663
Views
0
CrossRef citations to date
0
Altmetric
Review

Strategies to identify, engineer, and validate antibodies targeting blood–brain barrier receptor-mediated transcytosis systems for CNS drug delivery

&
Pages 1789-1800 | Received 05 Oct 2023, Accepted 17 Nov 2023, Published online: 26 Nov 2023

References

  • St-Amour I, Paré I, Alata W, et al. Brain bioavailability of human intravenous immunoglobulin and its transport through the murine blood-brain barrier. J Cereb Blood Flow Metab. 2013;33:1983–1992. doi: 10.1038/jcbfm.2013.160
  • Sun A, Benet LZ. Late-stage failures of monoclonal antibody drugs: a retrospective case study analysis. Pharmacology. 2020;105(3–4):145–163. doi: 10.1159/000505379
  • Pardridge WM. Treatment of alzheimer’s disease and blood–brain barrier drug delivery. Pharmaceuticals. 2020;13(11):1–25. doi: 10.3390/ph13110394
  • Ponka P, Lok CN. The transferrin receptor: role in health and disease. Int J Biochem Cell Biol. 1999;31(10):1111–1137. doi: 10.1016/S1357-2725(99)00070-9
  • Yang AC, Stevens MY, Chen MB, et al. Physiological blood–brain transport is impaired with age by a shift in transcytosis. Nature. 2020;583(7816):425–430. doi: 10.1038/s41586-020-2453-z
  • Mash DC, Pablo J, Buck BE, et al. Distribution and number of transferrin receptors in Parkinson’s disease and in MPTP-treated mice. Exp Neurol. 1991;114(1):73–81. doi: 10.1016/0014-4886(91)90086-R
  • Pardridge WM, Boado RJ, Patrick DJ, et al. Blood-brain barrier transport, plasma pharmacokinetics, and neuropathology following chronic treatment of the rhesus monkey with a brain penetrating humanized monoclonal antibody against the human transferrin receptor. Mol Pharm. 2018;15(11):5207–5216. doi: 10.1021/acs.molpharmaceut.8b00730
  • Couch JA, Yu YJ, Zhang Y, et al. Addressing safety liabilities of TfR bispecific antibodies that cross the blood-brain barrier. Sci Transl Med. 2013;5(183). doi: 10.1126/scitranslmed.3005338
  • Bien-Ly N, Yu YJ, Bumbaca D, et al. Transferrin receptor (TfR) trafficking determines brain uptake of TfR antibody affinity variants. J Exp Med. 2014;211(2):233–244. doi: 10.1084/jem.20131660
  • Zuchero YJY, Chen X, Bien-Ly N, et al. Discovery of novel blood-brain barrier targets to enhance brain uptake of therapeutic antibodies. Neuron. 2016;89(1):70–82. doi: 10.1016/j.neuron.2015.11.024
  • Yu YJ, Zhang Y, Kenrick M, et al. Boosting brain uptake of a therapeutic antibody by reducing its affinity for a transcytosis target. Sci Transl Med. 2011;3(84):3. doi: 10.1126/scitranslmed.3002230
  • Okuyama T, Eto Y, Sakai N, et al. A phase 2/3 trial of Pabinafusp Alfa, IDS fused with anti-human transferrin receptor antibody, targeting neurodegeneration in MPS-II. Mol Ther. 2021;29(2):671–679. doi: 10.1016/j.ymthe.2020.09.039
  • JCR Pharmaceuticals Products [Internet]. 2023. Available from: https://www.jcrpharm.co.jp/en/site/en/biopharmaceutical/product.html
  • Denali Pipeline [Internet]. 2023. Available from: https://www.denalitherapeutics.com/pipeline
  • Kariolis MS, Wells RC, Getz JA, et al. Brain delivery of therapeutic proteins using an Fc fragment blood-brain barrier transport vehicle in mice and monkeys. Sci Transl Med. 2020;12(545):1–14. doi: 10.1126/scitranslmed.aay1359
  • Ullman JC, Arguello A, Getz JA, et al. Brain delivery and activity of a lysosomal enzyme using a blood-brain barrier transport vehicle in mice. Sci Transl Med. 2020;12(545):12. doi: 10.1126/scitranslmed.aay1163
  • DenaliTherapeutics. A study to determine the efficacy and safety of DNL310 vs idursulfase in pediatric participants with neuronopathic (nMPS II) or non-neuronopathic mucopolysaccharidosis type II (nnMPS II) (COMPASS). ClinicalTrials.gov. 2023.
  • Praggastis M, Gale K, Baik A, et al. Delivering therapeutic lysosomal enzyme to the CNS: a rapid, large-scale screen identifies optimal characteristics of BBB-crossing TFRC antibodies. Mol Genet Metab. 2023;138(2):107277. doi: 10.1016/j.ymgme.2022.107277
  • Wouters Y, Jaspers T, De Strooper B, et al. Identification and in vivo characterization of a brain-penetrating nanobody. Fluids Barriers CNS. 2020;17(1):4–13. doi: 10.1186/s12987-020-00226-z
  • Wouters Y, Jaspers T, Rué L, et al. VHHs as tools for therapeutic protein delivery to the central nervous system. Fluids Barriers CNS. 2022;19(1):1–13. doi: 10.1186/s12987-022-00374-4
  • Marino M, Zhou L, Rincon MY, et al. AAV‐mediated delivery of an anti‐BACE1 VHH alleviates pathology in an Alzheimer’s disease model. EMBO Mol Med. 2022;14:1–21. doi: 10.15252/emmm.201809824
  • Su S, Esparza TJ, Brody DL, et al. Selection of single domain anti-transferrin receptor antibodies for blood-brain barrier transcytosis using a neurotensin based assay and histological assessment of target engagement in a mouse model of Alzheimer’s related amyloid-beta pathology. PLoS One. 2022;17(10):e0276107. doi: 10.1371/journal.pone.0276107
  • Giugliani R, Giugliani L, De Oliveira Poswar F, et al. Neurocognitive and somatic stabilization in pediatric patients with severe mucopolysaccharidosis type i after 52 weeks of intravenous brain-penetrating insulin receptor antibody-iduronidase fusion protein (valanafusp alpha): an open label phase 1-2 trial. Orphanet J Rare Dis. 2018;13(1):1–11. doi: 10.1186/s13023-018-0849-8
  • Uhlén M, Fagerberg L, Hallström BM, et al. Proteomics. Tissue-based map of the human proteome. Science. 2015;347(6220):1260419. doi: 10.1126/science.1260419
  • Karlsson M, Zhang C, Méar L, et al. A single-cell type transcriptomics map of human tissues. Sci Adv. 2021;7: doi: 10.1126/sciadv.abh2169
  • Thul PJ, Åkesson L, Wiking M, et al. A subcellular map of the human proteome. Science. 2017;356(6340). doi: 10.1126/science.aal3321
  • Hampe CS, Eisengart JB, Lund TC, et al. Mucopolysaccharidosis type I: a review of the natural history and molecular pathology. Cells. 2020;9(8):1838. doi: 10.3390/cells9081838
  • Boado RJ, Hui EKW, Lu JZ, et al. Glycemic control and chronic dosing of rhesus monkeys with a fusion protein of iduronidase and a monoclonal antibody against the human insulin receptor. Drug Metab Dispos. 2012;40(10):2021–2025. doi: 10.1124/dmd.112.046375
  • Pardridge WM, Boado RJ, Giugliani R, et al. Plasma pharmacokinetics of valanafusp alpha, a human insulin receptor antibody-iduronidase fusion protein, in patients with mucopolysaccharidosis type I. BioDrugs. 2018;32(2):169–176. doi: 10.1007/s40259-018-0264-7
  • Alata W, Yogi A, Brunette E, et al. Targeting insulin‐like growth factor‐1 receptor (IGF1R) for brain delivery of biologics. FASEB J. 2022;36(3). doi: 10.1096/fj.202101644R
  • Lee SH, An S, Ahn J, et al. BBB-Crossing trojan horse bispecific antibody specifically targeting aggregated a-synuclein for the treatment of Parkinson’s disease (PD). Keystone. 2019. InternetAvailable from: http://ablbio.com/en/company/abl301
  • Nawashiro H, Otani N, Shinomiya N, et al. The role of CD98 in astrocytic neoplasms. Hum Cell. 2002;15(1):25–31. doi: 10.1111/j.1749-0774.2002.tb00096.x
  • Pornnoppadol G, Bond LG, Lucas MJ, et al. Bispecific antibody shuttles targeting CD98hc mediate efficient and long-lived brain delivery of IgGs. Cell Chem Biol. 2023. doi: 10.1016/j.chembiol.2023.09.008
  • Niewoehner J, Bohrmann B, Collin L, et al. Increased brain penetration and potency of a therapeutic antibody using a monovalent molecular shuttle. Neuron. 2014;81(1):49–60. doi: 10.1016/j.neuron.2013.10.061
  • Köpnick A-L, Jansen A, Geistlinger K, et al. Basigin drives intracellular accumulation of l-lactate by harvesting protons and substrate anions. Fotiadis D, editor. PLoS One. 2021;16(3):e0249110. doi: 10.1371/journal.pone.0249110
  • Christensen SC, Krogh BO, Jensen A, et al. Characterization of basigin monoclonal antibodies for receptor-mediated drug delivery to the brain. Sci Rep. 2020;10(1):1–13. doi: 10.1038/s41598-020-71286-2
  • Christensen SC, Hudecz D, Jensen A, et al. Basigin antibodies with capacity for drug delivery across brain endothelial cells. Mol Neurobiol. 2021;58(9):4392–4403. doi: 10.1007/s12035-021-02421-x
  • Huang D, Rao D, Jin Q, et al. Role of CD147 in the development and diagnosis of hepatocellular carcinoma. Front Immunol. 2023;14:14. doi: 10.3389/fimmu.2023.1149931
  • Zhu X, Song Z, Zhang S, et al. CD147: a novel modulator of inflammatory and immune disorders. Curr Med Chem. 2014;21(19):2138–2145. doi: 10.2174/0929867321666131227163352
  • Muruganandam A, Tanha J, Narang S, et al. Selection of phage‐displayed llama single‐domain antibodies that transmigrate across human blood‐brain barrier endothelium. FASEB J. 2002;16(2):1–22. doi: 10.1096/fj.01-0343fje
  • Lessard E, Rennie K, Haqqani A, et al. Pharmacokinetics and pharmacodynamic effect of a blood-brain barrier-crossing fusion protein therapeutic for Alzheimer’s disease in rat and dog. Pharm Res. 2022;39(7):1497–1507. doi: 10.1007/s11095-022-03285-z
  • Georgieva JV, Goulatis LI, Stutz CC, et al. Antibody screening using a human iPSC-based blood-brain barrier model identifies antibodies that accumulate in the CNS. FASEB J. 2020;34:12549–12564. doi: 10.1096/fj.202000851R
  • Georgieva JV, Katt M, Ye Z, et al. The 46.1 antibody mediates neurotensin uptake into the CNS and the effects depend on the route of intravenous administration. Pharmaceutics. 2022;14:1–17. doi: 10.3390/pharmaceutics14081706
  • Lajoie JM, Katt ME, Waters EA, et al. Identification of lamprey variable lymphocyte receptors that target the brain vasculature. Sci Rep. 2022;12(1):1–21. doi: 10.1038/s41598-022-09962-8
  • Stutz CC, Georgieva JV, Shusta EV. Coupling brain perfusion screens and next generation sequencing to identify blood–brain barrier binding antibodies. AIChE J. 2018;64(12):4229–4236. doi: 10.1002/aic.16360
  • Urich E, Schmucki R, Ruderisch N, et al. Cargo delivery into the brain by in vivo identified transport peptides. Fotiadis D, editor. Sci Rep. 2015;5:14104. doi: 10.1038/srep14104
  • Abulrob A, Sprong H, Van Bergen En Henegouwen P, et al. The blood-brain barrier transmigrating single domain antibody: mechanisms of transport and antigenic epitopes in human brain endothelial cells. J Neurochem. 2005;95:1201–1214. doi: 10.1111/j.1471-4159.2005.03463.x
  • Stanimirovic DB, Sandhu JK, Costain WJ. Emerging technologies for delivery of biotherapeutics and gene therapy across the blood–brain barrier. BioDrugs. 2018;32(6):547–559. doi: 10.1007/s40259-018-0309-y
  • Ye Z, Gastfriend BD, Umlauf BJ, et al. Antibody-targeted liposomes for enhanced targeting of the blood- brain barrier. Pharm Res. 2022;39(7):1523–1534. doi: 10.1007/s11095-022-03186-1
  • Villasenõr R, Ozmen L, Messaddeq N, et al. Trafficking of Endogenous Immunoglobulins by endothelial cells at the blood-brain barrier. Sci Rep. 2016;6(1):1–10. doi: 10.1038/srep25658
  • Preston JE, Joan Abbott N, Begley DJ. Transcytosis of macromolecules at the blood-brain barrier. Adv Pharmacol. 2014;71:147–163.
  • Villaseñor R, Schilling M, Sundaresan J, et al. Sorting Tubules Regulate Blood-Brain Barrier Transcytosis. Cell Rep. 2017;21(11):3256–3270. doi: 10.1016/j.celrep.2017.11.055
  • Tian X, Leite DM, Scarpa E, et al. On the shuttling across the blood-brain barrier via tubule formation: mechanism and cargo avidity bias. Sci Adv. 2020;6(48):1–15. doi: 10.1126/sciadv.abc4397
  • Johnsen KB, Bak M, Kempen PJ, et al. Antibody affinity and valency impact brain uptake of transferrin receptor-targeted gold nanoparticles. Theranostics. 2018;8(12):3416–3436. doi: 10.7150/thno.25228
  • Haqqani AS, Delaney CE, Brunette E, et al. Endosomal trafficking regulates receptor-mediated transcytosis of antibodies across the blood brain barrier. J Cereb Blood Flow Metab. 2018;38(4):727–740. doi: 10.1177/0271678X17740031
  • Lencer WI, Blumberg RS. A passionate kiss, then run: exocytosis and recycling of IgG by FcRn. Trends Cell Biol. 2005;15(1):5–9. doi: 10.1016/j.tcb.2004.11.004
  • Haqqani AS, Thom G, Burrell M, et al. Intracellular sorting and transcytosis of the rat transferrin receptor antibody OX26 across the blood-brain barrier in vitro is dependent on its binding affinity. J Neurochem. 2018;146:735–752. doi: 10.1111/jnc.14482
  • Thom G, Burrell M, Haqqani AS, et al. Enhanced delivery of galanin conjugates to the brain through bioengineering of the anti-transferrin receptor antibody OX26. Mol Pharm. 2018;15(4):1420–1431. doi: 10.1021/acs.molpharmaceut.7b00937
  • Sade H, Baumgartner C, Hugenmatter A, et al. A human blood-brain barrier transcytosis assay reveals antibody transcytosis influenced by pH-Dependent receptor binding. Schlachetzki F, editor. PLoS One. 2014;9(4):e96340. doi: 10.1371/journal.pone.0096340
  • Esparza TJ, Su S, Francescutti CM, et al. Enhanced in vivo blood brain barrier transcytosis of macromolecular cargo using an engineered pH-sensitive mouse transferrin receptor binding nanobody. Fluids Barriers CNS. 2023;20(1):64. doi: 10.1186/s12987-023-00462-z
  • Bonvicini G, Syvänen S, Andersson KG, et al. ImmunoPET imaging of amyloid-beta in a rat model of Alzheimer’s disease with a bispecific, brain-penetrating fusion protein. Transl Neurodegener. 2022;11(1):55. doi: 10.1186/s40035-022-00324-y
  • Pardridge WM, Chou T. Mathematical models of blood-brain barrier transport of monoclonal antibodies targeting the transferrin receptor and the insulin receptor. Pharmaceuticals. 2021;14(6):535. doi: 10.3390/ph14060535
  • Tillotson BJ, Goulatis LI, Parenti I, et al. Engineering an anti-transferrin receptor ScFv for pH-Sensitive binding leads to increased intracellular accumulation. Ho M, editor. PLoS One. 2015;10(12):e0145820. doi: 10.1371/journal.pone.0145820
  • Triguero D, Buciak J, Pardridge WM. Capillary depletion method for Quantification of blood–brain barrier transport of circulating peptides and plasma proteins. J Neurochem. 1990;54(6):1882–1888. doi: 10.1111/j.1471-4159.1990.tb04886.x
  • Pardridge WM, Buciak JL, Friden PM. Selective transport of an anti-transferrin receptor antibody through the blood-brain barrier in vivo. J Pharmacol Exp Ther. 1991;259:66–70.
  • Wouters Y, Jaspers T, De Strooper B, et al. Identification and in vivo characterization of a brain-penetrating nanobody. Fluids Barriers CNS. 2020;17(1):62. doi: 10.1186/s12987-020-00226-z
  • Kalivas PW, Jennes L, Nemeroff CB, et al. Neurotensin: topographical distribution of brain sites involved in hypothermia and antinociception. J Comp Neurol. 1982;210:225–238. doi: 10.1002/cne.902100303
  • Tabarean IV. Neurotensin induces hypothermia by activating both neuronal neurotensin receptor 1 and astrocytic neurotensin receptor 2 in the median preoptic nucleus. Neuropharmacology. 2020;171:108069. doi: 10.1016/j.neuropharm.2020.108069
  • Demeule M, Beaudet N, Régina A, et al. Conjugation of a brain-penetrant peptide with neurotensin provides antinociceptive properties. J Clin Invest. 2014;124(3):1199–1213. doi: 10.1172/JCI70647
  • Kamphuis W, Mamber C, Moeton M, et al. GFAP Isoforms in adult mouse brain with a Focus on Neurogenic Astrocytes and reactive astrogliosis in mouse models of Alzheimer disease. Ikezu T, editor. PLoS One. 2012;7(8):e42823. doi: 10.1371/journal.pone.0042823
  • Morita S, Miyata S. Accessibility of low-molecular-mass molecules to the median eminence and arcuate hypothalamic nucleus of adult mouse. Cell Biochem Funct. 2013;31(8):668–677. doi: 10.1002/cbf.2953
  • Sumbria RK, Hui E-W, Lu JZ, et al. Disaggregation of amyloid plaque in brain of Alzheimer’s disease transgenic mice with Daily Subcutaneous administration of a tetravalent bispecific antibody that targets the transferrin receptor and the abeta amyloid peptide. Mol Pharm. 2013;10:3507–3513. doi: 10.1021/mp400348n
  • Zhou Q-H, Fu A, Boado RJ, et al. Receptor-mediated abeta amyloid antibody targeting to Alzheimer’s disease mouse brain. Mol Pharm. 2011;8(1):280–285. doi: 10.1021/mp1003515
  • Rofo F, Meier SR, Metzendorf NG, et al. A brain-targeting bispecific-multivalent antibody clears soluble amyloid-beta aggregates in Alzheimer’s disease mice. Neurotherapeutics. 2022;19(5):1588–1602. doi: 10.1007/s13311-022-01283-y
  • Fu A, Hui E-W, Lu JZ, et al. Neuroprotection in stroke in the mouse with intravenous erythropoietin–trojan horse fusion protein. Brain Res. 2011;1369:203–207. doi: 10.1016/j.brainres.2010.10.097
  • Zhou Q-H, Hui E-W, Lu JZ, et al. Brain penetrating IgG-erythropoietin fusion protein is neuroprotective following intravenous treatment in Parkinson’s disease in the mouse. Brain Res. 2011;1382:315–320. doi: 10.1016/j.brainres.2011.01.061

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.