843
Views
0
CrossRef citations to date
0
Altmetric
Review

Alternative application of an iTrack microcatheter and canaloplasty: case report and literature review

ORCID Icon &
Pages 1201-1208 | Received 19 Jun 2023, Accepted 05 Sep 2023, Published online: 19 Sep 2023

References

  • Kang JM, Tanna AP. Glaucoma. Med Clin North Am. 2021;105(3):493–510. doi: 10.1016/j.mcna.2021.01.004
  • Khaimi M. Canaloplasty using iTrack 250 microcatheter with suture tensioning on Schlemm′s canal. Middle East Afr J Ophthalmol. 2009;16(3):127. doi: 10.4103/0974-9233.56224
  • Byszewska A, Konopińska J, Kicińska AK, et al. Canaloplasty in the treatment of primary open-angle glaucoma: patient selection and perspectives. Clin Ophthalmol. 2019; Dec 31;13:2617–2629. doi: 10.2147/OPTH.S155057
  • Kicińska AK, Danielewska ME, Rękas M. Safety and efficacy of three variants of canaloplasty with phacoemulsification to treat open-angle glaucoma and cataract: 12-month follow-up. J Clin Med. 2022;11(21):6501. doi: 10.3390/jcm11216501
  • Carassa RG, Bettin P, Fiori M, et al. Viscocanalostomy: a pilot study. Acta Ophthalmol Scand Suppl. 1998;227:51–52. doi: 10.1111/j.1600-0420.1998.tb00886.x
  • Stegmann R, Pienaar A, Miller D. Viscocanalostomy for open-angle glaucoma in black African patients. J Cataract Refract Surg. 1999;25(3):316–322. doi: 10.1016/S0886-3350(99)80078-9
  • Cameron B, Field M, Ball S, et al. Circumferential viscodilation of Schlemm’s canal with a flexible microcannula during non-penetrating glaucoma surgery. Digit J Ophthalmol. 2006;12(1). https://www.djo.harvard.edu/site.php?url=/physicians/oa/929.
  • Ranta VP, Urtti A. Transscleral drug delivery to the posterior eye: prospects of pharmacokinetic modeling. Adv Drug Deliv Rev. 2006;58(11):1164–1181. doi: 10.1016/j.addr.2006.07.025
  • Kang-Mieler JJ, Osswald CR, Mieler WF. Advances in ocular drug delivery: emphasis on the posterior segment. Expert Opin Drug Deliv. 2014;11(10):1647–1660. doi: 10.1517/17425247.2014.935338
  • Kayla JJK, Wenqiang MR, William L. Advances in ocular drug delivery systems. Eye. 2020;34(8):1371–1379. doi: 10.1038/s41433-020-0809-0
  • Rizzo S, Ebert FG, Di Bartolo E, et al. Suprachoroidal drug infusion for the treatment of severe subfoveal hard exudates. Retina. 2012;32(4):776–784. doi: 10.1097/IAE.0b013e3182278b0e
  • Tetz M, Rizzo S, Augustin AJ. Safety of submacular suprachoroidal drug administration via a microcatheter: retrospective analysis of European treatment results. Ophthalmologica. 2012;227(4):183–189. doi: 10.1159/000336045
  • Olsen TW, Feng X, Wabner K, et al. Cannulation of the suprachoroidal space: a novel drug delivery methodology to the posterior segment. Am J Ophthalmol. 2006;142(5):777–787. doi: 10.1016/j.ajo.2006.05.045
  • Chen M, Li X, Liu J, et al. Safety and pharmacodynamics of suprachoroidal injection of triamcinolone acetonide as a controlled ocular drug release model. J Control Release. 2015;10(203):109–117. doi: 10.1016/j.jconrel.2015.02.021
  • Robinson MR, Lee SS, Kim H, et al. A rabbit model for assessing the ocular barriers to the transscleral delivery of triamcinolone acetonide. Exp Eye Res. 2006;82(3):479–487. doi: 10.1016/j.exer.2005.08.007
  • Peden MC, Min J, Meyers C, et al. Ab-externo AAV-mediated gene delivery to the suprachoroidal space using a 250 micron flexible microcatheter. PLoS One. 2011;6(2):17140. doi: 10.1371/journal.pone.0017140
  • de Smet MD, Wyse S, Vezina M, et al. Repeated ab-externo catheterization of the sub-retinal space using a microcatheter for targeted delivery of a cell therapy product in a pig model. Invest Ophthalmol Vis Sci. 2012;53(14):5844.
  • Kang SJ, Patel SR, Berezovsky DE, et al. Suprachoroidal injection of microspheres with microcatheter in a rabbit model of uveal melanoma. Invest Ophthalmol Vis Sci. 2011;52(14):1459.
  • Ho AC, Chang TS, Samuel M, et al. Experience with a subretinal cell-based therapy in patients with geographic atrophy secondary to age-related macular degeneration. Am J Ophthalmol. 2017;179:67–80. doi: 10.1016/j.ajo.2017.04.006
  • Yiu G, Chung SH, Mollhoff IN, et al. Suprachoroidal and subretinal injections of AAV using transscleral microneedles for retinal gene delivery in nonhuman primates. Mol Ther - Methods Clin Dev. 2020;16:179–191. doi: 10.1016/j.omtm.2020.01.002
  • Olsen TW, Feng X, Wabner K, et al. Pharmacokinetics of pars plana intravitreal injections versus microcannula suprachoroidal injections of bevacizumab in a porcine model. Investig Ophthalmol Vis Sci. 2011;52(7):4749–4756. doi: 10.1167/iovs.10-6291
  • Mori K, Gehlbach P, Yamamoto S, et al. AAV-mediated gene transfer of pigment epithelium-derived factor inhibits choroidal neovascularization. Investig Ophthalmol Vis Sci. 2002;43(6):1994–2000.
  • Emi K, Pederson JE, Toris CB. Hydrostatic pressure of the suprachoroidal space. Investig Ophthalmol Vis Sci. 1989;30(2):233–238.
  • Krohn J, Bertelsen T. Corrosion casts of the suprachoroidal space and uveoscleral drainage routes in the pig eye. Acta Ophthalmol Scand. 1997;75(1):28–31. doi: 10.1111/j.1600-0420.1997.tb00244.x
  • Höh H, Grisanti S, Rau M, et al. Two-year clinical experience with the CyPass micro-stent: safety and surgical outcomes of a novel supraciliary micro-stent. Klin Monbl Augenheilkd. 2014;231(4):377–381. doi: 10.1055/s-0034-1368214
  • Wellik SR, Dale EA. A review of the iStent ® trabecular micro-bypass stent: safety and efficacy. Clin Ophthalmol. 2015;15(9):677–684. doi: 10.2147/OPTH.S57217
  • Yeh S, Khurana RN, Shah M, et al. Efficacy and safety of suprachoroidal CLS-TA for macular edema secondary to noninfectious uveitis: phase 3 randomized trial. Ophthalmology. 2020;127(7):948–955. doi: 10.1016/j.ophtha.2020.01.006
  • Maepea O, Bill A. Pressures in the juxtacanalicular tissue and Schlemm ’ s canal in monkeys. Exp Eye Res. 1992;54:879–883. doi: 10.1016/0014-4835(92)90151-h
  • Overby DR, Stamer WD, Johnson M. The changing paradigm of outflow resistance generation: towards synergistic models of the JCT and inner wall edothelium. Exp Eye Res. 2009;88(4):656–670. doi: 10.1016/j.exer.2008.11.033
  • Liu X, Rasmussen CA, Gabelt BAT, et al. Gene therapy targeting glaucoma: where are we? Surv Ophthalmol. 2009;54(4):472–486. doi: 10.1016/j.survophthal.2009.04.003
  • Rao PV, Deng P, Sasaki Y, et al. Regulation of myosin light chain phosphorylation in the trabecular meshwork: role in aqueous humour outflow facility *. Exp Eye Res. 2005;80:197–206. doi: 10.1016/j.exer.2004.08.029
  • Honjo M, Tanihara H, Inatani M, et al. Effects of Rho-associated protein kinase inhibitor Y-27632 on intraocular pressure and outflow facility. Investig Ophthalmol Vis Sci. 2001;42(1):137–144.
  • Erickson-Lamy K, Schroeder A, Epstein DL. Ethacrynic acid induces reversible shape and cytoskeletal changes in cultured cells. Investig Ophthalmol Vis Sci. 1992;33(9):2631–2640.
  • Peterson JA, Tian B, Geiger B, et al. Effect of latrunculin-B on outflow facility in monkeys. Exp Eye Res. 2000;70(3):307–313. doi: 10.1006/exer.1999.0797
  • Rao PV, Deng P, Kumar J, et al. Modulation of aqueous humor outflow facility by the Rho kinase – specific inhibitor Y-27632. Invest Ophthalmol Vis Sci. 2001;42:1029–1037.
  • Rao PV, Deng P, Maddala R, et al. Expression of dominant negative Rho-binding domain of Rho-kinase in organ cultured human eye anterior segments increases aqueous humor outflow. Mol Vis. 2005;11(March):288–297.
  • Tian B, Kaufman PL. Effects of the Rho kinase inhibitor Y-27632 and the phosphatase inhibitor calyculin a on outflow facility in monkeys *. Exp Eye Res. 2005;80(2):215–225. doi: 10.1016/j.exer.2004.09.002
  • Aktories K, Mohr C, Koch G. Clostridium botulinum C3 ADP-ribosyltransferase. Curr Top Microbiol. 1992;175:115–131.
  • Liu X, Hu Y, Filla MS, et al. The effect of C3 transgene expression on actin and cellular adhesions in cultured human trabecular meshwork cells and on outflow facility in organ cultured monkey eyes. Mol Vis. 2005;11:1112–1121. http://europepmc.org/abstract/MED/16379023
  • Grosheva I, Vittitow JL, Goichberg P, et al. Caldesmon effects on the actin cytoskeleton and cell adhesion in cultured HTM cells. Exp Eye Res. 2006;82(6):945–958. doi: 10.1016/j.exer.2006.01.006
  • Gabelt BT, Hu Y, Vittitow JL, et al. Caldesmon transgene expression disrupts focal adhesions in HTM cells and increases outflow facility in organ-cultured human and monkey anterior segments. Experimental Eye Research. 2006;82(6):935–944. doi: 10.1016/j.exer.2005.12.002
  • Swaminathan SS, Oh DJ, Kang MH, et al. Secreted protein acidic and rich in cysteine (SPARC)-null mice exhibit more uniform outflow. Investig Ophthalmol Vis Sci. 2013;54(3):2035–2047. doi: 10.1167/iovs.12-10950
  • Haddadin RI, Oh DJ, Kang MH, et al. Thrombospondin-1 (TSP1)-null and TSP2-null mice exhibit lower intraocular pressures. Investig Ophthalmol Vis Sci. 2012;53(10):6708–6717. doi: 10.1167/iovs.11-9013
  • Oh DJ, Kang MH, Ooi YH, et al. Overexpression of SPARC in human trabecular meshwork increases intraocular pressure and alters extracellular matrix. Investig Ophthalmol Vis Sci. 2013;54(5):3309–3319. doi: 10.1167/iovs.12-11362
  • Kee C, Sohn S, Hwang J. Stromelysin gene transfer into cultured human trabecular cells and rat trabecular meshwork in vivo and. Invest Ophthalmol Vis Sci. 2001;42(12):2856–2860.
  • Hudde T, Apitz J, Bordes-Alonso R, et al. Gene transfer to trabecular meshwork endothelium via direct injection into the Schlemm canal and in vivo toxicity study. Curr Eye Res. 2005;30(12):1051–1059. doi: 10.1080/02713680500323350
  • Borrás T, Gabelt BT, Klintworth GK, et al. Non-invasive observation of repeated adenoviral GFP gene delivery to the anterior segment of the monkey eye in vivo. J Gene Med. 2001;3(5):437–449. doi: 10.1002/jgm.210
  • Tian B, Kaufman PL. A potential application of canaloplasty in glaucoma gene therapy. Transl Vis Sci Technol. 2013;2(1):2. doi: 10.1167/tvst.2.1.2
  • Grieshaber MC, Pienaar A, Olivier J, et al. Clinical evaluation of the aqueous outflow system in primary open-angle glaucoma for canaloplasty. Investig Ophthalmol Vis Sci. 2010;51(3):1498–1504. doi: 10.1167/iovs.09-4327
  • Daniel Stamer W, Chan D.W.-H., Ross Ethier, C. Targeted gene transfer to Schlemm’s canal by retroperfusion. Experimental Eye Research. 2008;84(5):843–849. doi: 10.1016/j.exer.2007.01.001
  • Tamm ER, Carassa RG, Albert DM, et al. Viscocanalostomy in rhesus monkeys. Arch Ophthalmol. 2004;122(12):1826–1838. doi: 10.1001/archopht.122.12.1826
  • Ethier RC, Coloma FM, de Kater AW, et al. Retroperfusion studies of the aqueous outflow system part 2: studies in human eyes. Investig Ophthalmol Vis Sci. 1995;36(12):2466–2475.
  • Aktas Z, Tian B, McDonald J, et al. Application of canaloplasty in glaucoma gene therapy. J Ocul Pharmacol Ther. 2014;30(2–3):277–282. doi: 10.1089/jop.2013.0203
  • Körber N, Kanaloplastik A, Fallseriestudie G. Ab interno canaloplasty for the treatment of glaucoma: a case series study. Spektrum Augenheilkd. 2018;32(6):223–227. doi: 10.1007/s00717-018-0416-7
  • Khaimi MA. Canaloplasty: a minimally invasive and maximally effective glaucoma treatment. Funk J, ed. J Ophthalmol. 2015;2015:485065. doi: 10.1155/2015/485065
  • Rękas M, Konopińska J, Byszewska A, et al. Mini-canaloplasty as a modified technique for the surgical treatment of open-angle glaucoma. Sci Rep. 2020;10(1):1–7. doi: 10.1038/s41598-020-69261-y
  • Xue K, Groppe M, Salvetti AP, et al. Technique of retinal gene therapy: delivery of viral vector into the subretinal space. Eye. 2017;31(9):1308–1316. doi: 10.1038/eye.2017.158
  • Goldberg JL, Beykin G, Satterfield KR, et al. Phase I NT-501 ciliary neurotrophic factor implant trial for primary open angle glaucoma: safety, neuroprotection and neuroenhancement. Ophthalmol Sci. 2023;3(3):100298. doi: 10.1016/j.xops.2023.100298
  • Borrás T. The pathway from genes to gene therapy in glaucoma: a review of possibilities for using genes as glaucoma drugs. Asia-Pacific J Ophthalmol. 2017;6(1):80–93. doi: 10.22608/APO.2016126