268
Views
2
CrossRef citations to date
0
Altmetric
Review

Biphasic drug release from electrospun structures

, , ORCID Icon &
Pages 621-640 | Received 08 Jan 2023, Accepted 02 May 2023, Published online: 08 May 2023

References

  • Nicholas AP, Robert L. New challenges in biomaterials. Mater Sci. 1994;263(5154):1715–1720.
  • Ron E, Turek T, Mathiowitz E, et al. Controlled release of polypeptides from polyanhydrides. P Natl Acad Sci USA. 1993;90(9):4176–4180. DOI:10.1073/pnas.90.9.4176
  • Ma X, Bian Q, Hu J, et al. Stem from nature: bioinspired adhesive formulations for wound healing. J Control Release. 2022;345:292–305.
  • Xu Y, Bian Q, Wang R, et al. Micro/Nanorobots for precise drug delivery via targeted transport and triggered release: a review. Int J Pharm. 2022;616:121551.
  • Boyd P, Merkatz R, Variano B, et al. The ins and outs of drug-releasing vaginal rings: a literature review of expulsions and removals. Expert Opin Drug Deliv. 2020;17(11):1519–1540. DOI:10.1080/17425247.2020.1798927
  • Al-Ahmady ZS, Dickie BR, Aldred I, et al. Selective brain entry of lipid nanoparticles in haemorrhagic stroke is linked to biphasic blood-brain barrier disruption. Theranostics. 2022;12(10):4477–4497. DOI:10.7150/thno.72167
  • Verma P, Thakur AS, Deshmukh K, et al. Routes of drug administration. Int J of Pharm Stu Res. 2010;1(1):54–59.
  • Bermejo M, Sanchez-Dengra B, Gonzalez-Alvarez M, et al. Oral controlled release dosage forms: dissolution versus diffusion. Expert Opin Drug Deliv. 2020;17(6):791–803. DOI:10.1080/17425247.2020.1750593
  • King M, Badea I, Solomon J, et al. Transdermal Delivery of insulin from a novel biphasic lipid system in diabetic rats. Diabetes Technol Ther. 2002;4(4):479–488. DOI:10.1089/152091502760306562
  • Gu Y, Bian Q, Zhou Y, et al. Hair follicle-targeting drug delivery strategies for the management of hair follicle-associated disorders. Asian J Pharm Sci. 2022;17(3):333–352. DOI:10.1016/j.ajps.2022.04.003
  • Patel G, Patel M. Compressed matrix dual-component vaginal drug delivery system containing metoclopramide hydrochloride. Acta Pharmaceut. 2009;59(3):273–288.
  • M LC, Sousa Lobo JM, F PJ, et al. Compressed matrix core tablet as a quick/slow dual-component delivery system containing ibuprofen. AAPS Pharm Sci Tech. 2007;8(3):E195–202. DOI:10.1208/pt0803076
  • Ejeta F, Gabriel T, M JN, et al. Formulation, optimization and in vitro evaluation of fast disintegrating tablets of salbutamol sulphate using a combination of superdisintegrant and subliming agent. Curr Drug Deliv. 2022;19(1):129–141. DOI:10.2174/1567201818666210614094646
  • Kose MD, Ungun N, Bayraktar O. Eggshell membrane based turmeric extract loaded orally disintegrating films. Curr Drug Deliv. 2022;19(5):547–559.
  • Chen G, Kong P, Jiang A, et al. A modular programmed biphasic dual-delivery system on 3D ceramic scaffolds for osteogenesis in vitro and in vivo. J Mater Chem B. 2020;8(42):9697–9717. DOI:10.1039/C9TB02127B
  • Phaechamud T, Choncheewa C. Double-Layered matrix of shellac wax-lutrol in controlled dual drug release. AAPS Pharm Sci Tech. 2016;17(6):1326–1335.
  • Tang Z, Wu S, Zhao P, et al. Chemical factory-guaranteed enhanced chemodynamic therapy for orthotopic liver cancer. Adv Sci. 2022b;9(23):2201232. DOI:10.1002/advs.202201232
  • Babiuk S, E BEM, Pontarollo R, et al. Topical delivery of plasmid DNA using biphasic lipid vesicles (Biphasix). J Pharm Pharmacol. 2010;54(12):1609–1614. DOI:10.1211/002235702289
  • Amarjargal A, Brunelli M, Fortunato G, et al. On-demand drug release from tailored blended electrospun nanofibers. J Drug Deliv Sci Technol. 2019;52:8–14.
  • Takizawa T, Horikoshi E, Kamata A. Biphasic response of the ductus arteriosus to combined administration of indomethacin and L-NAME in fetal rats. Neonatology. 2000;78(4):300–303.
  • Beugeling M, Grasmeijer N, A BP, et al. The mechanism behind the biphasic pulsatile drug release from physically mixed poly(dl-lactic(-co-glycolic) acid)-based compacts. Int J Pharm. 2018;551(1–2):195–202. DOI:10.1016/j.ijpharm.2018.09.025
  • Liu L, Yao W, Xie X, et al. Ph-sensitive dual drug loaded Janus nanoparticles by oral delivery for multimodal analgesia. J Nanobiotechnol. 2021;19(1):235. DOI:10.1186/s12951-021-00974-6
  • Singh AN, Pathak K. Development and evaluation of dual controlled release microballoons containing riboflavin and citric acid: in vitro and in vivo evaluation. J Microencapsul. 2011;28(5):442–454.
  • Wang T-C, Tsai W-B. A biphasic mathematical model for the release of polymer-drug conjugates from poly(vinyl alcohol) hydrogels. J Taiwan Inst Chem E. 2022;135:104395.
  • Liu S, Liu Y, Zhou L, et al. XT-type DNA hydrogels loaded with VEGF and NGF promote peripheral nerve regeneration via a biphasic release profile. Biomater Sci. 2021;9(24):8221–8234. DOI:10.1039/D1BM01377G
  • Fortier C. Dual control of adrenocorticotrophin release. Control Adrenocorticotrophin. 1951;49(6):782–788.
  • Zhang Y, Liu X, Geng C, et al. Two hawks with one arrow: a review on bifunctional scaffolds for photothermal therapy and bone regeneration. Nanomaterials. 2023;13:551.
  • Wang S, Liu R, Fu Y, et al. Release mechanisms and applications of drug delivery systems for extended-release. Expert Opin Drug Deliv. 2020;17(9):1289–1304. DOI:10.1080/17425247.2020.1788541
  • Burr IM, Balant L, Stauffacher W, et al. Perifusion of rat pancreatic tissue in vitro: substrate modification of theophylline-induced biphasic insulin release. J Clin Invest. 1970;49(11):2097–2105. DOI:10.1172/JCI106427
  • Chavda D, Joshi D, Thakkar V, et al. Fabrication and in vitro evaluation of febuxostat tablet for obtaining biphasic drug release profile. Recent Adv Drug Deliv Formul. 2022;16(4):317–327. DOI:10.2174/2667387817666221116100127
  • Mzoughi J, Vandamme T, Luchnikov V. Biphasic drug release from rolled-up gelatin capsules with a cylindrical cavity. Pharmaceutics. 2021;13(12):2040.
  • Sethi S, Puri D, Bhatele V, et al. Formulation and evaluation of biphasic release tablet containing diclofenac beads. Lat Am J Pharm. 2011;30(6):1059–1064.
  • Lee B-J, Cui J-H, Kim T-W, et al. Biphasic release characteristics of dual drug-loaded alginate beads. Arch Pharm Res. 1998;21(6):645–650. DOI:10.1007/BF02976751
  • Ghika J, Gachoud JP, Gasser U. Clinical efficacy and tolerability of a new levodopa/benserazide dual-release formulation in parkinsonian patients. Clin Neuropharmacol. 1997;20(2):130–139.
  • Qi Q, Wang Q, Li Y, et al. Recent development of rhenium-based materials in the application of diagnosis and tumor therapy. Molecules. 2023;28:2733.
  • Liu H, Dai Y, Li J, et al. Fast and convenient delivery of fluidextracts liquorice through electrospun core-shell nanohybrids. Front Bioeng Biotechnol. 2023;11:1172133.
  • Tung N-T, T-H-Y D, Tran C-S, et al. Integration of lornoxicam nanocrystals into hydroxypropyl methylcellulose-based sustained release matrix to form a novel biphasic release system. Int j biol macromol. 2022;209:441–451.
  • Prakobkarn J, Makeudom A, Jenvoraphot T, et al. Biphasic nanofibrous scaffolds based on collagen and PLC for controlled release LL‐37 in guided bone regeneration. J Appl Polym Sci. 2022;139(7):51629. DOI:10.1002/app.51629
  • Zakowiecki D, Frankiewicz M, Hess T, et al. Development of a biphasic-release multiple-unit pellet system with diclofenac sodium using novel calcium phosphate-based starter pellets. Pharmaceutics. 2021;13(6):805. DOI:10.3390/pharmaceutics13060805
  • Eleftheriadis GK, Katsiotis CS, Genina N, et al. Manufacturing of hybrid drug delivery systems by utilizing the fused filament fabrication (FFF) technology. Expert Opin Drug Deliv. 2020;17(8):1063–1067. DOI:10.1080/17425247.2020.1776260
  • Al-Attar T, Madihally SV. Recent advances in the combination delivery of drug for leukemia and other cancers. Expert Opin Drug Deliv. 2020;17(2):213–223.
  • Adala I, Ramis J, N MC, et al. Mixed Polymer and bioconjugate core/shell electrospun fibres for biphasic protein release. J Mater Chem B. 2021;9:4120–4133.
  • Wang X, Wu B, Zhang Y, et al. Polydopamine-doped supramolecular chiral hydrogels for postoperative tumor recurrence inhibition and simultaneously enhanced wound repair. Acta Biomater. 2022d;153:204–215.
  • Gholizadeh H, X OH, Bradbury P, et al. Real-time quantitative monitoring of in vitro nasal drug delivery by a nasal epithelial mucosa-on-a-chip model. Expert Opin Drug Deliv. 2021;18(6):1229–1244. DOI:10.1080/17425247.2021.1873274
  • Khursheed R, K SS, Wadhwa S, et al. Opening eyes to therapeutic perspectives of bioactive polyphenols and their nanoformulations against diabetic neuropathy and related complications. Expert Opin Drug Deliv. 2020;18(4):427–448. DOI:10.1080/17425247.2021.1846517
  • Dong J, Cheng Z, Tan S, et al. Clay nanoparticles as pharmaceutical carriers in drug delivery systems. Expert Opin Drug Deliv. 2020;18(6):695–714. DOI:10.1080/17425247.2021.1862792
  • Huang L, Yang J, Wang T, et al. Engineering of small-molecule lipidic prodrugs as novel nanomedicines for enhanced drug delivery. J Nanobiotechnol. 2022;20(1):49. DOI:10.1186/s12951-022-01257-4
  • Wu J, Ma T, Zhu M, et al. Nanotechnology reinforced neutrophil-based therapeutic strategies for inflammatory diseases therapy. Nano Today. 2022;46:101577.
  • Zhang N, Li M, Hou Z, et al. From vaccines to nanovaccines: a promising strategy to revolutionize rheumatoid arthritis treatment. J Control Release. 2022;350:107–121.
  • Wu Y, Li Y, Lv G, et al. Redox dyshomeostasis strategy for tumor therapy based on nanomaterials chemistry. Chem Sci. 2022;13(8):2202–2217. DOI:10.1039/D1SC06315D
  • Yu DG, Zhao P. The key elements for biomolecules to biomaterials and to bioapplications. Biomolecules. 2022;12(9):1234.
  • Wang X, Feng C. Chiral fiber supramolecular hydrogels for tissue engineering. Wires Nanomed Nanobi. 2022;15:e1847.
  • Qiu J, Xu J, Xia Y. Nanobottles for controlled release and drug delivery. Adv Healthc Mater. 2021;10(4):2000587.
  • Sabbagh F, Kim BS. Recent advances in polymeric transdermal drug delivery systems. J Control Release. 2022;341:132–146.
  • Wang M, Ge R, Zhao P, et al. Exploring wettability difference-driven wetting by utilizing electrospun chimeric Janus microfiber comprising cellulose acetate and polyvinylpyrrolidone. Mater Des. 2023;226:111652.
  • Gholizadeh S, Wang Z, Chen X, et al. Advanced nanodelivery platforms for topical ophthalmic drug delivery. Drug Discov Today. 2021;26(6):1437–1449. DOI:10.1016/j.drudis.2021.02.027
  • Bhatt U, K MT, S MU, et al. 3D printing of immediate-release tablets containing olanzapine by filaments extrusion. Drug Dev Ind Pharm. 2021;47(8):1200–1208. DOI:10.1080/03639045.2021.1879833
  • Bagade OM, Sutar SS, Doke PE. A concise insight on pulsatile drug delivery system: an outlook towards its development. Int J Pharmaceut Sci Nanotechnol. 2021;14(5):5577–5587.
  • Lou Y, Liu L, Yao H, et al. Clinical outcomes and plasma concentrations of baloxavir marboxil and favipiravir in COVID-19 patients: an exploratory randomized, controlled trial. Eur J of Pharm Sci. 2021;157:105631.
  • Ahmed A, Karami A, Sabouni R, et al. pH and ultrasound dual-responsive drug delivery system based on PEG-folate-functionalized Iron-based metal-organic framework for targeted doxorubicin delivery. Colloid Surface A. 2021;626:127062.
  • Barczikai D, Kacsari V, Domokos J, et al. Interaction of silver nanoparticle and commonly used anti-inflammatory drug within a poly(amino acid) derivative fibrous mesh. J Mol Liq. 2021;322:114575.
  • Wang W, Wang Y, Zhao W, et al. A straightforward approach towards antibacterial and anti‐Inflammatory multifunctional nanofiber membranes with sustained drug release profiles. Macromol biosci. 2022;22(11):2200150. DOI:10.1002/mabi.202200150
  • Ibrahim E, Abou-El-Naga IF, El-Temsahy MM, et al. A single oral dose of celecoxib-loaded solid lipid nanoparticles for treatment of different developmental stages of experimental schistosomiasis mansoni. Acta Trop. 2022;229:106342.
  • Guarino V, Altobelli R, Caputo T, et al. Mono- and bi-phasic cellulose acetate micro-vectors for anti-inflammatory drug delivery. Pharmaceutics. 2019;11(2):87. DOI:10.3390/pharmaceutics11020087
  • Ioan D-C, Rău I, T TG, et al. Piroxicam-Collagen-Based sponges for medical applications. Int J Polym Sci. 2019;2019:1–7.
  • Hamed R, Omran H. Development of dual-release pellets of the non-steroidal anti–inflammatory drug celecoxib. J Drug Deliv Sci Tec. 2020;55:101419.
  • Nakas A, M DA, Kapourani A, et al. Quality risk management and quality by design for the development of diclofenac sodium intra-articular gelatin microspheres. AAPS Pharm Sci Tech. 2020;21(4):127. DOI:10.1208/s12249-020-01678-0
  • Yang Y, Chang S, Bai Y, et al. Electrospun triaxial nanofibers with middle blank cellulose acetate layers for accurate dual-stage drug release. Carbohydr Polym. 2020;243:116477. DOI:10.1016/j.carbpol.2020.116477
  • He H, Wu M, Zhu J, et al. Engineered spindles of little molecules around electrospun nanofibers for biphasic drug release. Adv Fiber Mater. 2022;4(2):305–317. DOI:10.1007/s42765-021-00112-9
  • Kalalinia F, Taherzadeh Z, Jirofti N, et al. Evaluation of wound healing efficiency of vancomycin-loaded electrospun chitosan/poly ethylene oxide nanofibers in full thickness wound model of rat. Int j biol macromol. 2021;177:100–110.
  • Mohamed MI, Kassem MA, Khalil RM, et al. Enhancement of the anti-inflammatory efficacy of betamethasone valerate via niosomal encapsulation. Biointerface Res Appl Chem. 2021;11(6):14640–14660.
  • El-Moslemany RM, El-Kamel AH, Allam EA, et al. Tanshinone IIA loaded bioactive nanoemulsion for alleviation of lipopolysaccharide induced acute lung injury via inhibition of endothelial glycocalyx shedding. Biomed Pharmacother. 2022;155:113666.
  • Sheorain J, Mehra M, Thakur R, et al. In vitro anti-inflammatory and antioxidant potential of thymol loaded bipolymeric (tragacanth gum/chitosan) nanocarrier. Int j biol macromol. 2019;125:1069–1074.
  • Ullah A, Saito Y, Ullah S, et al. Bioactive sambong oil-loaded electrospun cellulose acetate nanofibers: preparation, characterization, and in-vitro biocompatibility. Int j biol macromol. 2021;166:1009–1021.
  • Ye P, Wei S, Luo C, et al. Long-term effect against methicillin-resistant staphylococcus aureus of emodin released from coaxial electrospinning nanofiber membranes with a biphasic profile. Biomolecules. 2020;10(3):362. DOI:10.3390/biom10030362
  • Sun M, Liu Y, Jiao K, et al. A periodontal tissue regeneration strategy via biphasic release of zeolitic imidazolate framework-8 and FK506 using a uniaxial electrospun Janus nanofiber. J Mater Chem B. 2022;10(5):765–778. DOI:10.1039/D1TB02174E
  • Neto A, Pereira P, C FA, et al. Highly porous composite scaffolds endowed with antibacterial activity for multifunctional grafts in bone repair. Polymers. 2021;13(24):4378. DOI:10.3390/polym13244378
  • Alhakamy A, Kotta S, Ali J, et al. Formulation development, statistical optimization, in vitro and in vivo evaluation of etoricoxib-loaded eucalyptus oil-based nanoemulgel for topical delivery. Applied Sci. 2021;11(16):7294. DOI:10.3390/app11167294
  • Liu Q-R, Dai Y-C, L-J J, et al. Preparation of ropivacaine-loaded mesoporous bioactive glass microspheres and evaluation of their efficacy for sciatic nerve block. J Drug Deliv Sci Technol. 2020;58:101810.
  • Wang K, Liu X-K, Chen X-H, et al. Electrospun hydrophilic Janus nanocomposites for the rapid onset of therapeutic action of helicid. ACS Appl Mater Inter. 2018;10(3):2859–2867. DOI:10.1021/acsami.7b17663
  • Xing Z, Zhao C, Zhang C, et al. Bilayer nicorandil-loaded small-diameter vascular grafts improve endothelial cell function via PI3K/AKT/eNOS pathway. Bio-Des Manuf. 2021;4(1):72–86. DOI:10.1007/s42242-020-00107-2
  • Zhao L, Orlu M, Williams GR. Electrospun fixed dose combination fibers for the treatment of cardiovascular disease. Int J Pharm. 2021;599:120426.
  • Andrews GP, Li S, Almajaan A, et al. Fixed dose combination formulations: multilayered platforms designed for the management of cardiovascular disease. Mol Pharm. 2019;16(5):1827–1838. DOI:10.1021/acs.molpharmaceut.8b01068
  • Chikukwa MTR, Walker RB, Khamanga SMM. Formulation and characterisation of a combination captopril and hydrochlorothiazide microparticulate dosage form. Pharmaceutics. 2020;12(8):712.
  • Conceição J, Adeoye O, Cabral-Marques H, et al. Carbamazepine bilayer tablets combining hydrophilic and hydrophobic cyclodextrins as a quick/slow biphasic release system. J Drug Deliv Sci Tec. 2020;57:101611.
  • Gundu R, Pekamwar S, Shelke S, et al. Development, optimization and pharmacokinetic evaluation of biphasic extended-release osmotic drug delivery system of trospium chloride for promising application in treatment of overactive bladder. Futur J Pharm Sci. 2021;7(1):160. DOI:10.1186/s43094-021-00311-6
  • Abbas H, A EFY, M ASM, et al. Development and optimization of curcumin analog nano-bilosomes using 2.3 full factorial design for anti-tumor profiles improvement in human hepatocellular carcinoma: evaluation, safety assay. Drug Deliv. 2022;29(1):714–727. DOI:10.1080/10717544.2022.2044938
  • Hussein Y, A LS, Kamoun EA, et al. Enhanced anti-cancer activity by localized delivery of curcumin form PVA/CNCs hydrogel membranes: preparation and in vitro bioevaluation. Int j biol macromol. 2021;170:107–122.
  • Pan X, Gong Y, Li ZL, et al. Folate-conjugated pluronic/polylactic acid polymersomes for oral delivery of paclitaxel. Int J Biol Macromol. 2019;139:377–386.
  • Noor NS, Kaus NHM, Szewczuk MR, et al. Formulation, characterization and cytotoxicity effects of novel thymoquinone-PLGA-PF68 nanoparticles. Int J Mol Sci. 2021;22(17):9420. DOI:10.3390/ijms22179420
  • Khan S, N AM, Madni A, et al. Lipid poly (ɛ-caprolactone) hybrid nanoparticles of 5-fluorouracil for sustained release and enhanced anticancer efficacy. Life Sci. 2021;284:119909.
  • Zheng X, Kang S, Wang K, et al. Combination of structure-performance and shape-performance relationships for better biphasic release in electrospun Janus fibers. Int J Pharm. 2021;596:120203. DOI:10.1016/j.ijpharm.2021.120203
  • Yang B, Dong Y, Shen Y, et al. Bilayer dissolving microneedle array containing 5-fluorouracil and triamcinolone with biphasic release profile for hypertrophic scar therapy. Bioact Mater. 2021;6(8):2400–2411. DOI:10.1016/j.bioactmat.2021.01.014
  • Chen Y, Yu W, Qian X, et al. Dissolving microneedles with a biphasic release of antibacterial agent and growth factor to promote wound healing. Biomater Sci. 2022;10(9):2409–2416. DOI:10.1039/D2BM00281G
  • Serati-Nouri H, Rasoulpoor S, Pourpirali R, et al. In vitro expansion of human adipose-derived stem cells with delayed senescence through dual stage release of curcumin from mesoporous silica nanoparticles/electrospun nanofibers. Life Sci. 2021;285:119947.
  • Anter HM, Hashim I I A, Awadin W, et al. Novel chitosan oligosaccharide-based nanoparticles for gastric mucosal administration of the phytochemical “apocynin“. Int J Nanomed. 2019;14:4911–4929.
  • Agrawal M, Pradhan M, Singhvi G, et al. Thermoresponsive in situ gel of curcumin loaded solid lipid nanoparticle: design, optimization and in vitro characterization. J Drug Deliv Sci Tec. 2022;71:103376.
  • Cui L, Liu Z-P, D-G Y, et al. Electrosprayed core-shell nanoparticles of PVP and shellac for furnishing biphasic controlled release of ferulic acid. Colloid Polym Sci. 2014;292(9):2089–2096. DOI:10.1007/s00396-014-3226-8
  • Tan YJN, Yong WP, Low HR, et al. Customizable drug tablets with constant release profiles via 3D printing technology. Int J Pharm. 2021;598:120370.
  • Raspa A, Carminati L, Pugliese R, et al. Self-assembling peptide hydrogels for the stabilization and sustained release of active Chondroitinase ABC in vitro and in spinal cord injuries. J Control Release. 2021;330:1208–1219.
  • Ge R, Ji Y, Ding Y, et al. Electrospun self-emulsifying core-shell nanofifibers for effective delivery of paclitaxel. Front Bioeng Biotechnol. 2023;11:1112338.
  • Zhang X, Yao D, Zhao W, et al. Engineering Platelet‐Rich plasma based Dual‐Network hydrogel as a bioactive wound dressing with potential clinical yranslational value. Adv Funct Mater. 2021;31(8):2009258. DOI:10.1002/adfm.202009258
  • Sadeghi I, Byrne J, Shakur R, et al. Engineered drug delivery devices to address Global Health challenges. J Control Release. 2021;331:503–514.
  • Bai Y, Liu Y, Lv H, et al. Processes of electrospun polyvinylidene fluoride-based nanofibers, their piezoelectric properties, and several fantastic applications. Polymers. 2022;14(20):4311. DOI:10.3390/polym14204311
  • Cao X, Chen W, Zhao P, et al. Electrospun porous nanofibers: pore-forming mechanisms and applications for photocatalytic degradation of organic pollutants in wastewater. Polymers. 2022;14(19):3990. DOI:10.3390/polym14193990
  • Han W, Wang L, Li Q, et al. A review: current status and emerging developments on natural Polymer-Based electrospun fibers. Macromol Rapid Comm. 2022;43(21):2200456. DOI:10.1002/marc.202200456
  • Yao L, Sun C, Lin H, et al. Enhancement of AFB1 removal efficiency via adsorption/photocatalysis synergy using surface-modified electrospun PCL-g-C3N4/CQDs membranes. Biomolecules. 2023;13:550.
  • Du Y, Yang Z, Kang S, et al. A sequential electrospinning of a coaxial and blending process for creating double-layer hybrid films to sense glucose. Sensors. 2023;23:3685.
  • Xu X, Lv H, Zhang M, et al. Recent progress in electrospun nanofibers and their applications in heavy metal wastewater treatment. Front Chem Sci Eng. 2023;17:249–275.
  • Xue J, Wu T, Dai Y, et al. Electrospinning and electrospun nanofibers: methods, materials, and applications. Chem Rev. 2019;119(8):5298–5415. DOI:10.1021/acs.chemrev.8b00593
  • Wang Y, G YD, Liu Y, et al. Progress of electrospun nanofibrous carriers for modifications to drug release profiles. J Funct Biomater. 2022;13(4):289. DOI:10.3390/jfb13040289
  • Yu DG, Li Q, Song W, et al. Advanced technique-based combination of innovation education and safety education in higher education. J Chem Edu. 2023;102:568.
  • Yao L, Sun C, Lin H, et al. Electrospun Bi-decorated Bi Ti O /TiO2 flexible carbon nanofibers and their applications on degradating of organic pollutants under solar radiation. Journal of Materials Science & Technology. 2022;150:1005–1302.
  • Tabakoglu S, Kolbuk D, Sajkiewicz P. Multifluid electrospinning for multi-drug delivery systems: pros and cons, challenges, and future directions. Biomater Sci. 2022;14:4947.
  • Huang X, Jiang W, Zhou J, et al. The applications of Ferulic-Acid-Loaded fibrous films for fruit preservation. Polymers. 2022;14(22):4947. DOI:10.3390/polym14224947
  • Lv H, Liu Y, Bai Y, et al. Recent combinations of electrospinning with photocatalytic technology for treating polluted water. Catalysts. 2023;13:758.
  • Zhao P, Chen W, Feng Z, et al. Electrospun nanofibers for periodontal treatment: a recent progress. Int J Nanomed. 2022;17:4137–4162.
  • Zhou Y, Wang M, Yan C, et al. Advances in the application of electrospun Drug-Loaded nanofibers in the treatment of oral ulcers. Biomolecules. 2022;12(9):1254. DOI:10.3390/biom12091254
  • Wang P, Lv H, Cao X, et al. Recent progress of the preparation and application of electrospun porous nanofibers. Polymers. 2023;15:921.
  • Chang S, L WM, Y ZF, et al. Sheath-separate-core nanocomposites fabricated using a trifluid electrospinning. Mater Design. 2020;192:108782. DOI:10.1016/j.matdes.2020.108782
  • Chen W, Zhao P, Yang Y, et al. Electrospun beads-on-the-string nanoproducts: preparation and drug delivery application. Curr Drug Deliv. 2022;19:1–17.
  • Hameed A, Rehman T, Rehan Z, et al. Development of polymeric nanofibers blended with extract of neem (Azadirachta indica), for potential biomedical applications. Front Mater. 2022;9. DOI:10.3389/fmats.2022.1042304
  • Huang H, Song Y, Zhang Y, et al. Electrospun nanofibers: current progress and applications in food systems. J Agr Food Chem. 2022;70:1391–1409.
  • Jiang W, Zhang X, Liu P, et al. Electrospun healthcare nanofibers from medicinal liquor of phellinus igniarius. Adv Compos Hybrid Mater. 2022;5(4):3045–3056. DOI:10.1007/s42114-022-00551-x
  • Du Y, Yu DG, Yi T. Electrospun nanofibers as chemosensors for detecting environmental pollutants: a review. Chemosensors. 2023;11:208.
  • Zhu M, Yu J, Li Z, et al. Self-healing fibrous membranes. Angrew Chem Int Ed. 2022;61(41):e202208949. DOI:10.1002/anie.202208949
  • Xu H, Zhang F, Wang M, et al. Electrospun hierarchical structural films for effective wound healing. Biomaterials Advances. 2022;136:212795.
  • Yang J, Wang K, G YD, et al. Electrospun Janus nanofibers loaded with drug and inorganic nanoparticles for effective antibacterial wound dressing. Mat Sci Eng C-Mater. 2020;111:110805.
  • Wang ML, Yu DG, Annie Bligh SW. Progress in preparing electrospun Janus fibers and their applications. Appl Mater Today. 2023;31:101766.
  • Wang M, Hou J, G YD, et al. Electrospun tri-layer nanodepots for sustained release of acyclovir. J Alloy Compd. 2020;846:156471.
  • Wang M, L GR, Zhang F, et al. Electrospun fibers with blank surface and inner drug gradient for improving sustained release. Biomater Adv. 2023;150:213404.
  • Zhao K, Z-H L, Zhao P, et al. Modified tri-axial electrospun functional core-shell nanofibrous membranes for natural photodegradation of antibiotics. Chem Eng J. 2021;425:131455.
  • Liu H, Wang H, Lu X, et al. Electrospun structural nanohybrids combining three composites for fast helicide delivery. Adv Compos Hybrid Mater. 2022;5(2):1017–1029. DOI:10.1007/s42114-022-00478-3
  • Yu DG, Wang M, Ge R. Strategies for sustained drug release from electrospun multi-layer nanostructures. Wires Nanomed Nanobi. 2022;14(3):e1772.
  • Zhang X, Chi C, Chen J, et al. Electrospun quad-axial nanofibers for controlled and sustained drug delivery. Mater Design. 2021;206:109732.
  • Milosevic P. Modeling of three-layered PCL/PLGA/PCL fibrous scaffolds for prolonged drug release. Sci Rep. 2020;10:11126.
  • Jeckson TA, Yun PN, Sisinthy SP, et al. Delivery of therapeutics from layer-by-layer electrospun nanofiber matrix for wound healing: an update. J Pharmaceut Sci. 2021;110(2):635–653. DOI:10.1016/j.xphs.2020.10.003
  • Liu H, Jiang W, Yang Z, et al. Hybrid films prepared from a combination of electrospinning and casting for offering a Dual-phase drug release. Polymers. 2022;14:2132. DOI:10.3390/polym14112132
  • Santos D M, de Annunzio S R, Carmello CJ, et al. Combining coaxial electrospinning and 3D printing: design of biodegradable bilayered membranes with dual drug delivery capability for periodontitis treatment. ACS Appl Bio Mater. 2022;5(1):146–159. DOI:10.1021/acsabm.1c01019
  • Madhu Kiran DR, Jha A, Kumar M, et al. Electrospun nanofiber-based drug delivery platform: advances in diabetic foot ulcer management. Expert Opin Drug Deliv. 2021;18(1):25–42. DOI:10.1080/17425247.2021.1823966
  • Mao Y, Zhao Y, Guan J, et al. Electrospun fibers: an innovative delivery method for the treatment of bone diseases. Expert Opin Drug Deliv. 2020;17(7):993–1005. DOI:10.1080/17425247.2020.1767583
  • Sousa MGC, Maximiano MR, Costa RA, et al. Nanofibers as drug-delivery systems for infection control in dentistry. Expert Opin Drug Deliv. 2020;17(7):919–930. DOI:10.1080/17425247.2020.1762564
  • K AS, Abdorashidi M, A DF, et al. Electrospun fibers: versatile approaches for controlled release applications. Int J Polym Sci. 2022;2022:9116168.
  • Brimo N, Serdaroglu DC, Uysal B. Comparing antibiotic pastes with electrospun nanofibers as modern drug delivery systems for regenerative endodontics. Curr Drug Deliv. 2022;19(9):904–917.
  • Du Y, Zhang X, Liu P, et al. Electrospun nanofiber-based glucose sensors for glucose detection. Front Chem. 2022;10:944428.
  • Li X, Niu X, Chen Y, et al. Electrospraying micro-nano structures on chitosan composite coatings for enhanced antibacterial effect. Prog Org Coat. 2023;174:107310.
  • Sivan M, Madheswaran D, Hauzerova S, et al. AC electrospinning: impact of high voltage and solvent on the electrospinnability and productivity of polycaprolactone electrospun nanofibrous scaffolds. Mater Today Chem. 2022;26:101025.
  • Song W, Tang Y, Qian C, et al. Electrospinning spinneret: a bridge between the visible world and the invisible nanostructures. The Innovation. 2023;4(1):100381. DOI:10.1016/j.xinn.2023.100381
  • Sivan M, Madheswaran D, Valtera J, et al. Alternating current electrospinning: the impacts of various high-voltage signal shapes and frequencies on the spinnability and productivity of polycaprolactone nanofibers. Mater Design. 2022;213:110308.
  • Dzenis Y. Spinning continuous fibers for nanotechnology. Science. 2004;304(5679):1917–1919.
  • Isaacoff BP, Brown KA. Progress in top-down control of bottom-up assembly. Nano Lett. 2017;17(11):6508–6510.
  • Kuang G, Zhang Z, Liu S, et al. Biphasic drug release from electrospun polyblend nanofibers for optimized local cancer treatment. Biomater Sci. 2018;6(2):324–331. DOI:10.1039/C7BM01018D
  • Tipduangta P, Belton P, Fabian L, et al. Electrospun polymer blend nanofibers for tunable drug delivery: the role of transformative phase separation on controlling the release rate. Mol Pharmaceut. 2016;13(1):25–39. DOI:10.1021/acs.molpharmaceut.5b00359
  • Yang S, Li X, Liu P, et al. Multifunctional chitosan/polycaprolactone nanofiber scaffolds with varied dual-drug release for wound-healing applications. ACS Biomater Sci Eng. 2020;6(8):4666–4676. DOI:10.1021/acsbiomaterials.0c00674
  • Xie Z, B PC, Weng H, et al. Dual growth factor releasing multi-functional nanofibers for wound healing. Acta Biomater. 2013;9(12):9351–9359. DOI:10.1016/j.actbio.2013.07.030
  • Kang S, Hou S, Chen X, et al. Energy-saving electrospinning with a concentric Teflon-core rod spinneret to create medicated nanofibers. Polymers. 2020;12(10):2421. DOI:10.3390/polym12102421
  • Kumar Sahu D, Pradhan D, Halder J, et al. Design and optimization of gatifloxacin loaded polyvinyl alcohol nanofiber for the treatment of dry eye infection: in vitro and in vivo evaluation. J Drug Deliv Sci Tec. 2022;76:103651.
  • Khan I, Pandit J, Ahmed S, et al. Development and evaluation of biodegradable polymeric lomustine nanofibres for the efficient tumor targeting: in vitro characterization, ex vivo permeation and degradation study. J Drug Deliv Sci Tec. 2022;75:103685.
  • Eren Boncu T, U GA, F CM, et al. In vitro and in vivo evaluation of linezolid loaded electrospun PLGA and PLGA/PCL fiber mats for prophylaxis and treatment of MRSA induced prosthetic infections. Int J Pharm. 2020;573:118758.
  • Zhang L, Yan J, Yin Z, et al. Electrospun vancomycin-loaded coating on titanium implants for the prevention of implant-associated infections. Int J Nanomed. 2014;9:3027–3036.
  • Gilchrist SE, Lange D, Letchford K, et al. Fusidic acid and rifampicin co-loaded PLGA nanofibers for the prevention of orthopedic implant associated infections. J Control Release. 2013;170(1):64–73. DOI:10.1016/j.jconrel.2013.04.012
  • Lv H, Guo S, Zhang G, et al. Electrospun structural hybrids of acyclovir-polyacrylonitrile @ acyclovir for modifying drug release. Polymers. 2021;13(24):4286. DOI:10.3390/polym13244286
  • Yu DG, Wang X, Li XY, et al. Electrospun biphasic drug release polyvinylpyrrolidone/ethyl cellulose core/sheath nanofibers. Acta Biomater. 2013;9(3):5665–5672. DOI:10.1016/j.actbio.2012.10.021
  • G YD, R WG, Wang X, et al. Dual drug release nanocomposites prepared using a combination of electrospraying and electrospinning. RSC Adv. 2013;3(14):4652–4658. DOI:10.1039/c3ra40334c
  • Zhou K, Wang M, Zhou Y, et al. Comparisons of antibacterial performances between electrospun polymer@drug nanohybrids with drug- polymer nanocomposites. Adv Compos Hybrid Mater. 2022;5(2):907–919. DOI:10.1007/s42114-021-00389-9
  • Cheng G, Yin C, Tu H, et al. Controlled co-delivery of growth factors through layer-by-layer assembly of core-shell nanofibers for improving bone regeneration. ACS Nano. 2019;13(6):6372–6382. DOI:10.1021/acsnano.8b06032
  • Gao S, Zhou A, Cao B, et al. A tunable temperature-responsive and tough platform for controlled drug delivery. New J Chem. 2021;45(29):13056–13063. DOI:10.1039/D1NJ01356D
  • Lv H, Liu Y, Zhao P, et al. Insight into the superior piezophotocatalytic performance of BaTiO3//ZnO Janus nanofibrous heterostructures in the treatment of multi-pollutants from water. Appl Cata B Environ. 2023;330:122623.
  • Yu DG, Yang C, Jin M, et al. Medicated Janus fibers fabricated using a Teflon-coated side-by-side spinneret. Colloid Surface B. 2016;138:110–116.
  • Wang M, Li D, Li J, et al. Electrospun Janus zein-PVP nanofibers provide a two-stage controlled release of poorly water-soluble drugs. Mater Design. 2020;196:109075.
  • Mitragotri S, Lahann J. Physical approaches to biomaterial design. Nat Mater. 2009;8(1):15–23.
  • Han D, Steckl AJ. Triaxial electrospun nanofiber membranes for controlled dual release of functional molecules. ACS Appl Mater Inter. 2013;5(16):8241–8245. DOI:10.1021/am402376c
  • Zhao Y, Cao XY, Jiang L. Bio-mimic multichannel microtubes by a facile method. J Am Chem Soc. 2007;129(4):764–765.
  • Ding Y, Dou C, Chang S, et al. Core-shell eudragit s100 nanofibers prepared via triaxial electrospinning to provide a colon-targeted extended drug release. Polymers. 2020;12(9):2034. DOI:10.3390/polym12092034
  • Okuda T, Tominaga K, Kidoaki S. Time-programmed dual release formulation by multilayered drug-loaded nanofiber meshes. J Control Release. 2010;143(2):258–264. DOI:10.1016/j.jconrel.2009.12.029
  • Huang LY, Branford-White C, Shen XX, et al. Time-engineeringed biphasic drug release by electrospun nanofiber meshes. Int Journal Pharm. 2012;436(1–2):88–96. DOI:10.1016/j.ijpharm.2012.06.058
  • Lee H, Xu G, Kharaghani D, et al. Electrospun tri-layered zein/PVP-GO/zein nanofiber mats for providing biphasic drug release profiles. Int Journal Pharmaceut. 2017;531(1):101–107. DOI:10.1016/j.ijpharm.2017.08.081
  • Abdel Khalek MA, Abdel Gaber SA, El-Domany RA, et al. Photoactive electrospun cellulose acetate/polyethylene oxide/methylene blue and trilayered cellulose acetate/polyethylene oxide/silk fibroin/ciprofloxacin nanofibers for chronic wound healing. Int j biol macromol. 2021;193:1752–1766. DOI:10.1016/j.ijbiomac.2021.11.012
  • Meng Y, Chen L, Chen Y, et al. Reactive metal boride nanoparticles trap lipopolysaccharide and peptidoglycan for bacteria-infected wound healing. Nat Commun. 2022;13:7353.
  • Chen L, Jiang X, Lv M, et al. Reductive-damage-induced intracellular maladaptation for cancer electronic interference therapy. Chem. 2022;8(3):866–879. DOI:10.1016/j.chempr.2022.02.010
  • Lu H, Zhao Y, Qin S, et al. Fluorine substitution tunes the nanofiber chirality of supramolecular hydrogels to promote cell adhesion and proliferation. Adv Fiber Mater. 2022;5:1–11.
  • Zhang L, He G, Yu Y, et al. Design of biocompatible chitosan/polyaniline/laponite hydrogel with photothermal conversion capability. Biomolecules. 2022;12(8):1089. DOI:10.3390/biom12081089
  • Zhu H, Xing C, Dou X, et al. Chiral hydrogel accelerates re-epithelization in chronic wounds via mechanoregulation. Adv Healthc Mater. 2022;11(21):2201032. DOI:10.1002/adhm.202201032
  • Xie D, Zhou X, Xiao B, et al. Mucus-penetrating silk fibroin-based nanotherapeutics for efficient treatment of ulcerative colitis. Biomolecules. 2022;12(9):1263. DOI:10.3390/biom12091263
  • Song W, Zhang M, Huang X, et al. Smart I-borneol-loaded hierarchical hollow polymer nanospheres with antipollution and antibacterial capabilities. Mater Today Chem. 2022;26:101252.
  • Shen Y, Yu X, Cui J, et al. Development of biodegradable polymeric stents for the treatment of cardiovascular diseases. Biomolecules. 2022;12(9):1245. DOI:10.3390/biom12091245
  • Li C, Wang J, Deng C, et al. Protocol for atmospheric water harvesting using in situ polymerization honeycomb hygroscopic polymers. STAR Protoc. 2022;3(4):101780. DOI:10.1016/j.xpro.2022.101780
  • Browning RJ, Thomas Reardon PJ, Parhizkar M, et al. Drug delivery strategies for platinum-based chemotherapy. ACS Nano. 2017;11(9):8560–8578. DOI:10.1021/acsnano.7b04092
  • Yu DG, Du Y, Chen J, et al. A correlation analysis between undergraduate students’ safety behaviors in the laboratory and their learning efficiencies. Behav Sci. 2023;13(2):127. DOI:10.3390/bs13020127
  • Kelly A, Ahmed J, Edirisinghe M. Manufacturing cyclodextrin fibers using water. Macromol Mater Eng. 2022;307(6):2100891.
  • Zhang Y, Henry Harker A, J LC, et al. Co-delivery of saxagliptin and dapagliflozin by electrosprayed trilayer poly (D, -lactide-co-glycolide) nanoparticles for controlled drug delivery. Int J Pharm. 2022;628:122279.
  • Majd H, Harker A, Edirisinghe M, et al. Optimised release of tetracycline hydrochloride from core-sheath fibres produced by pressurised gyration. J Drug Del Sci Tech. 2022;72:103359.
  • Hong X, Mahalingam S, Edirisinghe M. Simultaneous application of pressure-infusion-gyration to generate polymeric nanofibers. Macromol Mater Eng. 2017;302(6):1600564.
  • Witkowski J, Polak S, Rogulski Z, et al. In vitro/in vivo translation of synergistic combination of MDM2 and MEK inhibitors in melanoma using PBPK/PD modelling: part II. Int J Mol Sci. 2022;23(19):11939. DOI:10.3390/ijms231911939
  • Shen H, Yang Z, Rodrigues AD. Cynomolgus monkey as an emerging animal model to study drug transporters: in vitro, in vivo, in vitro-to-in vivo translation. Drug Metabol Dispos. 2022;50(3):299–319.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.