
CrossRef citations to date
0
Altmetric
Original Research

The treatment of hepatocellular carcinoma with SP94 modified asymmetrical bilayer lipid-encapsulated Cu(DDC)2 nanoparticles facilitating Cu accumulation in the tumor

, , , , , , , , , ORCID Icon & show all
Pages 145-158 | Received 23 Aug 2022, Accepted 21 Nov 2022, Published online: 09 Dec 2022

References

  • Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–249.
  • Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.
  • Ferlay J, Colombet M, Soerjomataram I, et al. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int J Cancer. 2019;144(8):1941–1953.
  • Llovet J, Kelley R, Villanueva A, et al. Hepatocellular carcinoma. Nat Rev Dis Primers. 2021;7(1):6. PubMed PMID: 33479224.
  • Singal A, Lampertico P, PJJoh N. Epidemiology and surveillance for hepatocellular carcinoma: new trends. J Hepatol. 2020;72(2):250–261. PubMed PMID: 31954490.
  • Hepatocellular carcinoma. %J nature reviews. Disease primers. 2021;7(1):7. PubMed PMID: 33479233
  • Schipper L, Zeverijn L, Garnett M, et al. Can drug repurposing accelerate precision oncology? Cancer Discovery. 2022;12(7):1634–1641. PubMed PMID: 35642948.
  • Yang B, Jjac S. Developing new cancer nanomedicines by repurposing old drugs. Angew Chem, Int Ed Engl. 2020;59(49):21829–21838. PubMed PMID: 32270570.
  • K V, T DC, C Y, et al. Aldehyde dehydrogenase inhibitors: a comprehensive review of the pharmacology, mechanism of action, substrate specificity, and clinical application. Pharmacol Rev. 2012;64(3):520–539. PubMed PMID: 22544865.
  • H J, J E. A drug sensitizing the organism to ethyl alcohol. Lancet. 1948;2(6539):1001–1004. PubMed PMID: 18103475.
  • Xu L, Sun Y, Li Y, et al. Disulfiram: a Food and drug administration-approved multifunctional role in synergistically drug delivery systems for tumor treatment. Int J Pharm. 2022;626:122130. PubMed PMID: 36007849.
  • Zhao L, Wang X, Lou H, et al. Buffet-style Cu(II) for enhance disulfiram-based cancer therapy. J Colloid Interface Sci. 2022;624:734–746. PubMed PMID: 35696791.
  • Liu Y, Guan X, Wang M, et al. Disulfiram/Copper induces antitumor activity against gastric cancer via the ROS/MAPK and NPL4 pathways. Bioengineered. 2022;13(3):6579–6589. PubMed PMID: 35290151.
  • Lu Y, Pan Q, Gao W, et al. Leveraging disulfiram to treat cancer: mechanisms of action, delivery strategies, and treatment regimens. Biomaterials. 2022;281:121335. PubMed PMID: 34979419.
  • Pan Q, Xie L, Liu R, et al. Two birds with one stone: copper metal-organic framework as a carrier of disulfiram prodrug for cancer therapy. Int J Pharm. 2022;612:121351. PubMed PMID: 34883206.
  • LM R, EL J, R Y, et al. Non-cytotoxic copper overload boosts mitochondrial energy metabolism to modulate cell proliferation and differentiation in the human erythroleukemic cell line K562. Mitochondrion. 2016;29:18–30. PubMed PMID: 27094959.
  • Sn N, Kt S, Mn S, et al. Role of glutathione reductase system in disulfiram conversion to diethyldithiocarbamate. Life Sci. 1991;49(1):23–28. PubMed PMID: 1646921.
  • J B. A review of the pharmacokinetics and pharmacodynamics of disulfiram and its metabolites. Acta Psychiatrica Scand Supplementum. 1992;369:15–26. PubMed PMID: 1471547.
  • C J, M M, S S. The rapid reduction of disulfiram in blood and plasma. J Pharmacol Exp Ther. 1977;202(3):724–731. PubMed PMID: 197231.
  • S Z, M M, A KK, et al. Alcohol-abuse drug disulfiram targets cancer via p97 segregase adaptor NPL4. Nature. 2017;552(7684):194–199. PubMed PMID: 29211715.
  • B K, K V, K RS, et al. Investigation of the key chemical structures involved in the anticancer activity of disulfiram in A549 non-small cell lung cancer cell line. BMC Cancer. 2018;18(1):753. PubMed PMID: 30031402.
  • C W, Y W, C P, et al. Disulfiram copper nanoparticles prepared with a stabilized metal ion ligand complex method for treating drug-resistant prostate cancers. ACS Appl Mater Interfaces. 2018;10(48):41118–41128. PubMed PMID: 30444340.
  • W M, A M, S M, et al. Development and optimization of an injectable formulation of copper diethyldithiocarbamate, an active anticancer agent. Int J Nanomedicine. 2017;12:4129–4146. PubMed PMID: 28615941.
  • Said Suliman A, Khoder M, Tolaymat I, et al. Cyclodextrin diethyldithiocarbamate copper ii inclusion complexes: a promising chemotherapeutic delivery system against chemoresistant triple negative breast cancer cell lines. Pharmaceutics. 2021;13(1). PubMed PMID: 33435151. DOI:10.3390/pharmaceutics13010084.
  • C D, C QC, Y H, et al. Disulfiram, a clinically used anti-alcoholism drug and copper-binding agent, induces apoptotic cell death in breast cancer cultures and xenografts via inhibition of the proteasome activity. Cancer Res. 2006;66(21):10425–10433. PubMed PMID: 17079463.
  • X B, W S, L R, et al. Disulfiram/copper selectively eradicates AML leukemia stem cells in vitro and in vivo by simultaneous induction of ROS-JNK and inhibition of NF-κB and Nrf2. Cell Death Dis. 2017;8(5):e2797. PubMed PMID: 28518151.
  • Kannappan V, Ali M, Small B, et al. Recent advances in repurposing disulfiram and disulfiram derivatives as copper-dependent anticancer agents. Front Mol Biosci. 2021;8:741316. PubMed PMID: 34604310.
  • Xu L, Xu J, Zhu J, et al. Universal Anticancer Cu(DTC) discriminates between thiols and Zinc(II) thiolates oxidatively. Angew Chem, Int Ed Engl. 2019;58(18):6070–6073. PubMed PMID: 30839149
  • CE A, EC C, Gk P, et al. The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers. Nat Mater. 2011;10(5):389–397. PubMed PMID: 21499315.
  • L A, L CT, W HC. Hepatocellular carcinoma cell-specific peptide ligand for targeted drug delivery. Mol Cancer Ther. 2008;7(3):579–589. PubMed PMID: 18347144.
  • J B, Z R, Z J, et al. GRP78-targeted ferritin nanocaged ultra-high dose of doxorubicin for hepatocellular carcinoma therapy. Theranostics. 2019;9(8):2167–2182. PubMed PMID: 31149036.
  • S Q, R P, L Y, et al. Autoantibodies against glucose-regulated protein 78 as serological diagnostic biomarkers in hepatocellular carcinoma. Int J Oncol. 2012;41(3):1061–1067. PubMed PMID: 22692946.
  • Xu Y, Jiang J, Wang H, et al. Synthesis and preclinical evaluation of [Ga]SP94 for Micro-PET imaging of GRP78 expression in hepatocellular carcinoma. ACS Med Chem. 2021;12(10):1553–1558. PubMed PMID: 34676037.
  • B J, LA MR. Maintaining copper homeostasis: regulation of copper-trafficking proteins in response to copper deficiency or overload. J Nutr Biochem. 2004;15(6):316–322. PubMed PMID: 15157936.
  • W Y, H V, Z S, et al. Advances in the understanding of mammalian copper transporters. Advances in Nutrition (Bethesda, Md). 2011;2(2):129–137. PubMed PMID: 22332042.
  • Lf S, M JF. Trafficking of the copper-ATPases, ATP7A and ATP7B: role in copper homeostasis. Arch Biochem Biophys. 2007;463(2):149–167. PubMed PMID: 17531189.
  • H Y, H Y, H Z, et al. Bisphosphonate-functionalized coordination polymer nanoparticles for the treatment of bone metastatic breast cancer. J Control Release. 2017;264:76–88. PubMed PMID: 28842315.
  • Sg K. Diagnosis and therapy of Menkes syndrome, a genetic form of copper deficiency. Am J Clin Nutr. 1998;67(5):1029S–1034S. PubMed PMID: 9587147.
  • Lm G, Ck C. Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology. 2003;189(1–2):147–163. PubMed PMID: 12821289.
  • L S, B NL, B MY, et al. Function and regulation of human copper-transporting ATPases. Physiol Rev. 2007;87(3):1011–1046. PubMed PMID: 17615395.
  • O H, T DJ. How copper traverses cellular membranes through the mammalian copper transporter 1, Ctr1. Ann N Y Acad Sci. 2014;1314(1):32–41. PubMed PMID: 24697869.
  • N Y, J L, D H, et al. Cholesterol derivatives based charged liposomes for doxorubicin delivery: preparation, in vitro and in vivo characterization. Theranostics. 2012;2(11):1092–1103. PubMed PMID: 23227125.
  • Y B, C WI, V C, et al. Insight into nanoparticle cellular uptake and intracellular targeting. J Control Release. 2014;190:485–499. PubMed PMID: 24984011.
  • Liu H, Kong Y, Liu Z, et al. Sphingomyelin-based PEGylation Cu (DDC) 2 liposomes prepared via the dual function of Cu2+ for cancer therapy: facilitating DDC loading and exerting synergistic antitumor effects. Int J Pharm. 2022;621:121788.
  • Turnlund J. Human whole-body copper metabolism. Am J Clin Nutr. 1998;67(5):960S–964S. PubMed PMID: 9587136.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.