195
Views
1
CrossRef citations to date
0
Altmetric
Review

Unification of medicines and excipients: The roles of natural excipients for promoting drug delivery

, , , , , ORCID Icon, , , , & ORCID Icon show all
Pages 597-620 | Received 06 Feb 2023, Accepted 02 May 2023, Published online: 16 May 2023

References

  • Hashida M. Role of pharmacokinetic consideration for the development of drug delivery systems: a historical overview. Adv Drug Deliv Rev. 2020;157:71–82.
  • Saraf A, Dubey N, Dubey N, et al. Box behnken design based development of curcumin loaded eudragit s100 nanoparticles for site-specific delivery in colon cancer. Constraints. 2019;1:1–5.
  • Gould S, Scott RC. 2-Hydroxypropyl-β-cyclodextrin (HP-β-CD): a toxicology review. Food Chem Toxicol. 2005;43(10):1451–1459.
  • Tang B, Cheng G, Gu JC, et al. Development of solid self-emulsifying drug delivery systems: preparation techniques and dosage forms. Drug Discovery Today. 2008;13(13):606–612.
  • Wang W, Xiong W, Wan J, et al. The decrease of PAMAM dendrimer-induced cytotoxicity by PEGylation via attenuation of oxidative stress. Nanotechnology. 2009;20(10):105103.
  • Yang FH, Zhang Q, Liang QY, et al. Bioavailability Enhancement of Paclitaxel via a Novel Oral Drug Delivery System: paclitaxel-Loaded Glycyrrhizic Acid Micelles. Molecules. 2015;20(3):4337–4356. DOI:10.3390/molecules20034337
  • Xiong Y, Wang Y, Hu Y, et al. A traditional and modern application research on “the unification of drug and adjuvant”(in Chinese). World Sci Technol Mod Tradit Chin Med. 2016;18(10):1765–1770.
  • Zhang DK. Study on theory and application value of“unification of medicines and excipients” in Chinese materia medica preparations. Chinese Traditional and Herbal Drugs. 2017;48(10):1921–1929.
  • Güçlü-Üstündağ Ö, Mazza G. Saponins: properties, applications and processing. Crit Rev Food Sci Nutr. 2007;47(3):231–258.
  • J-N H, Yang J-Y, Jiang S, et al. Panax quinquefolium saponins protect against cisplatin evoked intestinal injury via ROS-mediated multiple mechanisms. Phytomedicine. 2021;82:153446.
  • Cui Z-Y, Liu C-L, D-D L, et al. Anticoagulant activity analysis and origin identification of Panax notoginseng using HPLC and ATR-FTIR spectroscopy. Phytochem Anal. 2022;33(6):971–981. DOI:10.1002/pca.3152
  • Dai X, Liao Y, Yang C, et al. Diammonium glycyrrhizinate-based micelles for improving the hepatoprotective effect of baicalin: characterization and biopharmaceutical study. Pharmaceutics. 2023;15(1):125.
  • Li H, Zhai B, Sun J, et al. Antioxidant, anti-aging and organ protective effects of total saponins from aralia taibaiensis. Drug Des Devel Ther. 2021;15:4025–4042.
  • Passos FRS, Araújo-Filho HG, Monteiro BS, et al. Anti-inflammatory and modulatory effects of steroidal saponins and sapogenins on cytokines: a review of pre-clinical research. Phytomedicine. 2022;96:153842.
  • Salsabila A, Harfiani E, Nugraha Y. The effectivities of anti-diabetic of Chromolaena odorata L. in lowering blood sugar level: a systematic review. IOP Conference Series: Earth and Environ Sci. 2021;913(1):012092.
  • Amraei S, Ahmadi S. Recent studies on antimicrobial and anticancer activities of saponins: a mini-review. Nano Micro Biosystems. 2022;1(1):22–26.
  • Elekofehinti OO, Iwaloye O, Olawale F, et al. Saponins in cancer treatment: current progress and future prospects. Pathophysiology. 2021;28(2):250–272. DOI:10.3390/pathophysiology28020017
  • Zhou P, Shi W, He X-Y, et al. Saikosaponin D: review on the antitumour effects, toxicity and pharmacokinetics. Pharm Biol. 2021;59(1):1478–1487. DOI:10.1080/13880209.2021.1992448
  • Zhang J, Wu C, Gao L, et al. Chapter Four - Astragaloside IV derived from Astragalus membranaceus: a research review on the pharmacological effects. In: Du G, editor Advances in Pharmacology. Vol. 87, 84 Theobald's Road, London United Kingdom: Academic Press; 2020. p. 89–112.
  • Zhang F, Chen L, Jin H, et al. Activation of Fas death receptor pathway and Bid in hepatocytes is involved in saikosaponin D induction of hepatotoxicity. Environ Toxicol Pharmacol. 2016;41:8–13.
  • Nose M, Amagaya S, Ogihara Y. Effects of saikosaponin metabolites on the hemolysis of red blood cells and their adsorbability on the cell membrane. Chem Pharm Bull (Tokyo). 1989;37(12):3306–3310.
  • Rai S, Acharya-Siwakoti E, Kafle A, et al. Plant-Derived Saponins: a Review of Their Surfactant Properties and Applications. Sci. 2021;3(4):44. DOI:10.3390/sci3040044
  • Ma Y, Gao Y, Zhao X, et al. A Natural Triterpene Saponin‐Based Pickering Emulsion. Chem: Eur J. 2018;24(45):11703–11710. DOI:10.1002/chem.201801619
  • Hong C, Wang D, Liang J, et al. Novel ginsenoside-based multifunctional liposomal delivery system for combination therapy of gastric cancer [Research Paper]. Theranostics. 2019;9(15):4437–4449. DOI:10.7150/thno.34953
  • Liao Y, Li Z, Zhou Q, et al. Saponin surfactants used in drug delivery systems: a new application for natural medicine components. Int J Pharm. 2021;603:120709. doi:10.1016/j.ijpharm.2021.120709.
  • NNQ V, Fukushima EO, Muranaka T. Structure and hemolytic activity relationships of triterpenoid saponins and sapogenins. J Nat Med. 2017;71(1):50–58.
  • Han S-X, You Y. Balance between cardiovascular pharmacological and hemolytic effects of saponins of Panax notogenseng. China Journal of Chinese Materia Medica. 2016;41(5):818–822.
  • Wang P. Natural and Synthetic Saponins as Vaccine Adjuvants. Vaccines. 2021;9(3):222.
  • Li M, Lan J, Li X, et al. Novel ultra-small micelles based on ginsenoside Rb1: a potential nanoplatform for ocular drug delivery. Drug Delivery. 2019;26(1):481–489. DOI:10.1080/10717544.2019.1600077
  • Tippel J, Lehmann M, von Klitzing R, et al. Interfacial properties of Quillaja saponins and its use for micellisation of lutein esters. Food Chem. 2016;212:35–42.
  • Dargel C, Geisler R, Hannappel Y, et al. Self-Assembly of the Bio-Surfactant Aescin in Solution: a Small-Angle X-ray Scattering and Fluorescence Study. Colloids and Interfaces. 2019;3(2):47. DOI:10.3390/colloids3020047
  • Luo F, Zeng D, Chen R, et al. Pegylated dihydromyricetin-loaded nanoliposomes coated with tea saponin inhibit bacterial oxidative respiration and energy metabolism. Food Funct. 2021;12(19):9007–9017. DOI:10.1039/D1FO01943K
  • Li P, Zhou X, Qu D, et al. Preliminary study on fabrication, characterization and synergistic anti-lung cancer effects of self-assembled micelles of covalently conjugated celastrol–polyethylene glycol–ginsenoside Rh2. Drug Delivery. 2017;24(1):834–845. DOI:10.1080/10717544.2017.1326540
  • Choi M, Thuy LT, Lee Y, et al. Dual-Functional Dendrimer Micelles with Glycyrrhizic Acid for Anti-Inflammatory Therapy of Acute Lung Injury. ACS Applied Materials & Interfaces. 2021;13(40):47313–47326. DOI:10.1021/acsami.1c08107
  • Liu Z, Liu T, Li W, et al. Insights into the antitumor mechanism of ginsenosides Rg3. Mol Biol Rep. 2021;48(3):2639–2652. DOI:10.1007/s11033-021-06187-2
  • Charbe NB, Lagos CF, Ortiz CAV, et al. PCSK9 conjugated liposomes for targeted delivery of paclitaxel to the cancer cell: a proof-of-concept study. Biomed Pharmacother. 2022;153:113428.
  • Sharif Makhmal Zadeh B, Esfahani G, Salimi A. Permeability of Ciprofloxacin-Loaded Polymeric Micelles Including Ginsenoside as P-glycoprotein Inhibitor through a Caco-2 Cells Monolayer as an Intestinal Absorption Model. Molecules. 2018;23(8):1904.
  • Banerjee A, Binder J, Salama R, et al. Synthesis, characterization and stress-testing of a robust quillaja saponin stabilized oil-in-water phytocannabinoid nanoemulsion. J Cann Res. 2021;3(1):43. DOI:10.1186/s42238-021-00094-w
  • Wang Y, Zhao B, Wang S, et al. Formulation and evaluation of novel glycyrrhizic acid micelles for transdermal delivery of podophyllotoxin. Drug Delivery. 2016;23(5):1623–1635. DOI:10.3109/10717544.2015.1135489
  • Li M, Jin H, Shi C, et al. A Novel Self-Assembled Gel for Gastric Endoscopic Submucosal Dissection-Induced Ulcer: a Preclinical Study in a Porcine Model [Original Research]. Front Pharmacol. 2021;12:2725.
  • Zhang M, Ye L, Huang H, et al. Micelles self-assembled by 3-O-β-d-glucopyranosyl latycodigenin enhance cell membrane permeability, promote antibiotic pulmonary targeting and improve anti-infective efficacy. J Nanobiotechnol. 2020;18(1):140. DOI:10.1186/s12951-020-00699-y
  • Dai XX, Shi XY, Yin QQ, et al. Multiscale study on the interaction mechanism between ginsenoside biosurfactant and saikosaponin a. J Colloid Interface Sci. 2013;396:165–172.
  • Pedebos C, Pol-Fachin L, Pons R, et al. Atomic Model and Micelle Dynamics of QS-21 Saponin. Molecules. 2014;19(3):3744–3760. DOI:10.3390/molecules19033744
  • Sun F, Ye C, Thanki K, et al. Mixed micellar system stabilized with saponins for oral delivery of vitamin K. Colloids Surf B. 2018;170:521–528.
  • Ding HO, Yin QQ, Wan G, et al. Solubilization of menthol by platycodin D in aqueous solution: an integrated study of classical experiments and dissipative particle dynamics simulation. Int J Pharm. 2015;480(1):143–151. DOI:10.1016/j.ijpharm.2015.01.033
  • Meteleva ES, Chistyachenko YS, Suntsova LP, et al. Disodium salt of glycyrrhizic acid – a novel supramolecular delivery system for anthelmintic drug praziquantel. J Drug Delivery Sci Technol. 2019;50:66–77.
  • Zhao X, Zhang H, Gao Y, et al. A Simple Injectable Moldable Hydrogel Assembled from Natural Glycyrrhizic Acid with Inherent Antibacterial Activity. ACS Appl Bio Mater. 2020;3(1):648–653. DOI:10.1021/acsabm.9b01007
  • Chen G, Li J, Cai Y, et al. A Glycyrrhetinic Acid-Modified Curcumin Supramolecular Hydrogel for liver tumor targeting therapy. Sci Rep. 2017;7(1):44210. DOI:10.1038/srep44210
  • Dai L, Liu K, Si C, et al. Ginsenoside nanoparticle: a new green drug delivery system [10.1039/C5TB02305J]. Journal of Materials Chemistry B. 2016;4(3):p. 529–538.
  • Peng SF, Li ZL, Zou LQ, et al. Improving curcumin solubility and bioavailability by encapsulation in saponin-coated curcumin nanoparticles prepared using a simple Ph-driven loading method. Food Funct. 2018;9(3):1829–1839. DOI:10.1039/C7FO01814B
  • Trombino S, Cassano R, Mellace S, et al. Novel microspheres based on triterpene saponins from the roots of Physospermum verticillatum (Waldst & Kit) (Apiaceae) for the improvement of gemcitabine release. J Pharm Pharmacol. 2016;68(2):275–281. DOI:10.1111/jphp.12509
  • Vijayakumar A, Baskaran R, Baek J-H, et al. In Vitro Cytotoxicity and Bioavailability of Ginsenoside-Modified Nanostructured Lipid Carrier Containing Curcumin. AAPS Pharm Sci Tech. 2019;20(2):88. DOI:10.1208/s12249-019-1295-1
  • Li Q, Wan Z, Yang X. Glycyrrhizic acid: self-assembly and applications in multiphase food systems. Curr Opin Food Sci. 2022;43:107–113.
  • Qu D, Wang L, Liu M, et al. Oral Nanomedicine Based on Multicomponent Microemulsions for Drug-Resistant Breast Cancer Treatment. Biomacromolecules. 2017;18(4):1268–1280. DOI:10.1021/acs.biomac.7b00011
  • Lv S, Gu J, Zhang R, et al. Vitamin E Encapsulation in Plant-Based Nanoemulsions Fabricated Using Dual-Channel Microfluidization: formation, Stability, and Bioaccessibility. J Agric Food Chem. 2018;66(40):10532–10542. DOI:10.1021/acs.jafc.8b03077
  • Ryu V, McClements DJ, Corradini MG, et al. Natural antimicrobial delivery systems: formulation, antimicrobial activity, and mechanism of action of quillaja saponin-stabilized carvacrol nanoemulsions. Food Hydrocolloids. 2018;82:442–450.
  • Zhu Z, Wen Y, Yi J, et al. Comparison of natural and synthetic surfactants at forming and stabilizing nanoemulsions: tea saponin, Quillaja saponin, and Tween 80. J Colloid Interface Sci. 2019;536:80–87. doi:10.1016/j.jcis.2018.10.024.
  • Zhao GX, Zhu LJ, Li H, et al. A hierarchical emulsion system stabilized by soyasaponin emulsion droplets [10.1039/D1FO01607E]. Food Funct. 2021;12(21):10571–10580. DOI:10.1039/D1FO01607E
  • Yan S, Xu J, Liu G, et al. Emulsions co-stabilized by soy protein nanoparticles and tea saponin: physical stability, rheological properties, oxidative stability, and lipid digestion. Food Chem. 2022;387:132891.
  • Xu X, Sun Q, McClements DJ. Enhancing the formation and stability of emulsions using mixed natural emulsifiers: hydrolyzed rice glutelin and quillaja saponin. Food Hydrocolloids. 2019;89:396–405.
  • Kong R, Zhu X, Meteleva ES, et al. Enhanced solubility and bioavailability of simvastatin by mechanochemically obtained complexes. Int J Pharm. 2017;534(1):108–118. DOI:10.1016/j.ijpharm.2017.10.011
  • Kong R, Zhu X, Meteleva ES, et al. Atorvastatin calcium inclusion complexation with polysaccharide arabinogalactan and saponin disodium glycyrrhizate for increasing of solubility and bioavailability. Drug Deliv Transl Res. 2018;8(5):1200–1213. DOI:10.1007/s13346-018-0565-x
  • Walthelm U, Dittrich K, Gelbrich G, et al. Effects of saponins on the water solubility of different model compounds. Planta Med. 2001;67(01):49–54. DOI:10.1055/s-2001-10876
  • Mohammed ASA, Naveed M, Jost N. Polysaccharides; Classification, Chemical Properties, and Future Perspective Applications in Fields of Pharmacology and Biological Medicine (A Review of Current Applications and Upcoming Potentialities). J Polym Environ. 2021;29(8):2359–2371.
  • E-K A, Hwang J, Kim S-J, et al. Comparison of the immune activation capacities of fucoidan and laminarin extracted from Laminaria japonica. Int j biol macromol. 2022;208:230–242.
  • Chen L, He C, Zhou M, et al. Research Progress on the Mechanisms of Polysaccharides against Gastric Cancer. Molecules. 2022;27(18):5828. DOI:10.3390/molecules27185828
  • Long X, Hu X, Liu S, et al. Insights on preparation, structure and activities of Gracilaria lemaneiformis polysaccharide. Food Chemistry: X. 2021;12:100153.
  • Sheik A, Kim K, Varaprasad GL, et al. The anti-cancerous activity of adaptogenic herb Astragalus membranaceus. Phytomedicine. 2021;91:153698.
  • Wang D, Liu Y, Zhao W. The Adjuvant Effects on Vaccine and the Immunomodulatory Mechanisms of Polysaccharides from Traditional Chinese Medicine [Review]. Front Mol Biosci. 2021;8. DOI:10.3389/fmolb.2021.655570
  • Ma ZH, Ma J, Lyu JY, et al. Progress in application of Bletilla striata polysaccharide in novel drug delivery systems and biomaterials. China Journal of Chinese Materia Medica. 2021;46(18):4666–4673. DOI:10.19540/j.cnki.cjcmm.20210528.604
  • Fan Y, Liu Y, Wu Y, et al. Natural polysaccharides based self-assembled nanoparticles for biomedical applications – a review. Int j biol macromol. 2021;192:1240–1255. doi:10.1016/j.ijbiomac.2021.10.074.
  • Yang L, Wang S, Ma Q, et al. Fabrication of sulfoxaflor‐loaded natural polysaccharide floating hydrogel microspheres against Nilaparvata lugens (Stal) in rice fields. Pest Manag Sci. 2020;76(9):3046–3055. DOI:10.1002/ps.5855
  • Liu Y, Sun C, Zhang G, et al. Bio-responsive Bletilla striata polysaccharide-based micelles for enhancing intracellular docetaxel delivery. Int j biol macromol. 2020;142:277–287.
  • Shokrani H, Shokrani A, Sajadi SM, et al. Polysaccharide-based nanocomposites for biomedical applications: a critical review [10.1039/D2NH00214K]. Nanoscale Horizons. 2022;7(10):p. 1136–1160.
  • Gou K, Li Y, Qu Y, et al. Advances and prospects of Bletilla striata polysaccharide as promising multifunctional biomedical materials. Materials & Design. 2022;223:111198.
  • Zhang Y, Cui Z, Mei H, et al. Angelica sinensis polysaccharide nanoparticles as a targeted drug delivery system for enhanced therapy of liver cancer. Carbohydr Polym. 2019;219:143–154.
  • Guo J, Yuan C, Huang M, et al. Ganoderma lucidum-derived polysaccharide enhances coix oil-based microemulsion on stability and lung cancer-targeted therapy. Drug Delivery. 2018;25(1):1802–1810. DOI:10.1080/10717544.2018.1516006
  • Cai D, Shi L, Long R, et al. A carboxymethyl lentinan layer by layer self-assembly system as a promising drug chemotherapeutic platform. Carbohydr Polym. 2021;261:117847.
  • Wang Y, Li P, Chen F, et al. A novel Ph-sensitive carrier for the delivery of antitumor drugs: histidine-modified auricularia auricular polysaccharide nano-micelles. Sci Rep. 2017;7(1):4751. DOI:10.1038/s41598-017-04428-8
  • Wang Y, Bai F, Luo Q, et al. Lycium barbarum polysaccharides grafted with doxorubicin: an efficient Ph-responsive anticancer drug delivery system. Int j biol macromol. 2019;121:964–970.
  • Wu Y, Zhang W, Huang J, et al. Mucoadhesive improvement of alginate microspheres as potential gastroretentive delivery carrier by blending with Bletilla striata polysaccharide. Int j biol macromol. 2020;156:1191–1201.
  • Sharma N, Tyagi S, Gupta SK, et al. Development and gamma-scintigraphy study of Hibiscus rosasinensis polysaccharide-based microspheres for nasal drug delivery. Drug Dev Ind Pharm. 2016;42(11):1763–1771. DOI:10.3109/03639045.2016.1173050
  • Valenta C, Schultz K. Influence of carrageenan on the rheology and skin permeation of microemulsion formulations. J Control Release. 2004;95(2):257–265.
  • Hu QB, Luo YC. Recent advances of polysaccharide-based nanoparticles for oral insulin delivery. Int j biol macromol. 2018;120:775–782.
  • Tang L, Luo X, Wang M, et al. Synthesis, characterization, in vitro antioxidant and hypoglycemic activities of selenium nanoparticles decorated with polysaccharides of Gracilaria lemaneiformis. Int j biol macromol. 2021;193:923–932.
  • Cai Z, Dai Q, Guo Y, et al. Glycyrrhiza polysaccharide-mediated synthesis of silver nanoparticles and their use for the preparation of nanocomposite curdlan antibacterial film. Int j biol macromol. 2019;141:422–430.
  • Martins S, Sarmento B, Souto EB, et al. Insulin-loaded alginate microspheres for oral delivery – Effect of polysaccharide reinforcement on physicochemical properties and release profile. Carbohydr Polym. 2007;69(4):725–731. DOI:10.1016/j.carbpol.2007.02.012
  • Pal D, Nayak AK. Novel tamarind seed polysaccharide-alginate mucoadhesive microspheres for oral gliclazide delivery: in vitro–in vivo evaluation. Drug Delivery. 2012;19(3):123–131.
  • Sharma N, Kulkarni GT, Sharma A, et al. Natural mucoadhesive microspheres of Abelmoschus esculentus polysaccharide as a new carrier for nasal drug delivery. J Microencapsul. 2013;30(6):589–598. DOI:10.3109/02652048.2013.764941
  • Chourasia MK, Jain SK. Potential of Guar Gum Microspheres for Target Specific Drug Release to Colon. J Drug Target. 2004;12(7):435–442.
  • Carvalho VFM, Salata GC, de Matos JKR, et al. Optimization of composition and obtainment parameters of biocompatible nanoemulsions intended for intraductal administration of piplartine (piperlongumine) and mammary tissue targeting. Int J Pharm. 2019;567:118460.
  • Qi JR, Zhang DY, Zhao RX, et al. Micro‐and nano‐emulsions based on soluble soy polysaccharide and octenyl succinic anhydride modified soluble soy polysaccharide. Int J Food Sci Technol. 2021;56(6):3034–3043. DOI:10.1111/ijfs.14947
  • Campelo M, Melo EO, Arrais SP, et al. Clove essential oil encapsulated on nanocarrier based on polysaccharide: a strategy for the treatment of vaginal candidiasis. Colloids Surf A. 2021;610:125732.
  • Liao W, Elaissari A, Ghnimi S, et al. Effect of pectin on the properties of nanoemulsions stabilized by sodium caseinate at neutral pH. Int j biol macromol. 2022;209:1858–1866.
  • Yuan CT. Preparation of Lingyi Formula multicomponent microemulsion and its anti-lung cancer activity. Chinese Traditional and Herbal Drugs. 2014;45(22):3284–3288.
  • Rahimi S, Khoee S, Ghandi M. Development of photo and pH dual crosslinked coumarin-containing chitosan nanoparticles for controlled drug release. Carbohydr Polym. 2018;201:236–245.
  • Maity S, Mukhopadhyay P, Kundu PP, et al. Alginate coated chitosan core-shell nanoparticles for efficient oral delivery of naringenin in diabetic animals—An in vitro and in vivo approach. Carbohydr Polym. 2017;170:124–132.
  • Jayapal JJ, Dhanaraj S. Exemestane loaded alginate nanoparticles for cancer treatment: formulation and in vitro evaluation. Int j biol macromol. 2017;105:416–421.
  • Zhang Y, Chen T, Yuan P, et al. Encapsulation of honokiol into self-assembled pectin nanoparticles for drug delivery to HepG2 cells. Carbohydr Polym. 2015;133:31–38.
  • Ahmad M, Mudgil P, Gani A, et al. Nano-encapsulation of catechin in starch nanoparticles: characterization, release behavior and bioactivity retention during simulated in-vitro digestion. Food Chem. 2019;270:95–104.
  • Soumya RS, Prathapan A, Raj PS, et al. Selenium incorporated guar gum nanoparticles safeguard mitochondrial bioenergetics during ischemia reperfusion injury in H9c2 cardiac cells. Int j biol macromol. 2018;107:254–260.
  • Barbosa AI, Costa Lima SA, Reis S. Development of methotrexate loaded fucoidan/chitosan nanoparticles with anti-inflammatory potential and enhanced skin permeation. Int j biol macromol. 2019;124:1115–1122.
  • Do Amaral Rodrigues J, de Araújo AR, Pitombeira NA, et al. Acetylated cashew gum-based nanoparticles for the incorporation of alkaloid epiisopiloturine. Int j biol macromol. 2019;128:965–972.
  • Yang J, Lin JQ, Zhang JH, et al. Fabrication of Zein/Mesona chinensis Polysaccharide Nanoparticles: physical Characteristics and Delivery of Quercetin. ACS Appl Bio Mater. 2022;5(4):1817–1828. DOI:10.1021/acsabm.2c00209
  • Acevedo-Guevara L, Nieto-Suaza L, Sanchez LT, et al. Development of native and modified banana starch nanoparticles as vehicles for curcumin. Int j biol macromol. 2018;111:498–504.
  • Kaur H, Ahuja M, Kumar S, et al. Carboxymethyl tamarind kernel polysaccharide nanoparticles for ophthalmic drug delivery. Int j biol macromol. 2012;50(3):833–839. DOI:10.1016/j.ijbiomac.2011.11.017
  • Li S, Wang X, Li W, et al. Preparation and characterization of a novel conformed bipolymer paclitaxel-nanoparticle using tea polysaccharides and zein. Carbohydr Polym. 2016;146:52–57.
  • Xu G, Li L, Bao X, et al. Curcumin, casein and soy polysaccharide ternary complex nanoparticles for enhanced dispersibility, stability and oral bioavailability of curcumin. Food Biosci. 2020;35:100569.
  • Jiang W, Fu Y, Yang F, et al. Gracilaria lemaneiformis Polysaccharide as Integrin-Targeting Surface Decorator of Selenium Nanoparticles to Achieve Enhanced Anticancer Efficacy. ACS Applied Materials & Interfaces. 2014;6(16):13738–13748. DOI:10.1021/am5031962
  • Habibi Jouybari M, Hosseini S, Mahboobnia K, et al. Simultaneous controlled release of 5-FU, DOX and PTX from chitosan/PLA/5-FU/g-C3N4-DOX/g-C3N4-PTX triaxial nanofibers for breast cancer treatment in vitro. Colloids Surf B. 2019;179:495–504.
  • Nurani M, Akbari V, Taheri A. Preparation and characterization of metformin surface modified cellulose nanofiber gel and evaluation of its anti-metastatic potentials. Carbohydr Polym. 2017;165:322–333.
  • Baghbani F, Moztarzadeh F, Mohandesi JA, et al. Novel alginate-stabilized doxorubicin-loaded nanodroplets for ultrasounic theranosis of breast cancer. Int j biol macromol. 2016;93:512–519.
  • Sombra FM, Richter AR, de Araújo AR, et al. Development of amphotericin B-loaded propionate Sterculia striata polysaccharide nanocarrier. Int j biol macromol. 2020;146:1133–1141.
  • Matoso Sombra F, Richter AR, de Araújo AR, et al. Nanocapsules of Sterculia striata acetylated polysaccharide as a potential monomeric amphotericin B delivery matrix. Int j biol macromol. 2019;130:655–663.
  • Milosavljevic V, Jamroz E, Gagic M, et al. Encapsulation of Doxorubicin in Furcellaran/Chitosan Nanocapsules by Layer-by-Layer Technique for Selectively Controlled Drug Delivery. Biomacromolecules. 2020;21(2):418–434. DOI:10.1021/acs.biomac.9b01175
  • Ye S, Wang C, Liu X, et al. Multilayer nanocapsules of polysaccharide chitosan and alginate through layer-by-layer assembly directly on PS nanoparticles for release. J Biomater Sci Polym Ed. 2005;16(7):909–923. DOI:10.1163/1568562054255691
  • Rochín-Wong S, Rosas-Durazo A, Zavala-Rivera P, et al. Drug Release Properties of Diflunisal from Layer-By-Layer Self-Assembled κ-Carrageenan/Chitosan Nanocapsules: effect of Deposited Layers. Polymers. 2018;10(7):760. DOI:10.3390/polym10070760
  • Dutta RK, Sahu S. Development of oxaliplatin encapsulated in magnetic nanocarriers of pectin as a potential targeted drug delivery for cancer therapy. Results Pharma Sci. 2012;2:38–45.
  • Masood N, Ahmed R, Tariq M, et al. Silver nanoparticle impregnated chitosan-PEG hydrogel enhances wound healing in diabetes induced rabbits. Int J Pharm. 2019;559:23–36.
  • Singla R, Soni S, Patial V, et al. In vivo diabetic wound healing potential of nanobiocomposites containing bamboo cellulose nanocrystals impregnated with silver nanoparticles. Int j biol macromol. 2017;105:45–55.
  • Mishra B, Sahoo SK, Sahoo S. Liranaftate loaded Xanthan gum based hydrogel for topical delivery: physical properties and ex-vivo permeability. Int j biol macromol. 2018;107:1717–1723.
  • El-Ghaffar MA A, Hashem MS, El-Awady MK, et al. Ph-sensitive sodium alginate hydrogels for riboflavin controlled release. Carbohydr Polym. 2012;89(2):667–675. DOI:10.1016/j.carbpol.2012.03.074
  • Huang R, Qi W, Feng L, et al. Self-assembling peptide–polysaccharide hybrid hydrogel as a potential carrier for drug delivery [10.1039/C1SM05375B]. Soft Matter. 2011;7(13):6222–6230. DOI:10.1039/c1sm05375b
  • Singh B, Chauhan N. Dietary fiber psyllium based hydrogels for use in insulin delivery. Int J Diabetes Mellit. 2010;2(1):32–37.
  • Xiang J, Wang Y, Yang L, et al. A novel hydrogel based on Bletilla striata polysaccharide for rapid hemostasis: synthesis, characterization and evaluation. Int j biol macromol. 2022;196:1–12.
  • Cui XM, Zhang XY, Yang Y, et al. Preparation and evaluation of novel hydrogel based on polysaccharide isolated from Bletilla striata. Pharm Dev Technol. 2017;22(8):1001–1011. DOI:10.1080/10837450.2016.1221422
  • Zhao H, Li Y. A novel Ph/temperature/temperature-responsive hydrogel based on tremella polysaccharide and poly(N-isopropylacrylamide). Colloids Surf A. 2020;586:124270.
  • Asnani GP, Bahekar J, Kokare CR. Development of novel pH–responsive dual crosslinked hydrogel beads based on Portulaca oleracea polysaccharide-alginate-borax for colon specific delivery of 5-fluorouracil. J Drug Delivery Sci Technol. 2018;48:200–208.
  • Jang H, Zhi K, Wang J, et al. Enhanced therapeutic effect of paclitaxel with a natural polysaccharide carrier for local injection in breast cancer. Int j biol macromol. 2020;148:163–172.
  • Xu B, Jiang G, Yu W, et al. Preparation of poly(lactic-co-glycolic acid) and chitosan composite nanocarriers via electrostatic self assembly for oral delivery of insulin. Mater Sci Eng C Mater Biol Appl. 2017;78:420–428.
  • Assaad E, Blemur L, Lessard M, et al. Polyelectrolyte Complex of Carboxymethyl Starch and Chitosan as Protein Carrier: oral Administration of Ovalbumin. J Biomater Sci Polym Ed. 2012;23(13):1713–1728. DOI:10.1163/092050611X597771
  • Azad AK, Doolaanea AA, Al-Mahmood SMA, et al. Electro-hydrodynamic assisted synthesis of lecithin-stabilized peppermint oil-loaded alginate microbeads for intestinal drug delivery. Int j biol macromol. 2021;185:861–875.
  • Boi S, Rouatbi N, Dellacasa E, et al. Alginate microbeads with internal microvoids for the sustained release of drugs. Int j biol macromol. 2020;156:454–461.
  • Cheewatanakornkool K, Niratisai S, Manchun S, et al. Characterization and in vitro release studies of oral microbeads containing thiolated pectin–doxorubicin conjugates for colorectal cancer treatment. Asian J Pharm Sci. 2017;12(6):509–520. DOI:10.1016/j.ajps.2017.07.005
  • Almeida A, Araújo M, Novoa-Carballal R, et al. Novel amphiphilic chitosan micelles as carriers for hydrophobic anticancer drugs. Mater Sci Eng C Mater Biol Appl. 2020;112:110920.
  • Herman A, Herman AP. Essential oils and their constituents as skin penetration enhancer for transdermal drug delivery: a review. J Pharm Pharmacol. 2014;67(4):473–485.
  • Aljaafari MN, AlAli AO, Baqais L, et al. An Overview of the Potential Therapeutic Applications of Essential Oils. Molecules. 2021;26(3):628. DOI:10.3390/molecules26030628
  • Alhasso B, Ghori MU, Conway BR. Systematic Review on the Effectiveness of Essential and Carrier Oils as Skin Penetration Enhancers in Pharmaceutical Formulations. Sci Pharm. 2022;90(1):14. doi:10.3390/scipharm90010014.
  • Chen Y, Wang S, Hu Q, et al. Self-emulsifying System Co-loaded with Paclitaxel and Coix Seed Oil Deeply Penetrated to Enhance Efficacy in Cervical Cancer. Curr Drug Deliv. 2023;20(7):919–926. DOI:10.2174/1567201819666220628094239
  • Zhu JY, Huang YL, Zhang JQ, et al. Formulation, preparation and evaluation of nanostructured lipid carrier containing naringin and coix seed oil for anti-tumor application based on “unification of medicines and excipients”. Drug Des Devel Ther. 2020;14:1481.
  • Balakumar K, Vijaya Raghavan C, Tamil Selvan N, et al. Self emulsifying drug delivery system: optimization and its prototype for various compositions of oils, surfactants and co-surfactants. J Pharm Res. 2013;6(5):510–514. DOI:10.1016/j.jopr.2013.04.031
  • Villar AMS, Naveros BC, Campmany ACC, et al. Design and optimization of self-nanoemulsifying drug delivery systems (SNEDDS) for enhanced dissolution of gemfibrozil. Int J Pharm. 2012;431(1):161–175. DOI:10.1016/j.ijpharm.2012.04.001
  • AboulFotouh K, Allam AA, El-Badry M, et al. Development and in vitro/in vivo performance of self-nanoemulsifying drug delivery systems loaded with candesartan cilexetil. Eur J Pharm Sci. 2017;109:503–513.
  • Sahoo SK. Formulation development and bioavailability assessment of aripiprazole by self-nanoemulsifying drug delivery systems. Asian J Pharm. 2018;12(03):1059–1068.
  • Pol AS, Patel PA, Hegde D. Peppermint oil based drug delivery system of aceclofenac with improved anti-inflammatory activity and reduced ulcerogenecity. Int J Pharm Biol Sci. 2013;1(2):89–101.
  • Khoa Huynh NA, Do THT, Le XL, et al. Development of softgel capsules containing cyclosporine a encapsulated pine essential oil based self-microemulsifying drug delivery system. J Drug Delivery Sci Technol. 2022;68:103115.
  • Alpaslan D, Dudu TE, Aktaş N. Synthesis and characterization of novel organo-hydrogel based agar, glycerol and peppermint oil as a natural drug carrier/release material. Mater Sci Eng C Mater Biol Appl. 2021;118:111534.
  • Lv X, Cong Z, Liu Z, et al. Improvement of the solubility, photostability, antioxidant activity and UVB photoprotection of trans-resveratrol by essential oil based microemulsions for topical application. J Drug Delivery Sci Technol. 2018;48:346–354.
  • Lv X, Liu T, Ma H, et al. Preparation of Essential Oil-Based Microemulsions for Improving the Solubility, pH Stability, Photostability, and Skin Permeation of Quercetin. AAPS Pharm Sci Tech. 2017;18(8):3097–3104. DOI:10.1208/s12249-017-0798-x
  • Fopase R, Pathode SR, Sharma S, et al. Lipopeptide and essential oil based nanoemulsion for controlled drug delivery. Polym Plast Technol Eng. 2020;59(18):2076–2086. DOI:10.1080/25740881.2020.1784222
  • Shehata TM, Khalil HE, Elsewedy HS, et al. Myrrh essential oil-based nanolipid formulation for enhancement of the antihyperlipidemic effect of atorvastatin. J Drug Delivery Sci Technol. 2021;61:102277.
  • Srivastava S, Singh S, Saraf SA, et al. Encapsulation of Baicalein in Cinnamon Essential Oil Nanoemulsion for Enhanced Anticancer Efficacy Against MDA-MB-231 Cells. Bionanoscience. 2021;11(4):1049–1060. DOI:10.1007/s12668-021-00900-y
  • Rizg WY, Hosny KM, Eshmawi BA, et al. Tailoring of Geranium Oil-Based Nanoemulsion Loaded with Pravastatin as a Nanoplatform for Wound Healing. Polymers. 2022;14(9):1912. DOI:10.3390/polym14091912
  • Hussein A, Abdel-Mottaleb MMA, El-Assal M, et al. Novel biocompatible essential oil-based lipid nanocapsules with antifungal properties. J Drug Delivery Sci Technol. 2020;56:101605.
  • Eid RK, Essa EA, El Maghraby GM. Essential oils in niosomes for enhanced transdermal delivery of felodipine. Pharm Dev Technol. 2019;24(2):157–165.
  • Wen K, Fang X, Yang J, et al. Recent research on flavonoids and their biomedical applications. Curr Med Chem. 2021;28(5):1042–1066. DOI:10.2174/0929867327666200713184138
  • Han L, Fu Q, Deng C, et al. Immunomodulatory potential of flavonoids for the treatment of autoimmune diseases and tumour. Scand J Immunol. 2022;95(1):e13106. DOI:10.1111/sji.13106
  • Dias MC, Pinto DCGA, Silva AMS. Plant Flavonoids: chemical Characteristics and Biological Activity. Molecules. 2021;26(17):5377. cited. DOI:10.3390/molecules26175377.
  • Uchiyama H, Tozuka Y, Imono M, et al. Transglycosylated stevia and hesperidin as pharmaceutical excipients: dramatic improvement in drug dissolution and bioavailability. Eur J Pharm Biopharm. 2010;76(2):238–244. DOI:10.1016/j.ejpb.2010.07.006
  • Zhang ZJ, Michniak-Kohn B. Flavosomes, novel deformable liposomes for the co-delivery of anti-inflammatory compounds to skin. Int J Pharm. 2020;585:119500. doi:10.1016/j.ijpharm.2020.119500.
  • Qian Y, Zhao F, Wang J, et al. Myricetin-Based Self-Assembled Nanoparticles for Tumor Synergistic Therapy by Antioxidation Pathway. J Biomed Nanotechnol. 2021;17(12):2399–2412. DOI:10.1166/jbn.2021.3197
  • Sorrenti A, Illa O, Ortuño RM Amphiphiles in aqueous solution: well beyond a soap bubble [10.1039/C3CS60151J]. Chem Soc Rev. 2013;42(21):p. 8200–8219.
  • Alfaro-Viquez E, Esquivel-Alvarado D, Madrigal-Carballo S, et al. Antimicrobial proanthocyanidin-chitosan composite nanoparticles loaded with gentamicin. Int j biol macromol. 2020;162:1500–1508.
  • Li W. Supramolecular nanofiber-reinforced Puerarin hydrogels as drug carriers with synergistic controlled release and antibacterial properties. J Mater Sci. 2020;55(15):6669–6677.
  • Chen M, Wang P, Li T, et al. Comprehensive analysis of Huanglian Jiedu decoction: revealing the presence of a self-assembled phytochemical complex in its naturally-occurring precipitate. J Pharm Biomed Anal. 2021;195:113820.
  • Xiang M-L, B-Y H, Z-H Q, et al. Chemistry and bioactivities of natural steroidal alkaloids. Nat Prod Bioprospecting. 2022;12(1):23. DOI:10.1007/s13659-022-00345-0
  • Hou Q, He WJ, Wu YS, et al. Berberine: a Traditional Natural Product with Novel Biological Activities. Altern Ther Health Med. 2019;26:20–27.
  • Thawabteh AM, Thawabteh A, Lelario F, et al. Classification, Toxicity and Bioactivity of Natural Diterpenoid Alkaloids. Molecules. 2021;26(13):4103. DOI:10.3390/molecules26134103
  • Sun Y, Fry CM, Shieh A, et al. Self-assembly of a 5-fluorouracil and camptothecin dual drug dipeptide conjugate [10.1039/D2OB00762B]. Org Biomol Chem. 2022;20(26):p. 5254–5258.
  • Huang X, Wang P, Li T, et al. Self-Assemblies Based on Traditional Medicine Berberine and Cinnamic Acid for Adhesion-Induced Inhibition Multidrug-Resistant Staphylococcus aureus. ACS Applied Materials & Interfaces. 2020;12(1):227–237. DOI:10.1021/acsami.9b17722
  • Gao Y, Xiao Y, Liu S, et al. Camptothecin prodrug nanomicelle based on a boronate ester-linked diblock copolymer as the carrier of doxorubicin with enhanced cellular uptake. J Biomater Sci Polym Ed. 2018;29(2):160–180. DOI:10.1080/09205063.2017.1406632
  • Tian X, Wang P, Li T, et al. Self-assembled natural phytochemicals for synergistically antibacterial application from the enlightenment of traditional Chinese medicine combination. Acta Pharm Sin B. 2020;10(9):1784–1795. DOI:10.1016/j.apsb.2019.12.014
  • Han N, Huang X, Tian X, et al. Self-assembled nanoparticles of natural phytochemicals (berberine and 3, 4, 5-methoxycinnamic acid) originated from traditional Chinese medicine for inhibiting multidrug-resistant Staphylococcus aureus. Curr Drug Deliv. 2021;18(7):914–921. DOI:10.2174/1567201817666201124121918
  • Wang P, Guo W, Huang G, et al. Berberine-Based Heterogeneous Linear Supramolecules Neutralized the Acute Nephrotoxicity of Aristolochic Acid by the Self-Assembly Strategy. ACS Applied Materials & Interfaces. 2021;13(28):32729–32742. DOI:10.1021/acsami.1c06968
  • Serrano J, Puupponen‐Pimiä R, Dauer A, et al. Tannins: current knowledge of food sources, intake, bioavailability and biological effects. Mol Nutr Food Res. 2009;53(S2):S310–329. DOI:10.1002/mnfr.200900039
  • Pizzi A. Tannins medical/pharmacological and related applications: a critical review. Sustainable Chem Pharm. 2021;22:100481.
  • Fahimi S, Abdollahi M, Mortazavi SA, et al. Wound healing activity of a traditionally used poly herbal product in a burn wound model in rats. Iran Red Crescent Med J. 2015;17(9).
  • De Jesus NZT, Falcão H, Gomes IF, et al. Tannins, Peptic Ulcers and Related Mechanisms. Int J Mol Sci. 2012;13(3):3203–3228. DOI:10.3390/ijms13033203
  • Noce ARABR, Romani A, Bernini R. Dietary Intake and Chronic DiseasePrevention. Nutrients. 2021;13(4):1358.
  • Qi Y, Li J, Nie Q, et al. Polyphenol-assisted facile assembly of bioactive nanoparticles for targeted therapy of heart diseases. Biomaterials. 2021;275:120952.
  • Du J, Wang L, Han X, et al. Keratin-tannic acid complex nanoparticles as pH/GSH dual responsive drug carriers for doxorubicin. J Biomater Sci Polym Ed. 2021;32(9):1125–1139. DOI:10.1080/09205063.2021.1906074
  • Wang X, Yan J, Pan D, et al. Polyphenol–poloxamer Self‐Assembled Supramolecular Nanoparticles for Tumor NIRF/PET Imaging. Adv Healthc Mater. 2018;7(15):1701505. DOI:10.1002/adhm.201701505
  • Zhang Q, Feng Z, Wang H, et al. Preparation of camptothecin micelles self-assembled from disodium glycyrrhizin and tannic acid with enhanced antitumor activity. Eur J Pharm Biopharm. 2021;164:75–85.
  • Onder A, Ozay H. Synthesis and characterization of biodegradable and antioxidant phosphazene-tannic acid nanospheres and their utilization as drug carrier material. Mater Sci Eng C Mater Biol Appl. 2021;120:111723.
  • Hu B, Shen Y, Adamcik J, et al. Polyphenol-Binding Amyloid Fibrils Self-Assemble into Reversible Hydrogels with Antibacterial Activity. ACS Nano. 2018;12(4):3385–3396. DOI:10.1021/acsnano.7b08969
  • Zheng J, Fan R, Wu H, et al. Directed self-assembly of herbal small molecules into sustained release hydrogels for treating neural inflammation. Nat Commun. 2019;10(1):1604. DOI:10.1038/s41467-019-09601-3
  • Wu L, Shi Y, Ni ZH, et al. Preparation of a Self-Assembled Rhein–Doxorubicin Nanogel Targeting Mitochondria and Investigation on Its Antihepatoma Activity. Mol Pharm. 2022;19(1):35–50. DOI:10.1021/acs.molpharmaceut.1c00565
  • Wang X, Qiu L, Wang X, et al. Evaluation of intestinal permeation enhancement with carboxymethyl chitosan-rhein polymeric micelles for oral delivery of paclitaxel. Int J Pharm. 2020;573:118840.
  • Zhi K, Wang J. Retraction: a self-assembled supramolecular natural product gel from liquidambaric acid in traditional Chinese medicine with inherent anti-inflammatory activity for drug delivery. J Mat Chem B. 2020;8(48):11109.
  • Bag BG, Paul K. Vesicular and Fibrillar Gels by Self‐Assembly of Nanosized Oleanolic Acid. Asian J Org Chem. 2012;1(2):150–154.
  • Bag BG, Dash SS First self-assembly study of betulinic acid, a renewable nano-sized, 6-6-6-6-5 pentacyclic monohydroxy triterpenic acid [10.1039/C1NR10886G]. Nanoscale. 2011;3(11):p. 4564–4566.
  • Zhi KK, Sun Y, Zhao HT, et al. Self-assembled supramolecular material derived from traditional Chinese medicine: injectable self-assembled natural product gel for drug delivery with biological activity. Mater Today Commun. 2020;23:101149.
  • Hou Y, Chen M, Ruan H, et al. A new supramolecular natural product gel based on self-assembled pomolic acid from traditional Chinese medicine. Coll Inter Sci Commun. 2022;46:100583.
  • Kim S, Shi Y, Kim JY, et al. Overcoming the barriers in micellar drug delivery: loading efficiency, in vivo stability, and micelle–cell interaction. Expert Opin Drug Delivery. 2010;7(1):49–62. DOI:10.1517/17425240903380446
  • Batrakova E, Lee S, Li S, et al. Fundamental Relationships Between the Composition of Pluronic Block Copolymers and Their Hypersensitization Effect in MDR Cancer Cells. Pharm Res. 1999;16(9):1373–1379. DOI:10.1023/A:1018942823676
  • Wojciechowski K. Surface activity of saponin from Quillaja bark at the air/water and oil/water interfaces. Colloids Surf B Biointerfaces. 2013;108:95–102.
  • Tippel J, Reim V, Rohn S, et al. Colour stability of lutein esters in liquid and spray dried delivery systems based on Quillaja saponins. Food Res Int. 2016;87:68–75.
  • Lee ES, Na K, Bae YH. Super Ph-Sensitive Multifunctional Polymeric Micelle. Nano Lett. 2005;5(2):325–329.
  • Atanase LI. Micellar Drug Delivery Systems Based on Natural Biopolymers. Polymers. 2021;13(3):477.
  • Yoncheva K, Calleja P, Agüeros M, et al. Stabilized micelles as delivery vehicles for paclitaxel. Int J Pharm. 2012;436(1):258–264. DOI:10.1016/j.ijpharm.2012.06.030
  • Guan Q, Zhang G, Sun D, et al. In vitro and in vivo evaluation of docetaxel-loaded stearic acid-modified Bletilla striata polysaccharide copolymer micelles. PLoS ONE. 2017;12(3):e0173172. DOI:10.1371/journal.pone.0173172
  • Wang C, Zhu J, Ma J, et al. Functionalized Bletilla striata polysaccharide micelles for targeted intracellular delivery of Doxorubicin: in vitro and in vivo evaluation. Int J Pharm. 2019;567:118436.
  • Wang M-Z, He X, Yu Z, et al. A Nano Drug Delivery System Based on Angelica sinensis Polysaccharide for Combination of Chemotherapy. Molecules. 2020;25(13):3096. DOI:10.3390/molecules25133096
  • Wang M-Z, He X, Yu Z, et al. Self-assembly and behavior at aqueous interfaces. Adv Colloid Interface Sci. 2017;243:105–113.
  • Matsuoka K, Miyajima R, Ishida Y, et al. Aggregate formation of glycyrrhizic acid. Colloids Surf A. 2016;500:112–117.
  • Bardania H, Tarvirdipour S, Dorkoosh F. Liposome-targeted delivery for highly potent drugs. Artific Cells Nanomed Biotechnol. 2017;45(8):1478–1489.
  • Zhang L, Zhang S, Jiang M, et al. Novel Timosaponin AIII-Based Multifunctional Liposomal Delivery System for Synergistic Therapy Against Hepatocellular Carcinoma Cancer. Int J Nanomed. 2021;16:5531.
  • Shakeri A, Sahebkar A. Opinion Paper: phytosome: a Fatty Solution for Efficient Formulation of Phytopharmaceuticals. Recent Pat Drug Deliv Formul. 2016;10(1):7–10.
  • Saggini A, Anogeianaki A, Maccauro G, et al. Cholesterol, Cytokines and Diseases. Int J Immunopathol Pharmacol. 2011;24(3):567–581. DOI:10.1177/039463201102400303
  • Kulig W, Cwiklik L, Jurkiewicz P, et al. Cholesterol oxidation products and their biological importance. Chem Phys Lipids. 2016;199:144–160.
  • Babaie S, Bakhshayesh ARD, Ha JW, et al. Invasome: a Novel Nanocarrier for Transdermal Drug Delivery. Nanomaterials. 2020;10(2):341. DOI:10.3390/nano10020341
  • Liu WL, Hou YY, Jin YY, et al. Research progress on liposomes: application in food, digestion behavior and absorption mechanism. Trends in Food Sci Technol. 2020;104:177–189.
  • Lasic DD. Mechanisms of Liposome Formation. J Liposome Res. 1995;5(3):431–441.
  • Islam Shishir MR, Karim N, Gowd V, et al. Liposomal delivery of natural product: a promising approach in health research. Trends in Food Sci Technol. 2019;85:177–200.
  • Chen Y, Qu D, Fu R, et al. A Tf-modified tripterine-loaded coix seed oil microemulsion enhances anti-cervical cancer treatment. Int J Nanomed. 2018;13:7275.
  • Zu-Bing MA, Xiao-Fang LI, Xie L, et al. Preparation of emodin-cinnamaldehyde self-microemulsions and in vitro evaluation(in Chinese). Chinese Traditional Patent Med. 2019;41(1):1–7.
  • Li P, Huang M, Liu Y, et al. Preparation of microemulsion of triptolide-coix seed fraction and its anti-lung cancer efficacy in vivo(in Chinese). Chinese J Experi Traditional Med Formul. 2017;23(06):1–6.
  • de Oliveira Felipe L, Lemos Bicas J, Bouhoute M, et al. Formulation and physicochemical stability of oil-in-water nanoemulsion loaded with α-terpineol as flavor oil using Quillaja saponins as natural emulsifier. Food Res Int. 2022;153:110894.
  • Shu G, Khalid N, Chen Z, et al. Formulation and characterization of astaxanthin-enriched nanoemulsions stabilized using ginseng saponins as natural emulsifiers. Food Chem. 2018;255:67–74.
  • Gao W, Jiang Z, Du X, et al. Impact of Surfactants on Nanoemulsions based on Fractionated Coconut Oil: emulsification Stability and in vitro Digestion. J Oleo Sci. 2020;69(3):227–239.
  • Zhu T, Kang W, Yang H, et al. Advances of microemulsion and its applications for improved oil recovery. Adv Colloid Interface Sci. 2022;299:102527.
  • Rehman K, Zulfakar MH. Recent advances in gel technologies for topical and transdermal drug delivery. Drug Dev Ind Pharm. 2014;40(4):433–440.
  • Hoare TR, Kohane DS. Hydrogels in drug delivery: progress and challenges. Polymer. 2008;49(8):1993–2007.
  • Li Z, Xu W, Zhang C, et al. Self-assembled lysozyme/carboxymethylcellulose nanogels for delivery of methotrexate. Int j biol macromol. 2015;75:166–172.
  • Djabourov M. Gelation—a review. Polym Int. 1991;25(3):135–143.
  • Tako M. Structural principles of polysaccharide gels. J Appl Glycosci. 2000;47(1):49–53.
  • Tako M. The Principle of Polysaccharide Gels. Adv Biosci Biotechnol. 2015;6(01):22.
  • Khan I, Saeed K, Khan I. Nanoparticles: properties, applications and toxicities. Arab J Chem. 2019;12(7):908–931.
  • Li Y, Guo C, Chen Q, et al. Improvement of pneumonia by curcumin-loaded bionanosystems based on platycodon grandiflorum polysaccharides via calming cytokine storm. Int j biol macromol. 2022;202:691–706.
  • Venkatesan J, Anil S, Kim S-K, et al. Seaweed Polysaccharide-Based Nanoparticles Preparation Applications for Drug Delivery. Polymers. 2016;8(2):30. DOI:10.3390/polym8020030
  • Guo C, Su Y, Wang B, et al. Novel polysaccharide building hybrid nanoparticles: remodelling TAMs to target ERα-positive breast cancer. J Drug Target. 2022;30(4):450–462. DOI:10.1080/1061186X.2021.2020798
  • Wang K, Xu J, Liu Y, et al. Self-assembled Angelica sinensis polysaccharide nanoparticles with an instinctive liver-targeting ability as a drug carrier for acute alcoholic liver damage protection. Int J Pharm. 2020;577:118996.
  • Mukhopadhyay P, Chakraborty S, Bhattacharya S, et al. Ph-sensitive chitosan/alginate core-shell nanoparticles for efficient and safe oral insulin delivery. Int j biol macromol. 2015;72:640–648.
  • Li T, Wang PL, Guo WB, et al. Natural Berberine-Based Chinese Herb Medicine Assembled Nanostructures with Modified Antibacterial Application. ACS Nano. 2019;13(6):6770–6781. DOI:10.1021/acsnano.9b01346
  • Liu Z, Balasubramanian V, Bhat C, et al. Quercetin‐based Modified Porous Silicon Nanoparticles for Enhanced Inhibition of Doxorubicin‐Resistant Cancer Cells. Adv Healthc Mater. 2017;6(3):1601009. DOI:10.1002/adhm.201601009
  • Spizzirri UG, Cirillo G, Curcio M, et al. Flavonoid-based Ph-responsive hydrogels as carrier of unstable drugs in oxidative conditions. Pharm Dev Technol. 2015;20(3):288–296. DOI:10.3109/10837450.2013.862261
  • Cheng T, Liu J, Ren J, et al. Green Tea Catechin-Based Complex Micelles Combined with Doxorubicin to Overcome Cardiotoxicity and Multidrug Resistance [Research Paper]. Theranostics. 2016;6(9):1277–1292. DOI:10.7150/thno.15133
  • Mu Y, Wu G, Su C, et al. Ph-sensitive amphiphilic chitosan-quercetin conjugate for intracellular delivery of doxorubicin enhancement. Carbohydr Polym. 2019;223:115072.
  • Bae KH, Tan S, Yamashita A, et al. Hyaluronic acid-green tea catechin micellar nanocomplexes: fail-safe cisplatin nanomedicine for the treatment of ovarian cancer without off-target toxicity. Biomaterials. 2017;148:41–53.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.