123
Views
0
CrossRef citations to date
0
Altmetric
Review

Characterizing regional drug delivery within the nasal airways

, , &
Pages 537-551 | Received 15 Nov 2023, Accepted 26 Mar 2024, Published online: 03 Apr 2024

References

  • Tiwari G, Tiwari R, Sriwastawa B, et al. Drug delivery systems: An updated review. Int J Pharma Investig. 2012;2(1):2–11. doi: 10.4103/2230-973X.96920
  • Tepper DE. Nasal sprays for the treatment of migraine. Headache. 2013;53:577–578. doi: 10.1111/head.12045
  • Taylor D, Radbruch L, Revnic J, et al. A report on the long-term use of fentanyl pectin nasal spray in patients with recurrent breakthrough pain. J Pain Symptom Manag. 2014;47(6):1001–1007. doi: 10.1016/j.jpainsymman.2013.07.012
  • Miyake MM, Bleier BS. The blood-brain barrier and nasal drug delivery to the central nervous system. Am J Rhinol Allergy. 2015;29(2):124–127. doi: 10.2500/ajra.2015.29.4149
  • Quintana DS, Westlye LT, Rustan ØG, et al. Low-dose oxytocin delivered intranasally with breath powered device affects social-cognitive behavior: a randomized four-way crossover trial with nasal cavity dimension assessment. Transl Psychiatry. 2015;5:e602. doi: 10.1038/tp.2015.93
  • Food and Drug Administration. Nasal spray and inhalation solution, suspension, and spray drug products - chemistry. Manufacturing, And Controls Documentation. 2002.
  • Veronesi MC, Alhamami M, Miedema SB, et al. Imaging of intranasal drug delivery to the brain. Am J Nucl Med Mol Imaging. 2020;10:1–31.
  • Balyasnikova IV, Prasol MS, Ferguson SD, et al. Intranasal delivery of mesenchymal stem cells significantly extends survival of irradiated mice with experimental brain tumors. Mol Ther. 2014;22(1):140–148. doi: 10.1038/mt.2013.199
  • Leach CL, Kuehl PJ, Chand R, et al. Nasal deposition of HFA-Beclomethasone, aqueous fluticasone propionate and aqueous mometasone furoate in allergic rhinitis patients. J Aerosol Med Pulm Drug Deliv. 2015;28(5):334–340. doi: 10.1089/jamp.2014.1180
  • Schroeter JD, Tewksbury EW, Wong BA, et al. Experimental measurements and computational predictions of regional particle deposition in a sectional nasal model. J Aerosol Med Pulm Drug Deliv. 2015;28(1):20–29. doi: 10.1089/jamp.2013.1084
  • Keeler JA, Patki A, Woodard CR, et al. A computational study of nasal spray deposition pattern in four Ethnic Groups. J Aerosol Med Pulm Drug Deliv. 2016;29(2):153–166. doi: 10.1089/jamp.2014.1205
  • Cabrera M, Michelet O, Piazzoni E, et al. Development of in vitro nasal cast imaging techniques to predict in vivo nasal deposition. Respiratory drug delivery Europe 2017. River Grove (IL USA): DHI Publishing; 2017. p. 325.
  • Chen JZ, Kiaee M, Martin AR, et al. In vitro assessment of an idealized nose for nasal spray testing: comparison with regional deposition in realistic nasal replicas. Int J Pharm. 2020;582:119341.
  • Manniello MD, Hosseini S, Alfaifi A, et al. In vitro evaluation of regional nasal drug delivery using multiple anatomical nasal replicas of adult human subjects and two nasal sprays. Int J Pharm. 2021;593:120103. doi: 10.1016/j.ijpharm.2020.120103
  • Hosseini S, Alfaifi A, Esmaeili AR, et al. Effects of nasal anatomical characteristics and administration parameters on delivery of locally-acting drugs with suspension nasal sprays in adults. J Aerosol Sci. 2023;167:106101. doi: 10.1016/j.jaerosci.2022.106101
  • Kimbell JS, Segal RA, Asgharian B, et al. Characterization of deposition from nasal spray devices using a computational fluid dynamics model of the human nasal passages. J Aerosol Med. 2007;20(1):59–74. doi: 10.1089/jam.2006.0531
  • Inthavong K, Tian ZF, Tu JY, et al. Optimising nasal spray parameters for efficient drug delivery using computational fluid dynamics. Comput Biol Med. 2008;38(6):713–726. doi: 10.1016/j.compbiomed.2008.03.008
  • Rygg A, Hindle M, Longest PW. Linking suspension nasal spray drug deposition patterns to pharmacokinetic profiles: a proof-of-concept study using computational fluid dynamics. J Pharm Sci. 2016;105(6):1995–2004. doi: 10.1016/j.xphs.2016.03.033
  • Davis SS. Nasal vaccines. Adv Drug Deliv Rev. 2001;51(1–3):21–42. doi: 10.1016/S0169-409X(01)00162-4
  • Agrawal M, Saraf S, Saraf S, et al. Nose-to-brain drug delivery: an update on clinical challenges and progress towards approval of anti-Alzheimer drugs. J Control Release. 2018;281:139–177. doi: 10.1016/j.jconrel.2018.05.011
  • Deruyver L, Rigaut C, Lambert P, et al. The importance of pre-formulation studies and of 3D-printed nasal casts in the success of a pharmaceutical product intended for nose-to-brain delivery. Adv Drug Deliv Rev. 2021;175:113826. doi: 10.1016/j.addr.2021.113826
  • Le Guellec S, Ehrmann S, Vecellio L. In vitro - in vivo correlation of intranasal drug deposition. Adv Drug Deliv Rev. 2021;170:340–352. doi: 10.1016/j.addr.2020.09.002
  • Tafaghodi M, Abolghasem Sajadi Tabassi S, Jaafari M-R, et al. Evaluation of the clearance characteristics of various microspheres in the human nose by gamma-scintigraphy. Int J Pharm. 2004;280(1–2):125–135. doi: 10.1016/j.ijpharm.2004.05.009
  • Soane RJ, Frier M, Perkins AC, et al. Evaluation of the clearance characteristics of bioadhesive systems in humans. Int J Pharm. 1999;178(1):55–65. doi: 10.1016/S0378-5173(98)00367-6
  • Yuki Y, Nochi T, Harada N, et al. In vivo molecular imaging analysis of a nasal vaccine that induces protective immunity against botulism in nonhuman primates. J Immunol. 2010;185:5436–5443. doi: 10.4049/jimmunol.1001789
  • Van de Bittner GC, Van de Bittner KC, Wey H-Y, et al. Positron emission tomography assessment of the intranasal delivery route for orexin a. ACS Chem Neurosci. 2018;9(2):358–368. doi: 10.1021/acschemneuro.7b00357
  • Vidgren P, Vidgren M, Paronen P, et al. Nasal distribution of radioactive drug administered using two dosage forms. Eur J Drug Metab Pharmacokinet. 1991;Spec(3):426–432.
  • Suman JD, Laube BL, Dalby R. Comparison of nasal deposition and clearance of aerosol generated by nebulizer and an aqueous spray pump. Pharm Res. 1999;16(10):1648–1652. doi: 10.1023/A:1011933410898
  • Seow HC, Liao Q, Lau ATY, et al. Dual targeting powder formulation of antiviral agent for customizable nasal and lung deposition profile through single intranasal administration. Int J Pharm. 2022;619:121704. doi: 10.1016/j.ijpharm.2022.121704
  • Al-Ghananeem AM, Sandefer EP, Doll WJ, et al. Gamma scintigraphy for testing bioequivalence: a case study on two cromolyn sodium nasal spray preparations. Int J Pharm. 2008;357(1–2):70–76. doi: 10.1016/j.ijpharm.2008.01.040
  • Djupesland PG, Skretting A. Nasal deposition and clearance in man: comparison of a bidirectional powder device and a traditional liquid spray pump. J Aerosol Med Pulm Drug Deliv. 2012;25(5):280–289. doi: 10.1089/jamp.2011.0924
  • Hoekman J, Brunelle A, Hite M, et al. SPECT Imaging of Direct Nose-to-Brain Transfer of MAG-3 in Man. Proceedings of the Am Assoc Pharm Scientist Annual Meeting; 10–14 November 2013; San Antonio, TX, USA.
  • Food and drug administration. Bioavailability and Bioequivalence Studies for Nasal Aerosols and Nasal Sprays for Local Action. 2003.
  • Newman SP, Pitcairn GR, Dalby RN. Drug delivery to the nasal cavity: in vitro and in vivo assessment. Crit Rev Ther Drug Carrier Syst. 2004;21(1):46–66. doi: 10.1615/CritRevTherDrugCarrierSyst.v21.i1.20
  • Lelong N, Junqua-Moullet A, Diot P, et al. Comparison of laser diffraction measurements by Mastersizer X and Spraytec to characterize droplet size distribution of medical liquid aerosols. J Aerosol Med Pulm Drug Deliv. 2014;27(2):94–102. doi: 10.1089/jamp.2012.1030
  • Dayal P, Shaik MS, Singh M. Evaluation of different parameters that affect droplet-size distribution from nasal sprays using the malvern Spraytec®. J Pharm Sci. 2004;93(7):1725–1742. doi: 10.1002/jps.20090
  • Pozzoli M, Rogueda P, Zhu B, et al. Dry powder nasal drug delivery: challenges, opportunities and a study of the commercial teijin puvlizer rhinocort device and formulation. Drug Dev Ind Pharm. 2016;42(10):1660–1668. doi: 10.3109/03639045.2016.1160110
  • Suman JD, Laube BL, Dalby R. Validity of in vitro tests on aqueous spray pumps as surrogates for nasal deposition, absorption, and biologic response. J Aerosol Med. 2006;19(4):510–521. doi: 10.1089/jam.2006.19.510
  • Kundoor V, Dalby RN. Assessment of nasal spray deposition pattern in a silicone human nose model using a color-based method. Pharm Res. 2010;27:30–36. doi: 10.1007/s11095-009-0002-4
  • Guo C, Stine KJ, Kauffman JF, et al. Assessment of the influence factors on in vitro testing of nasal sprays using Box-Behnken experimental design. Eur J Pharm Sci. 2008;35(5):417–426. doi: 10.1016/j.ejps.2008.09.001
  • Cheng YS, Holmes TD, Gao J, et al. Characterization of nasal spray pumps and deposition pattern in a replica of the human nasal airway. J Aerosol Med. 2001;14(2):267–280. doi: 10.1089/08942680152484199
  • Shah SA, Dickens CJ, Ward DJ, et al. Design of experiments to optimize an in vitro cast to predict human nasal drug deposition. J Aerosol Med Pulm Drug Deliv. 2014;27(1):21–29. doi: 10.1089/jamp.2012.1011
  • Foo MY, Cheng Y-S, Su W-C, et al. The influence of spray properties on intranasal deposition. J Aerosol Med. 2007;20(4):495–508. doi: 10.1089/jam.2007.0638
  • Warnken ZN, Smyth HDC, Davis DA, et al. Personalized medicine in nasal delivery: the use of patient-specific administration parameters to improve nasal drug targeting using 3D-Printed nasal replica casts. Mol Pharm. 2018;15(4):1392–1402. doi: 10.1021/acs.molpharmaceut.7b00702
  • Xi J, Yuan JE, Zhang Y, et al. Visualization and quantification of nasal and olfactory deposition in a sectional adult nasal airway cast. Pharm Res. 2016;33:1527–1541. doi: 10.1007/s11095-016-1896-2
  • Hughes R, Watterson J, Dickens C, et al. Development of a nasal cast model to test medicinal nasal devices. Proc Inst Mech Eng H. 2008;222:1013–1022. doi: 10.1243/09544119JEIM423
  • Guo Y, Laube B, Dalby R. The effect of formulation variables and breathing patterns on the site of nasal deposition in an anatomically correct model. Pharm Res. 2005;22:1871–1878. doi: 10.1007/s11095-005-7391-9
  • Kleinstreuer C, Zhang Z, Donohue JF. Targeted drug-aerosol delivery in the human respiratory system. Annu Rev Biomed Eng. 2008;10(1):195–220. doi: 10.1146/annurev.bioeng.10.061807.160544
  • Pu Y, Goodey AP, Fang X, et al. A comparison of the deposition patterns of different nasal spray formulations using a nasal cast. Aerosol Sci Technol. 2014;48:930–938. doi: 10.1080/02786826.2014.931566
  • Alfaifi A, Hosseini S, Esmaeili AR, et al. Anatomically realistic nasal replicas capturing the range of nasal spray drug delivery in adults. Int J Pharm. 2022;622:121858.
  • Kiaee M, Wachtel H, Noga ML, et al. An idealized geometry that mimics average nasal spray deposition in adults: a computational study. Comput Biol Med. 2019;107:206–217. doi: 10.1016/j.compbiomed.2019.02.013
  • Kiaee M, Wachtel H, Noga ML, et al. Regional deposition of nasal sprays in adults: a wide ranging computational study. Int J Numer Method Biomed Eng. 2018;34(5):e2968. doi: 10.1002/cnm.2968
  • Chen J, Martin AR, Finlay WH. Recent in vitro and in silico advances in the understanding of intranasal drug delivery. Curr Pharm Des. 2021;27(12):1482–1497. doi: 10.2174/1381612826666201112143230
  • Williams G, Suman JD. In vitro anatomical models for nasal drug delivery. Pharmaceutics. 2022;14:1353. doi: 10.3390/pharmaceutics14071353
  • Liu Y, Johnson MR, Matida EA, et al. Creation of a standardized geometry of the human nasal cavity. J Appl Physiol (1985). 2009;106(3):784–795. doi: 10.1152/japplphysiol.90376.2008
  • Liu Y, Matida EA, Johnson MR. Experimental measurements and computational modeling of aerosol deposition in the Carleton-Civic standardized human nasal cavity. J Aerosol Sci. 2010;41:569–586. doi: 10.1016/j.jaerosci.2010.02.014
  • Darunkola MK. Simulation of spray deposition in adults nasal airway [internet]. ERA; 2018 [cited 2024 Feb 5]. Available from: https://era.library.ualberta.ca/items/54999f4d-b89f-4c21-94bf-db6afd1a0f35
  • Chen JZ, Finlay WH, Martin A. In vitro regional deposition of nasal sprays in an idealized nasal inlet: comparison with in vivo Gamma Scintigraphy. Pharm Res. 2022;39:3021–3028. doi: 10.1007/s11095-022-03388-7
  • Kippax P, Suman J. Characterizing the performance of nasal dry powder devices. Presentation at RDD 2011.
  • Vehring R. Pharmaceutical particle engineering via spray drying. Pharm Res. 2008;25:999–1022. doi: 10.1007/s11095-007-9475-1
  • Murphy B, Aisenstat M, Ordoubadi M, et al. Intranasal powder administration of a spray dried tuberculosis vaccine candidate characterized using the alberta idealized nasal inlet. Respiratory drug delivery 2022. Orlando (FL); 2022. p. 441–446. https://www.rddonline.com/rdd/article.php?ArticleID=2911&id=21 for more information.
  • Potts JC, Penn LC, Ahad J, et al. Investigations into the relationship between spray dried powder particle size and deposition in nose and Lung Analogues when actuated from a nasal device. Nice (France); 2023. p. 431–436. https://rddonline.org/rdd/article.php?ArticleID=2991&id=22 for more information.
  • Henriques P, Bicker J, Carona A, et al. Amorphous nasal powder advanced performance: in vitro/ex vivo studies and correlation with in vivo pharmacokinetics. J Pharm Investig. 2023;53(5):723–742. doi: 10.1007/s40005-023-00630-1
  • Silva L, Farias G, Hauchard N et al. The relevance of non-standardised in vitro nasal cast models in product development. Edinburgh (UK). 2022. https://ddl-conference.com/ddl2022/conference-papers/the-relevance-of-non-standardised-in-vitro-nasal-cast-models-in-product-development/ for more information.
  • Laube BL, Sharpless G, Vikani AR, et al. Intranasal deposition of accuspray™ aerosol in anatomically correct models of 2-, 5-, and 12-year-old children. J Aerosol Med Pulm Drug Deliv. 2015;28(5):320–333. doi: 10.1089/jamp.2014.1174
  • Sawant N, Donovan MD. In vitro assessment of spray deposition patterns in a pediatric (12 year-old) nasal cavity model. Pharm Res. 2018;35:108. doi: 10.1007/s11095-018-2385-6
  • Doughty DV, Vibbert C, Kewalramani A, et al. Automated actuation of nasal spray products: determination and comparison of adult and pediatric settings. Drug Dev Ind Pharm. 2011;37(3):359–366. doi: 10.3109/03639045.2010.520321
  • Li C, Zhao K, Shusterman D, et al.et al. Clinical CFD applications 1. In: Inthavong K, Singh N Wong E, editors. Clinical and biomedical engineering in the human nose: a computational fluid dynamics approach [internet]. Singapore: Springer; 2021 [cited 2023 Oct 30] p. 193–223. doi: 10.1007/978-981-15-6716-2_9
  • Feng Y, Hayati H, Bates AJ, et al.et al. Clinical CFD applications 2. In: Inthavong K, Singh N Wong E, editors. Clinical and biomedical engineering in the human nose: a computational fluid dynamics approach [internet]. Singapore: Springer; 2021. [cited 2023 Oct 30]. p. 225–253. doi: 10.1007/978-981-15-6716-2_10
  • Tu J, Inthavong K, Ahmadi G. Computational fluid and particle dynamics (CFPD): an introduction. Comp Flu Part Dyna Hum Resp Sys. 2012 Sep 18:1–18. doi: 10.1007/978-94-007-4488-2_1. PMCID: PMC7123128
  • Djupesland PG. Nasal drug delivery devices: characteristics and performance in a clinical perspective—a review. Drug Deliv Transl Res. 2013;3(1):42–62.
  • Cole P. Nasal and oral airflow resistors. Site, function, and assessment. Arch Otolaryngol Head Neck Surg. 1992;118(8):790–793. doi: 10.1001/archotol.1992.01880080012004
  • Fodil R, Brugel-Ribere L, Croce C, et al. Inspiratory flow in the nose: a model coupling flow and vasoerectile tissue distensibility. J Appl Physiol 1985. 2005;98(1):288–295. doi: 10.1152/japplphysiol.00625.2004
  • Shi H. Numerical simulation of airflow, particle deposition and drug delivery in a representative human nasal airway model [internet]. [Raleigh (NC)]: North Carolina State University; 2007 [cited 2023 Oct 30]. Available from: https://repository.lib.ncsu.edu/handle/1840.16/4416
  • Shi H, Kleinstreuer C, Zhang Z. Modeling of inertial particle transport and deposition in human nasal cavities with wall roughness. J Aerosol Sci. 2007;38:398–419. doi: 10.1016/j.jaerosci.2007.02.002
  • Subramaniam RP, Richardson RB, Morgan KT, et al. Computational fluid dynamics simulations of inspiratory airflow in the human nose and nasopharynx. Inhal Toxicol. 1998;10:91–120. doi: 10.1080/089583798197772
  • Schroeter JD, Kimbell JS, Asgharian B. Analysis of particle deposition in the turbinate and olfactory regions using a human nasal computational fluid dynamics model. J Aerosol Med. 2006;19(3):301–313. doi: 10.1089/jam.2006.19.301
  • Inthavong K, Tian ZF, Li HF, et al. A numerical study of spray particle deposition in a human nasal cavity. Aerosol Sci Technol. 2006;40:1034–1045. doi: 10.1080/02786820600924978
  • Inthavong K, Ge Q, Se CMK, et al. Simulation of sprayed particle deposition in a human nasal cavity including a nasal spray device. J Aerosol Sci. 2011;42:100–113. doi: 10.1016/j.jaerosci.2010.11.008
  • Inthavong K, Fung MC, Yang W, et al. Measurements of droplet size distribution and analysis of nasal spray atomization from different actuation pressure. J Aerosol Med Pulm Drug Deliv. 2015;28(1):59–67. doi: 10.1089/jamp.2013.1093
  • Kolanjiyil AV, Hosseini S, Alfaifi A, et al. Importance of cloud motion and two-way momentum coupling in the transport of pharmaceutical nasal sprays. J Aerosol Sci. 2021;156:105770. doi: 10.1016/j.jaerosci.2021.105770
  • Kolanjiyil AV, Alfaifi A, Aladwani G, et al. Importance of spray–wall interaction and post-deposition liquid motion in the transport and delivery of pharmaceutical nasal sprays. Pharmaceutics. 2022;14(5):956. doi: 10.3390/pharmaceutics14050956
  • Calmet H, Oks D, Santiago A, et al. Validation and sensitivity analysis for a nasal spray deposition computational model. Int J Pharm. 2022;626:122118. doi: 10.1016/j.ijpharm.2022.122118
  • Kolanjiyil AV, Walenga R, Babiskin A, et al. Establishing quantitative relationships between changes in nasal spray in vitro metrics and drug delivery to the posterior nasal region. Int J Pharm. 2023;635:122718. doi: 10.1016/j.ijpharm.2023.122718
  • Frank DO, Kimbell JS, Pawar S, et al. Effects of anatomy and particle size on nasal sprays and nebulizers. Otolaryngol--Head Neck Surg. 2012;146(2):313–319. doi: 10.1177/0194599811427519
  • Rygg A, Longest PW. Absorption and clearance of pharmaceutical aerosols in the human nose: development of a CFD model. J Aerosol Med Pulm Drug Deliv. 2016;29(5):416–431. doi: 10.1089/jamp.2015.1252
  • Gänger S, Schindowski K. Tailoring formulations for intranasal nose-to-brain delivery: a review on architecture, physico-chemical characteristics and mucociliary clearance of the nasal olfactory mucosa. Pharmaceutics. 2018;10:116. doi: 10.3390/pharmaceutics10030116
  • Sahin-Yilmaz A, Naclerio RM. Anatomy and physiology of the upper airway. Proc Am Thorac Soc. 2011;8(1):31–39. doi: 10.1513/pats.201007-050RN
  • Illum L. Nasal drug delivery—possibilities, problems and solutions. J Control Release. 2003;87(1–3):187–198. doi: 10.1016/S0168-3659(02)00363-2
  • Johnson NJ, Hanson LR, Frey WH. Trigeminal pathways deliver a low molecular weight drug from the nose to the brain and orofacial structures. Mol Pharm. 2010;7(3):884–893. doi: 10.1021/mp100029t
  • Dhuria SV, Hanson LR, Frey WH. Intranasal delivery to the central nervous system: mechanisms and experimental considerations. J Pharm Sci. 2010;99(4):1654–1673. doi: 10.1002/jps.21924
  • Bahadur S, Pathak K. Physicochemical and physiological considerations for efficient nose-to-brain targeting. Expert Opin Drug Deliv. 2012;9(1):19–31. doi: 10.1517/17425247.2012.636801
  • Shrewsbury SB. The upper nasal space: option for systemic drug delivery, mucosal vaccines and “nose-to-brain”. Pharmaceutics. 2023;15(6):1720.
  • Hazeri M, Faramarzi M, Sadrizadeh S, et al. Regional deposition of the allergens and micro-aerosols in the healthy human nasal airways. J Aerosol Sci. 2021;152:105700. doi: 10.1016/j.jaerosci.2020.105700
  • Pina Costa C, Nižić Nodilo L, Silva R, et al. In situ hydrogel containing diazepam-loaded nanostructured lipid carriers (DZP-NLC) for nose-to-brain delivery: development, characterization and deposition studies in a 3D-printed human nasal cavity model. Int J Pharmaceut. 2023;644:123345. doi: 10.1016/j.ijpharm.2023.123345
  • Cunha S, Swedrowska M, Bellahnid Y, et al. Thermosensitive in situ hydrogels of rivastigmine-loaded lipid-based nanosystems for nose-to-brain delivery: characterisation, biocompatibility, and drug deposition studies. Int J Pharm. 2022;620:121720. doi: 10.1016/j.ijpharm.2022.121720
  • Trows S, Wuchner K, Spycher R, et al. Analytical challenges and regulatory requirements for nasal drug products in Europe and the U.S. Pharmaceutics. 2014;6:195–219. doi: 10.3390/pharmaceutics6020195
  • Yarragudi SB, Richter R, Lee H, et al. Formulation of olfactory-targeted microparticles with tamarind seed polysaccharide to improve nose-to-brain transport of drugs. Carbohydr Polym. 2017;163:216–226. doi: 10.1016/j.carbpol.2017.01.044
  • Liu Y, Wu D. Bi-directional nasal drug delivery systems: a scoping review of nasal particle deposition patterns and clinical application. Laryngoscope Investig Oto. 2023;8(6):1484–1499. doi: 10.1002/lio2.1190
  • Xi J, Si XA, Gaide R, et al. Electrophoretic particle guidance significantly enhances olfactory drug delivery: a feasibility study. PLoS One. 2014;9(1):e86593. doi: 10.1371/journal.pone.0086593
  • Xi J, Yuan JE, Si XA, et al. Numerical optimization of targeted delivery of charged nanoparticles to the ostiomeatal complex for treatment of rhinosinusitis. Int J Nanomedicine. 2015;10:4847–4861. doi: 10.2147/IJN.S87382
  • Xi J, Zhang Z, Si XA. Improving intranasal delivery of neurological nanomedicine to the olfactory region using magnetophoretic guidance of microsphere carriers. Int J Nanomedicine. 2015;10:1211–1222. doi: 10.2147/IJN.S77520
  • Xi J, Yuan JE, Alshaiba M, et al. Design and testing of electric-guided delivery of charged particles to the olfactory region: experimental and numerical studies. Curr Drug Deliv. 2016;13(2):265–274. doi: 10.2174/1567201812666150909093050
  • Basu S, Holbrook LT, Kudlaty K, et al. Numerical evaluation of spray position for improved nasal drug delivery. Sci Rep. 2020;10:10568. doi: 10.1038/s41598-020-66716-0
  • Vahaji S, Shang Y, Zhang Y, et al. Optimising aerosol delivery for maxillary sinus deposition in a post-FESS sinonasal cavities. Aerosol Air Qual Res. 2021;21(12):210098. doi: 10.4209/aaqr.210098
  • Li C, Wang J, Wang Y, et al. Recent progress in drug delivery. Acta Pharm Sin B. 2019;9(6):1145–1162. doi: 10.1016/j.apsb.2019.08.003
  • Abdollahzadeh Jamalabadi MY, Xi J. Olfactory drug aerosol delivery with acoustic radiation. Biomedicines. 2022;10:1347. doi: 10.3390/biomedicines10061347
  • Papakyriakopoulou P, Rekkas DM, Colombo G, et al. Development and in vitro-ex vivo evaluation of novel polymeric nasal donepezil films for potential use in Alzheimer’s disease using experimental design. Pharmaceutics. 2022;14:1742. doi: 10.3390/pharmaceutics14081742
  • Kaikousidis C, Papakyriakopoulou P, Dokoumetzidis A, et al. Donepezil brain and blood pharmacokinetic modeling after nasal film and oral solution administration in mice. Pharmaceutics. 2023;15:1409. doi: 10.3390/pharmaceutics15051409
  • Menegatou I-M, Papakyriakopoulou P, Rekkas DM, et al. Design of a personalized nasal device (matrix-piston nasal device, MPD) for drug delivery: a 3D-Printing application. AAPS Pharm Sci Tech. 2022;23:205. doi: 10.1208/s12249-022-02351-4
  • Lavelle EC, Ward RW. Mucosal vaccines — fortifying the frontiers. Nat Rev Immunol. 2022;22:236–250. doi: 10.1038/s41577-021-00583-2
  • Fukuyama Y, Okada K, Yamaguchi M, et al. Nasal administration of cholera toxin as a mucosal adjuvant damages the olfactory system in mice. PLoS One. 2015;10(9):e0139368. doi: 10.1371/journal.pone.0139368
  • Lobaina Mato Y. Nasal route for vaccine and drug delivery: features and current opportunities. Int J Pharmaceut. 2019;572:118813. doi: 10.1016/j.ijpharm.2019.118813
  • Suman JD. Current understanding of nasal morphology and physiology as a drug delivery target. Drug Deliv Transl Res. 2013;3(1):4–15. doi: 10.1007/s13346-012-0121-z
  • Yu Y-S, AboulFotouh K, Xu H, et al. Feasibility of intranasal delivery of thin-film freeze-dried, mucoadhesive vaccine powders. Int J Pharmaceut. 2023;640:122990. doi: 10.1016/j.ijpharm.2023.122990
  • AboulFotouh K, Xu H, Moon C, et al. Development of (inhalable) dry powder formulations of AS01B-Containing vaccines using thin-film freeze-drying. Int J Pharmaceut. 2022;622:121825. doi: 10.1016/j.ijpharm.2022.121825
  • Wilkins JV, Golshahi L, Rahman N, et al. Evaluation of intranasal vaccine delivery using anatomical replicas of infant nasal airways. Pharm Res. 2021;38:141–153. doi: 10.1007/s11095-020-02976-9
  • Li L, Wilkins JV, Esmaeili AR, et al. In vitro comparison of local nasal vaccine delivery and correlation with device spray performance. Pharm Res. 2023;40:537–550. doi: 10.1007/s11095-022-03452-2
  • Murphy BM, Chen JZ, Rolo M, et al. Intranasal delivery of a synthetic entamoeba histolytica vaccine containing adjuvant (LecA + GLA-3 M-052 liposomes): in vitro characterization. Int J Pharm. 2022;626:122141. doi: 10.1016/j.ijpharm.2022.122141
  • Tavernini S, Church TK, Lewis DA, et al. Deposition of micrometer-sized aerosol particles in neonatal nasal airway replicas. Aerosol Sci Technol. 2018;52:407–419. doi: 10.1080/02786826.2017.1413489
  • Tavernini S, Church TK, Lewis DA, et al. Scaling an idealized infant nasal airway geometry to mimic inertial filtration of neonatal nasal airways. J Aerosol Sci. 2018;118:14–21. doi: 10.1016/j.jaerosci.2017.12.004
  • Topol EJ, Iwasaki A. Operation nasal vaccine—lightning speed to counter COVID-19. Sci Immunol [Internet]. 2022 [cited 2023 Oct 30]. 7(74). Available from: https://www.science.org/doi/10.1126/sciimmunol.add9947
  • Waltz E. China and India approve nasal COVID vaccines — are they a game changer? Nature. 2022;609:450–450. doi: 10.1038/d41586-022-02851-0
  • Sonvico F, Colombo G, Quarta E, et al. Nasal delivery as a strategy for the prevention and treatment of COVID-19. Expert Opin Drug Delivery. 2023;20:1115–1130. doi: 10.1080/17425247.2023.2263363

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.