119
Views
0
CrossRef citations to date
0
Altmetric
Review

Current status of porous coordination networks (PCNs) derived porphyrin spacers for cancer therapy

, , , , , , & show all
Pages 1209-1229 | Received 13 Jun 2023, Accepted 14 Sep 2023, Published online: 30 Sep 2023

References

  • Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 Countries.CA. CA A Cancer J Clinicians. 2021;71(3):209–249. doi: 10.3322/caac.21660
  • Ahmed S, Eng C. Role of chemotherapy in the neoadjuvant/adjuvant setting for patients with rectal adenocarcinoma undergoing chemoradiotherapy and surgery or radiotherapy and surgery. Curr Oncol Rep. 2018;20(1):1523–3790. doi: 10.1007/s11912-018-0652-7
  • Chen XY, Liu YY, Bu WB. Chemodynamic therapy: integration of Fenton chemistry and biomedicine. Scientia Sinica Chimica. 2020;50(2):159–172. doi: 10.1360/SSC-2019-0128
  • Zhang J, Jiang C, Figueiró Longo JP, et al. An updated overview on the development of new photosensitizers for anticancer photodynamic therapy. Acta Pharm Sin B. 2018;8(2):137–146. doi: 10.1016/j.apsb.2017.09.003
  • Deng X, Shao Z, Zhao Y. Solutions to the drawbacks of photothermal and photodynamic cancer therapy. Adv Sci. 2021;8(3):2002504. doi: 10.1002/advs.202002504
  • Ouyang J, Tang ZM, Farokhzad N, et al. Ultrasound mediated therapy: recent progress and challenges in nanoscience. Nano Today. 2020;35:100949. doi: 10.1016/j.nantod.2020.100949
  • Ma DY, Li Z, Zhu JX, et al. Inverse and highly selective separation of CO2/C2H2 on a thulium–organic framework. J Mater Chem A. 2020;8:11933–11937. doi: 10.1039/D0TA03151H
  • Yang J, Yang YW. Metal–organic frameworks for biomedical applications. Small. 2020; 16(10):1906846. doi: 10.1002/smll.201906846
  • Mandal S, Natarajan S, Mani P, et al. Post‐Synthetic modification of metal–organic frameworks toward applications. Adv Funct Mater. 2021;31(4):2006921. doi: 10.1002/adfm.202006291
  • Guo XR, Zhou LY, Liu XZ, et al. Fluorescence detection platform of metal-organic frameworks for biomarkers, colloid. Surface B. 2023;229:113455. doi: 10.1016/j.colsurfb.2023.113455
  • Wang D, Sun E. Loading carboxyfluorescein into porous SiO2 spheres and UCNPs- cored porous SiO2 spheres: emission turn-on sensing with a warning signal for tumor-biomarker 5-HIAA urine test. Micropor Mesopor Mat. 2020;299:110131. doi: 10.1016/j.micromeso.2020.110131
  • Obayemi JD, Jusu SM, Salifu AA, et al. Degradable porous drug-loaded polymer scaffolds for localized cancer drug delivery and breast cell/tissue growth. Mater Sci Eng: C. 2020;112:110794. doi: 10.1016/j.msec.2020.110794
  • Zhong YY, Peng ZX, Peng YQ, et al. Construction of Fe-doped ZIF-8/DOX nanocomposites for ferroptosis strategy on the treatment of breast cancer. J Mater Chem B. 2023;11:6335–6345. doi: 10.1039/D3TB00749A
  • Chen XL, Li MM, Lin MZ, et al. Current and promising applications of Hf(IV)-based MOFs in clinical cancer therapy. J Mater Chem B. 2023;11:5693–5714. doi: 10.1039/D3TB00267E
  • Ma SQ, Sun DF, Simmons JM, et al. Metal-organic framework from an anthracene derivative containing nanoscopic cages exhibiting high methane uptake. J Am Chem Soc. 2008;130(3):1012–1016. doi: 10.1021/ja0771639
  • Xu Q, Zhan G, Zhang Z, et al. Manganese porphyrin-based metal-organic framework for synergistic sonodynamic therapy and ferroptosis in hypoxic tumors. Theranostics. 2021;11(4):1937–1952. doi: 10.7150/thno.45511
  • Chen JJ, Zhu YF, Kaskel S. Porphyrin-based metal-organic frameworks for biomedical applications. Angew Chem Int Ed Engl. 2021; 60(10):5010–5035. doi: 10.1002/anie.201909880
  • Tang ZM, Liu YY, He MY, et al. Chemodynamic therapy: Tumour Microenvironment-Mediated Fenton and Fenton-like reactions. Angew Chem Int Ed Engl. 2019;58(4):946–956. doi: 10.1002/anie.201805664
  • Mizushima E, Tsukahara T, Emori M, et al. Osteosarcoma‐initiating cells show high aerobic glycolysis and attenuation of oxidative phosphorylation mediated by LIN28B. Cancer Sci. 2020;111(1):36–46. doi: 10.1111/cas.14229
  • Chen Q, Liang C, Sun X, et al. H2O2-responsive liposomal nanoprobe for photoacoustic inflammation imaging and tumor theranostics via in vivo chromogenic assay [biochemistry]. Proc Natl Acad Sci USA. 2017;114(21):5343–5348. doi: 10.1073/pnas.1701976114
  • Nishikawa M, Tamada A, Kumai H, et al. Inhibition of experimental pulmonary metastasis by controlling biodistribution of catalase in mice. Int J Cancer. 2002;99(3):474–479. doi: 10.1002/ijc.10387
  • Montes P, Bernal M, Campo LN, et al. Tumor genetic alterations and features of the immune microenvironment drive myelodysplastic syndrome escape and progression. Cancer Immunol Immunother. 2019;68(12):2015–2027. doi: 10.1007/s00262-019-02420-x
  • Yang E, Wang X, Gong Z, et al. Exosome-mediated metabolic reprogramming: the emerging role in tumor microenvironment remodeling and its influence on cancer progression. Sig Transduct Target Ther. 2020;5(1):13. doi: 10.1038/s41392-020-00359-5
  • Shi YH, Du J, Pan W, et al. Crosstalk between the tumor microenvironment and tumor cells through exosomes: Roles in tumor metabolism and progression. J Nutr Oncol. 2023;8(1):9.
  • Wang Z, Liu B, Sun QQ, et al. Fusiform-like Copper(II)-based metal-organic framework through relief hypoxia and GSH-Depletion co-enhanced starvation and chemodynamic synergetic cancer therapy. ACS Appl Mater Interfaces. 2020;12(15):17254–17267. doi: 10.1021/acsami.0c01539
  • Zhan G, Xu Q, Zhang Z, et al. Biomimetic sonodynamic therapy-nanovaccine integration platform potentiates anti-PD-1 therapy in hypoxic tumors. Nano Today. 2021;38:101195. doi: 10.1016/j.nantod.2021.101195
  • Liang S, Deng XR, Chang Y, et al. Intelligent hollow Pt-CuS janus architecture for synergistic catalysis-enhanced sonodynamic and photothermal cancer therapy. Nano Lett. 2019;19(6):4134–4145. doi: 10.1021/acs.nanolett.9b01595
  • Wang XS, Zeng JY, Zhang MK, et al. A versatile Pt-based core–shell nanoplatform as a nanofactory for enhanced tumor therapy. Adv Funct Mater. 2018;28(36):1801783. doi: 10.1002/adfm.201801783
  • Gao ZG, Li YJ, Zhang Y, et al. Biomimetic platinum nanozyme immobilized on 2D metal–organic frameworks for mitochondrion-targeting and oxygen self-supply photodynamic therapy. ACS Appl Mater Interfaces. 2020;12(2):1963–1972. doi: 10.1021/acsami.9b14958
  • Bao YH, Chen JF, Qiu HQ, et al. Erythrocyte membrane-camouflaged PCN-224 nanocarriers integrated with platinum nanoparticles and glucose oxidase for enhanced tumor sonodynamic therapy and synergistic starvation therapy. ACS Appl Mater Interfaces. 2021;13(21):24532–24542. doi: 10.1021/acsami.1c05644
  • Chen Z, Liu WJ, Yang Z, et al. Sonodynamic-immunomodulatory nanostimulators activate pyroptosis and remodel tumor microenvironment for enhanced tumor immunotherapy. Theranostics. 2023;13(5):1571–1583. doi: 10.7150/thno.79945
  • Gilkes DM, Semenza GL, Wirtz D. Hypoxia and the extracellular matrix: drivers of tumour metastasis. Nat Rev Cancer. 2014;14(6):430–439. doi: 10.1038/nrc3726
  • Ren Q, Yu N, Wang LY, et al. Nanoarchitectonics with metal-organic frameworks and platinum nanozymes with improved oxygen evolution for enhanced sonodynamic/chemo-therapy. J Colloid Interface Sci. 2022;614(15):147–159. doi: 10.1016/j.jcis.2022.01.050
  • Hoang QT, Kim M, Kim BC, et al. Pro-oxidant drug-loaded porphyrinic zirconium metal-organic-frameworks for cancer-specific sonodynamic therapy. Colloids Surf B Biointerfaces. 2022;209:112189. doi: 10.1016/j.colsurfb.2021.112189
  • Shi JJ, Zhao Y, Wang K, et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature. 2015;526(7575):660–665. doi: 10.1038/nature15514
  • Rao ZP, Zhu YT, Yang P, et al. Pyroptosis in inflammatory diseases and cancer. Theranostics. 2022;12(9):4310–4329. doi: 10.7150/thno.71086
  • Koukourakis MI, Giatromanolaki A, Skarlatos J, et al. Hypoxia inducible factor (HIF-1α and HIF-2α) expression in early esophageal cancer and response to photodynamic therapy and radiotherapy. Cancer Res. 2001;61(5):1830–1832.
  • Zhang Z, Huang H. Breakthrough in construction of oxygen-independent photosensitizer for type III photodynamic therapy. Sci China Chem. 2022;65(005):834–835. doi: 10.1007/s11426-022-1218-0
  • Li SY, Cheng H, Qiu WX, et al. Cancer cell membrane-coated biomimetic platform for tumor targeted photodynamic therapy and hypoxia-amplified bioreductive therapy. Biomaterials. 2017;142:149–161. doi: 10.1016/j.biomaterials.2017.07.026
  • Li SY, Cheng H, Xie BR, et al. Cancer cell membrane camouflaged cascade bioreactor for cancer targeted starvation and photodynamic therapy. ACS Nano. 2017;11(7):7006–7018. doi: 10.1021/acsnano.7b02533
  • Zhao J, Yang Y, Han X, et al. Redox-sensitive nanoscale coordination polymers for drug delivery and cancer theranostics. ACS Appl Mater & Interf. 2017;9(28):23555–23563.
  • Xie BX, Shu W, Wang HS, et al. Folic acid-modified metal-organic framework carries CPT and DOX for cancer treatment. J Solid State Chem. 2022;306:122803. doi: 10.1016/j.jssc.2021.122803
  • He M, Chen YN, Tao C, et al. Mn-porphyrin-based metal-organic framework with high longitudinal relaxivity for magnetic resonance imaging guidance and oxygen self-supplementing photodynamic therapy. ACS Appl Mater Interfaces. 2019;11(45):41946–41956. doi: 10.1021/acsami.9b15083
  • Sakamaki Y, Ozdemir J, Perez AD, et al. Maltotriose conjugated metal-organic frameworks for selective targeting and photodynamic therapy of triple negative breast cancer cells and tumor associated macrophages. Adv Ther. 2020;3:2000029. doi: 10.1002/adtp.202000029
  • Vangara A, Pramanik A, Gao Y, et al. FRET based highly efficient theranostic nanoplatform for two-photon bio-imaging and two-photon excited photodynamic therapy of MDRB. ACS Appl Bio Mater. 2018;1(2):289–309. doi: 10.1021/acsabm.8b00071
  • Chen NT, Tang KC, Chung MF, et al. Enhanced plasmonic resonance energy transfer in mesoporous silica-encased gold nanorod for two-photon-activated photodynamic therapy. Theranostics. 2014;4(8):798–807. doi: 10.7150/thno.8934
  • Chen JY, Zhang ZX, Ma JX, et al. Current status and prospects of MOFs as controlled delivery of Pt anticancer drugs. Dalton Trans. 2023;52:6226–6238. doi: 10.1039/D3DT00413A
  • Liu H, Yang Y, Wang A, et al. Hyperbranched polyglycerol-doped mesoporous silica nanoparticles for one- and two-photon activated photodynamic therapy. Adv Funct Mater. 2016;26:2561–2570. doi: 10.1002/adfm.201504939 15
  • Li B, Cao HZ, Zheng J, et al. Click modification of a metal-organic framework for two-photon photodynamic therapy with near-infrared excitation. ACS Appl Mater Interfaces. 2021;13(8):9739–9747. doi: 10.1021/acsami.1c00583
  • Li YT, Zhou JL, Chen YN, et al. Near-infrared light-boosted photodynamic-immunotherapy based on sulfonated metal-organic framework nanospindle. Chem Eng J. 2022;437:135370. doi: 10.1016/j.cej.2022.135370
  • Zhang M, Dai Z, Theivendran S, et al. Nanotechnology enabled reactive species regulation in biosystems for boosting cancer immunotherapy. Nano Today. 2021;36(1):101035. doi: 10.1016/j.nantod.2020.101035
  • Hou X, Tao Y, Pang Y, et al. Nanoparticle-based photothermal and photodynamic immunotherapy for tumor treatment. Int J Cancer. 2018;143(12):3050–3060. doi: 10.1002/ijc.31717
  • Zhu XL, Zhang YJ, Huang HQ, et al. Folic acid-modified and functionalized CuS nanocrystal-based nanoparticles for combined tumor chemo- and photothermal therapy. J Drug Target. 2017;25(5):425–435. doi: 10.1080/1061186X.2016.1266651
  • Zhu HY, Liu WW, Cheng ZT, et al. Targeted delivery of siRNA with pH-responsive hybrid gold nanostars for cancer treatment. Int J Mol Sci. 2017;18(10):2029. doi: 10.3390/ijms18102029
  • Zhu HJ, Cheng PH, Chen P, et al. Recent progress in the development of near-infrared organic photothermal and photodynamic nanotherapeutics. Biomater Sci. 2018;6(4):746–765. doi: 10.1039/C7BM01210A
  • Al-Jadir TM, and Siperstein FR. Modeling and simulation of adsorption of methane, ethane, hydrogen sulfide and water from natural gas in (fp)yeu metal–organic framework. IOP Conf Ser Mater Sci Eng. 2019;579(1):012020–212. doi: 10.1088/1757-899X/579/1/012020
  • Xu ZJ, Wu ZY, Huang S, et al. A metal-organic framework-based immunomodulatory nanoplatform for anti-atherosclerosis treatment. Journal Of Controlled Release. 2023;354:615–625. doi: 10.1016/j.jconrel.2023.01.024
  • Rodríguez-Ramos R, Santana-Mayor L, Socas Rodríguez B, et al., Applications of metal-organic frameworks in analytical chemistry. In Metal-organic frameworks for chemical reactions. Chapter 9p. 167–230; 2021. doi: 10.1016/B978-0-12-822099-3.00009-5
  • Tu TN, Nguyen MV, Nguyen HL, et al. Designing bipyridine-functionalized zirconium metal–organic frameworks as a platform for clean energy and other emerging applications. Coordination Chemistry Reviews. 2018;364(6):33–50. doi: 10.1016/j.ccr.2018.03.014
  • Cheng Q, Li ZH, Sun YX, et al. Controlled synthesis of a core-shell nanohybrid for effective multimodal image-guided combined photothermal/photodynamic therapy of tumors. Npg Asia Mater. 2019;11(1):63. doi: 10.1038/s41427-019-0164-4
  • Wei GH, Lian X, Qin XD, et al. Core-satellite porphyrinic MOF@CuS nanoconstructs for combined chemodynamic/photodynamic/photothermal therapy. Mater Design. 2022;224:111302. doi: 10.1016/j.matdes.2022.111302
  • Huang J, Liu F, Han X, et al. Nanosonosensitizers for highly efficient sonodynamic cancer theranostics. Theranostics. 2018;8(22):6178–6194. doi: 10.7150/thno.29569
  • Pan X, Bai L, Wang H, et al. Metal- organic-framework-derived carbon nanostructure augmented sonodynamic cancer therapy. Adv Mater. 2018;30(23):1800180. doi: 10.1002/adma.201800180
  • Deng XY, Shao ZW, Zhao YL. Solutions to the drawbacks of photothermal and photodynamic cancer therapy. Adv Sci. 2021;8(3):2002504. doi: 10.1002/advs.202002504
  • He QJ, Chen DY, Fan MJ. Progress of precision nanomedicine-mediated gas therapy. J Inorg Mater. 2018;33(8):811–824. doi: 10.15541/jim20170529
  • Andreadou I, Iliodromitis EK, Rassaf T, et al. A. papapetropoulos, P. Ferdinandy, the role of gasotransmitters NO, H2S and CO in myocardial ischaemia/reperfusion injury and cardioprotection by preconditioning, postconditioning and remote conditioning. Brit J Pharmacol. 2015;172(6):1587–1606. doi: 10.1111/bph.12811
  • Módis K, Bos EM, Calzia E, et al. Regulation of mitochondrial bioenergetic function by hydrogen sulfide. Part II. Pathophysiological and therapeutic aspects. Brit J Pharmacol. 2014;171(8):2123–2146. doi: 10.1111/bph.12368
  • Wegiel B, Gallo D, Csizmadia E, et al. Carbon monoxide expedites metabolic ex-haustion to inhibit tumor growth. Canc Res. 2013;73(23):7009–7021. doi: 10.1158/0008-5472.CAN-13-1075
  • Jin Z, Wen Y, Xiong L, et al. Intratumoral H2O2-triggered release of co from metal carbonyl-based nanomedicine for efficient co therapy. Chem Comm. 2017;53(40):5557–5560. doi: 10.1039/C7CC01576C
  • Carpenter AW, Schoenfisch MH. Nitric oxide release Part II. Ther App Cheminform. 2012;43(31):201231269. doi: 10.1002/chin.201231269
  • Zhou HF, Yan HM, Hu Y, et al. Fumagillin prodrug nanotherapy suppresses macrophage inflammatory response via endothelial nitric oxide. ACS Nano. 2014;8(7):7305–7317. doi: 10.1021/nn502372n
  • Fan WP, Yung BC, Chen XY. Stimuli-responsive NO release for on-demand gas-sensitized combined cancer therapy, Angew. Chem Int Ed. 2018;57(28):8383–8394. doi: 10.1002/anie.201800594
  • Huang XH, Xu F, Hou H, et al. Stimuli-responsive nitric oxide generator for light-triggered synergistic cancer photothermal/gas therapy. Nano Res. 2019;12(6):1361–1370. doi: 10.1007/s12274-019-2307-x
  • Szabó C, Ischiropoulos H, Radi R. Peroxynitrite: biochemistry, pathophysiology and development of therapeutics. Nat Rev. 2007;6(8):662–680. doi: 10.1038/nrd2222
  • Wan SS, Zeng JY, Cheng H, et al. ROS-induced NO generation for gas therapy and sensitizing photodynamic therapy of tumor. Biomaterials. 2018;185:51–62. doi: 10.1016/j.biomaterials.2018.09.004
  • Zhang K, Xu HX, Jia XQ, et al. Ultrasound-triggered nitric oxide release platform based on energy Transformation for targeted Inhibition of Pancreatic tumor. ACS Nano. 2016;10(12):10816–10828. doi: 10.1021/acsnano.6b04921
  • Hu J, Wu WR, Qin YF, et al. Fabrication of Glyco‐metal‐organic frameworks for targeted interventional photodynamic/chemotherapy for hepatocellular carcinoma through percutaneous transperitoneal puncture. Adv Funct Mater. 2020;30(19):1910084. doi: 10.1002/adfm.201910084
  • Li SY, Zhao LP, Zheng RR, et al. Tumor microenvironment adaptable nanoplatform for O2 Self-Sufficient chemo/photodynamic combination therapy. Part Part Syst Charact. 2020;37(3):1900496. doi: 10.1002/ppsc.201900496
  • Feng L, Chen MY, Li RH, et al. Biodegradable oxygen-producing manganese-chelated metal organic frameworks for tumor-targeted synergistic chemo/photothermal/photodynamic therapy. Acta Biomaterialia. 2022;138:463–477. doi: 10.1016/j.actbio.2021.10.032
  • Hu XC, Li RH, Wu WJ, et al. A Fe(III)-porphyrin-oxaliplatin(IV) nanoplatform for enhanced ferroptosis and combined therapy. J Control Release. 2022;348:660–671. doi: 10.1016/j.jconrel.2022.06.019
  • Mahapatra AK, Murthy PN, Chandana S, et al. Progress with liposomal drug delivery systems: formulation to therapy. Der Pharmacia Lettre. 2017;6(3):110–128.
  • Sianipar NF, Assidqi K, Yuliani S, et al. Anticancer activity of nanoemulsion formulation of rodent tuber mutant extract (typhonium flagelliforme) on human breast cancer cell line. Rasayan J Chem. 2021;14(1):535–544. doi: 10.31788/RJC.2021.1415742
  • Wang CP, Wang XY, Dong KY, et al. Injectable and responsively degradable hydrogel for personalized photothermal therapy. Biomaterials. 2016;104:129–137. doi: 10.1016/j.biomaterials.2016.07.013
  • Yu H, Yang P, Jia Y, et al. Regulation of biphasic drug release behavior by graphene oxide in polyvinyl pyrrolidone/poly(ε-caprolactone) core/sheath nanofiber mats. Colloids Surfaces B. 2016;146(1):63–69. doi: 10.1016/j.colsurfb.2016.05.052
  • Cherkasov VR, Mochalova EN, Babenyshev AV, et al. Antibody-directed metal-organic framework nanoparticles for targeted drug delivery. Acta Biomaterialia. 2020;103:223–236. doi: 10.1016/j.actbio.2019.12.012
  • Liu J, Yang Z, Che Y, et al. Computational investigation of metal organic frameworks as potential drug carriers for antihypertensive amlodipine. AIChE J. 2021;68(1):17474-1 -17474–13. doi: 10.1002/aic.17474
  • Sarker M, Shin S, Jhung SH. Functionalized mesoporous metal-organic framework PCN-100: an efficient carrier for vitamin E storage and delivery. J Ind Eng Chem. 2019;74:158–163. doi: 10.1016/j.jiec.2019.02.022
  • Nguyen MH, Tran TT, Hadinoto K. Controlling the burst release of amorphous drug–polysaccharide nanoparticle complex via crosslinking of the polysaccharide chains. Eur J Pharm Biopharm. 2016;104:156–163. doi: 10.1016/j.ejpb.2016.05.006
  • Tran T-T, Nguyen MH, Tan YZ, et al. Millifluidic synthesis of amorphous drug-polysaccharide nanoparticle complex with tunable size intended for supersaturating drug delivery applications. Eur J Pharm Biopharm. 2017;112:196–203. doi: 10.1016/j.ejpb.2016.11.030
  • Huang X, Brazel CS. On the importance and mechanisms of burst release in matrix-controlled drug delivery systems. J Control Release. 2001;73(2):121–136. doi: 10.1016/S0168-3659(01)00248-6
  • da Silva EP, Guilherme MR, Garcia FP, et al. Drug release profile and reduction in the in vitro burst release from pectin/HEMA hydrogel nanocomposites crosslinked with titania. RSC Adv. 2016;6(23):19060–19068. doi: 10.1039/C5RA27865A
  • Zhao XW, Zou X, Ye L. Controlled pH- and glucose-responsive drug release behavior of cationic chitosan based nano-composite hydrogels by using graphene oxide as drug nanocarrier. J Ind Eng Chem. 2016;49:36–45. doi: 10.1016/j.jiec.2016.12.023
  • Chuna NY, Kimb SN, Choia YS, et al. PCN-223 as a drug carrier for potential treatment of colorectal cancer. J Ind Eng Chem. 2020;84:290–296. doi: 10.1016/j.jiec.2020.01.010

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.