55
Views
0
CrossRef citations to date
0
Altmetric
Review

Magnetic hybrid nanovesicles for the precise diagnosis and treatment of central nervous system disorders

, , &
Pages 521-535 | Received 13 Nov 2023, Accepted 26 Mar 2024, Published online: 30 Mar 2024

References

  • Meyer AH, Feldsien TM, Mezler M, et al. Novel developments to enable treatment of CNS diseases with targeted drug delivery. Pharmaceutics. 2023;15(4):1100. doi: 10.3390/pharmaceutics15041100
  • Chaulagain B, Gothwal A, Lamptey RNL, et al. Experimental models of in vitro blood–brain barrier for CNS drug delivery: an evolutionary perspective. Int J Mol Sci. 2023;24(3):2710. doi: 10.3390/ijms24032710
  • Rajendran R, Kunnil A, Radhakrishnan A, et al. Current trends and future perspectives for enhanced drug delivery to central nervous system in treatment of stroke. Ther Deliv. 2023 Jan;14(1):61–85. doi: 10.4155/tde-2022-0064
  • Farhoudi M, Sadigh-Eteghad S, Mahmoudi J, et al. The therapeutic benefits of intravenously administrated nanoparticles in stroke and age-related neurodegenerative diseases. Curr Pharm Des. 2022;28(24):1985–2000. doi: 10.2174/1381612828666220608093639
  • Nguyen TT, Nguyen TTD, Vo TK, et al. Nanotechnology-based drug delivery for central nervous system disorders. Biomed Pharmacother. 2021;143:112117. doi: 10.1016/j.biopha.2021.112117
  • Virmani R, Virmani T, Pathak K. Nanovesicles for delivery of central nervous system drugs. Elsevier: Applications of Nanovesicular Drug Delivery; 2022. p. 315–339.
  • Liang Y, Iqbal Z, Lu J, et al. Cell-derived nanovesicle-mediated drug delivery to the brain: principles and strategies for vesicle engineering. Mol Ther. 2023;31(5):1207–1224. doi: 10.1016/j.ymthe.2022.10.008
  • Chen Y, Hou S. Application of magnetic nanoparticles in cell therapy. Stem Cell Res Ther. 2022;13(1):135–143. doi: 10.1186/s13287-022-02808-0
  • Zhu M, Li Y, Huang C, et al. Magnetic nanoparticle-driven and exosome-mediated intelligent targeting nanovesicles for inducing ferroptosis to surmount breast cancer. ACS Appl Nano Mater. 2023;6(13):11269–11281. doi: 10.1021/acsanm.3c01304
  • Maghsoodi M, Rahmani M, Ghavimi H, et al. Fast dissolving sublingual films containing sumatriptan alone and combined with methoclopramide: evaluation in vitro drug release and mucosal permeation. Pharm Sci. 2022;22(3):153–163. doi: 10.15171/PS.2016.25
  • Huang Q, Chen AT, Chan KY, et al. Targeting AAV vectors to the central nervous system by engineering capsid–receptor interactions that enable crossing of the blood–brain barrier. PLoS Biol. 2023;21(7):e3002112. doi: 10.1371/journal.pbio.3002112
  • van Lengerich B, Zhan L, Xia D, et al. A TREM2-activating antibody with a blood–brain barrier transport vehicle enhances microglial metabolism in Alzheimer’s disease models. Nat Neurosci. 2023;26(3):416–429. doi: 10.1038/s41593-022-01240-0
  • Chatterjee S, Deshpande AA, Shen H. Recent advances in the in vitro and in vivo methods to assess impact of P‐glycoprotein and breast cancer resistance protein transporters in central nervous system drug disposition. Biopharm Drug Dispos. 2023;44(1):7–25. doi: 10.1002/bdd.2345
  • Ahmadian E, Samiei M, Hasanzadeh A, et al. Monitoring of drug resistance towards reducing the toxicity of pharmaceutical compounds: past, present and future. J Pharm Biomed Anal. 2020;186:113265. doi: 10.1016/j.jpba.2020.113265
  • Diao X, Han H, Li B, et al. The rare marine bioactive compounds in neurological disorders and diseases: is the Blood-Brain Barrier an obstacle or a target? Mar Drugs. 2023;21(7):406. doi: 10.3390/md21070406
  • Alkahtani S, Al-Johani NS, Alarifi S. Mechanistic insights, treatment paradigms, and clinical progress in neurological disorders: Current and future prospects. IJMS. 2023;24(2):1340. doi: 10.3390/ijms24021340
  • Villalba N, Ma Y, Gahan SA, et al. Lung infection by P. aeruginosa induces neuroinflammation and blood-brain barrier dysfunction in mice. bioRxiv. 2023 Jan 23;20:1–18. doi: 10.1186/s12974-023-02817-7
  • Panlilio LV, Goldberg SR. Self‐administration of drugs in animals and humans as a model and an investigative tool. Addiction. 2007;102(12):1863–1870. doi: 10.1111/j.1360-0443.2007.02011.x
  • ElShagea HN, Makar RR, Salama AH, et al. Investigating the targeting power to brain tissues of intranasal rasagiline mesylate-loaded transferosomal in situ gel for efficient treatment of Parkinson’s disease. Pharmaceutics. 2023;15(2):533. doi: 10.3390/pharmaceutics15020533
  • Nojoki F, Ebrahimi-Hosseinzadeh B, Hatamian-Zarmi A, et al. Design and development of chitosan-insulin-transfersomes (transfersulin) as effective intranasal nanovesicles for the treatment of Alzheimer’s disease: In vitro, in vivo, and ex vivo evaluations. Biomed Pharmacother. 2022 Sep;153:113450. doi: 10.1016/j.biopha.2022.113450
  • Shi J, Wang Y, Luo G. Ligustrazine phosphate ethosomes for treatment of Alzheimer’s disease, in vitro and in animal model studies. AAPS Pharm Sci Tech. 2012 Jun;13(2):485–492. doi: 10.1208/s12249-012-9767-6
  • Qu M, Lin Q, He S, et al. A brain targeting functionalized liposomes of the dopamine derivative N-3,4-bis(pivaloyloxy)-dopamine for treatment of Parkinson’s disease. J Control Release. 2018;277:173–182. doi: 10.1016/j.jconrel.2018.03.019
  • Zhu Y, Liang J, Gao C, et al. Multifunctional ginsenoside Rg3-based liposomes for glioma targeting therapy. J Control Release. 2021;330:641–657. doi: 10.1016/j.jconrel.2020.12.036
  • Kulkarni P, Rawtani D, Barot T. Design, development and in-vitro/in-vivo evaluation of intranasally delivered rivastigmine and N-Acetyl cysteine loaded bifunctional niosomes for applications in combinative treatment of Alzheimer’s disease. Eur J Pharm Biopharm. 2021;163:1–15. doi: 10.1016/j.ejpb.2021.02.015
  • Geng W, Tang H, Luo S, et al. Exosomes from miRNA-126-modified ADSCs promotes functional recovery after stroke in rats by improving neurogenesis and suppressing microglia activation. Am J Transl Res. 2019;11(2):780–792. doi: 10.1111/cns.13455
  • Bu N, Wu H, Zhang G, et al. Exosomes from dendritic cells loaded with chaperone-rich cell lysates elicit a potent T cell immune response against intracranial glioma in mice. J Mol Neurosci. 2015;56(3):631–643. doi: 10.1007/s12031-015-0506-9
  • Salatin S. Nanoparticles as potential tools for improved antioxidant enzyme delivery. J Adv Chem Pharm Mater (JACPM). 2018;1(3):65–66.
  • Salatin S, Lotfipour F, Jelvehgari M. A brief overview on nano-sized materials used in the topical treatment of skin and soft tissue bacterial infections. Expert Opin Drug Deliv. 2019;16(12):1313–1331. doi: 10.1080/17425247.2020.1693998
  • Kenari AN, Cheng L, Hill AF. Methods for loading therapeutics into extracellular vesicles and generating extracellular vesicles mimetic-nanovesicles. Methods. 2020;177:103–113. doi: 10.1016/j.ymeth.2020.01.001
  • Grimaldi N, Andrade F, Segovia N, et al. Lipid-based nanovesicles for nanomedicine. Chem Soc Rev. 2016;45(23):6520–6545. doi: 10.1039/C6CS00409A
  • Rampado R, Biccari A, D’Angelo E, et al. Optimization of biomimetic, leukocyte-mimicking nanovesicles for drug delivery against colorectal cancer using a design of experiment approach. Front Bioeng Biotechnol. 2022;10:883034. doi: 10.3389/fbioe.2022.883034
  • Fan Z, Wang Y, Li L, et al. Tumor-homing and immune-reprogramming cellular nanovesicles for photoacoustic imaging-guided phototriggered precise chemoimmunotherapy. ACS Nano. 2022;16(10):16177–16190. doi: 10.1021/acsnano.2c04983
  • Bose R JC, Uday Kumar S, Zeng Y, et al. Tumor cell-derived extracellular vesicle-coated nanocarriers: an efficient theranostic platform for the cancer-specific delivery of anti-miR-21 and imaging agents. ACS Nano. 2018;12(11):10817–10832. doi: 10.1021/acsnano.8b02587
  • Omidi Y, Omidian H, Kwon Y, et al. Blood–brain barrier and nanovesicles for brain-targeting drug delivery. Elsevier: Applications of Nanovesicular Drug Delivery; 2022. p. 167–199. doi: 10.1016/B978-0-323-91865-7.00007-9
  • Picone P, Palumbo FS, Federico S, et al. Nano-structured myelin: new nanovesicles for targeted delivery to white matter and microglia, from brain-to-brain. Mater Today Bio. 2021;12:100146. doi: 10.1016/j.mtbio.2021.100146
  • Naguib MJ, Salah S, Halim SAA, et al. Investigating the potential of utilizing glycerosomes as a novel vesicular platform for enhancing intranasal delivery of lacidipine. Int J Pharm. 2020;582:119302. doi: 10.1016/j.ijpharm.2020.119302
  • Alami-Milani M, Salatin S, Rayeni FS, et al. Preparation and in vitro evaluation of thermosensitive and mucoadhesive hydrogels for intranasal delivery of phenobarbital sodium. Ther Deliv. 2021;12(6):461–475. doi: 10.4155/tde-2021-0022
  • Li J-Y, Li Q-Q, Sheng R. The role and therapeutic potential of exosomes in ischemic stroke. Neurochem Int. 2021;151:105194. doi: 10.1016/j.neuint.2021.105194
  • Wang Z, Zhao Y, Jiang Y, et al. Enhanced anti-ischemic stroke of ZL006 by T7-conjugated PEGylated liposomes drug delivery system. Sci Rep. 2015;5(1):12651. doi: 10.1038/srep12651
  • Thomas RG, Kim J-H, Kim J-H, et al. Treatment of ischemic stroke by atorvastatin-loaded PEGylated liposome. Transl Stroke Res. 2023;2023:1–9. doi: 10.1007/s12975-023-01125-9
  • Amin FU, Hoshiar AK, Do TD, et al. Osmotin-loaded magnetic nanoparticles with electromagnetic guidance for the treatment of Alzheimer’s disease. Nanoscale. 2017;9(30):10619–10632. doi: 10.1039/C7NR00772H
  • Tafoya MA, Madi S, Sillerud LO. Superparamagnetic nanoparticle-enhanced MRI of Alzheimer’s disease plaques and activated microglia in 3X transgenic mouse brains: contrast optimization. J Magn Reson Imaging. 2017;46(2):574–588. doi: 10.1002/jmri.25563
  • X-G L, Lu S, D-Q L, et al. ScFv-conjugated superparamagnetic iron oxide nanoparticles for MRI-based diagnosis in transgenic mouse models of Parkinson’s and Huntington’s diseases. Brain Res. 2019;1707:141–153. doi: 10.1016/j.brainres.2018.11.034
  • Wang L, Yang S, Li L, et al. A low-intensity repetitive transcranial magnetic stimulation coupled to magnetic nanoparticles loaded with scutellarin enhances brain protection against cerebral ischemia reperfusion injury. J Drug Deliv Sci Technol. 2022;74:103606. doi: 10.1016/j.jddst.2022.103606
  • Lu X, Zhang Y, Wang L, et al. Development of L-carnosine functionalized iron oxide nanoparticles loaded with dexamethasone for simultaneous therapeutic potential of blood brain barrier crossing and ischemic stroke treatment. Drug Deliv. 2021;28(1):380–389. doi: 10.1080/10717544.2021.1883158
  • Chen H-A, Ma Y-H, Hsu T-Y, et al. Preparation of peptide and recombinant tissue plasminogen activator conjugated poly (lactic-co-glycolic acid)(PLGA) magnetic nanoparticles for dual targeted thrombolytic therapy. Int J Mol Sci. 2020;21(8):2690. doi: 10.3390/ijms21082690
  • Afzalipour R, Khoei S, Khoee S, et al. Thermosensitive magnetic nanoparticles exposed to alternating magnetic field and heat-mediated chemotherapy for an effective dual therapy in rat glioma model. Nanomed Nanotechnol Biol Med. 2021;31:102319. doi: 10.1016/j.nano.2020.102319
  • Rego GNA, Mamani JB, Souza TKF, et al. Therapeutic evaluation of magnetic hyperthermia using Fe3O4-aminosilane-coated iron oxide nanoparticles in glioblastoma animal model. Einstein (Sao Paulo). 2019;17(4):eAO4786. doi: 10.31744/einstein_journal/2019AO4786
  • Pal A, Kumar S, Jain S, et al. Neuroregenerative effects of electromagnetic field and magnetic nanoparticles on spinal cord injury in rats. J Nanosci Nanotechnol. 2018 Oct 1;18(10):6756–6764. doi: 10.1166/jnn.2018.15820
  • Gkountas AA, Polychronopoulos ND, Sofiadis GN, et al. Simulation of magnetic nanoparticles crossing through a simplified blood-brain barrier model for glioblastoma multiforme treatment. Comput Methods Programs Biomed. 2021;212:106477. doi: 10.1016/j.cmpb.2021.106477
  • Aguilera G, Berry CC, West RM, et al. Carboxymethyl cellulose coated magnetic nanoparticles transport across a human lung microvascular endothelial cell model of the blood–brain barrier. Nanoscale Adv. 2019;1(2):671–685. doi: 10.1039/C8NA00010G
  • Wu Y, Lu Z, Li Y, et al. Surface modification of iron oxide-based magnetic nanoparticles for cerebral theranostics: application and prospection. Nanomaterials. 2020;10(8):1441. doi: 10.3390/nano10081441
  • Chan M-H, Li C-H, Chang Y-C, et al. Iron-based ceramic composite nanomaterials for magnetic fluid hyperthermia and drug delivery. Pharmaceutics. 2022;14(12):2584. doi: 10.3390/pharmaceutics14122584
  • Mamani JB, Souza TKF, Nucci MP, et al. In vitro evaluation of hyperthermia magnetic technique indicating the best strategy for internalization of magnetic nanoparticles applied in glioblastoma tumor cells. Pharmaceutics. 2021 1-21;13(8):1219. doi: 10.3390/pharmaceutics13081219
  • Choi M, Ryu J, Vu HD, et al. Transferrin-conjugated melittin-loaded l-arginine-coated iron oxide nanoparticles for mitigating beta-amyloid pathology of the 5XFAD mouse brain. Int J Mol Sci. 2023;24(19):14954. doi: 10.3390/ijms241914954
  • Azarmi M, Maleki H, Nikkam N, et al. Novel neurolisteriosis therapy using SPION as a drivable nanocarrier in gallic acid delivery to CNS. J Control Release. 2023;353:507–517. doi: 10.1016/j.jconrel.2022.12.006
  • Ucar A, Parlak V, Ozgeris FB, et al. Magnetic nanoparticles-induced neurotoxicity and oxidative stress in brain of rainbow trout: mitigation by ulexite through modulation of antioxidant, anti-inflammatory, and antiapoptotic activities. Sci Total Environ. 2022;838:155718. doi: 10.1016/j.scitotenv.2022.155718
  • Lotfipour F, Shahi S, Farjami F, et al. Safety and toxicity issues of therapeutically used nanoparticles from the oral route. BMC Res Int. 2021;2021:1–14. doi: 10.1155/2021/9322282
  • Figueroa-Pizano M, Carvajal-Millan E. Nanovesicles for image-guided drug delivery. Elsevier: Systems of Nanovesicular Drug Delivery; 2022. p. 419–433.
  • Hermann CA, Mayer M, Griesche C, et al. Microfluidic-enabled magnetic labelling of nanovesicles for bioanalytical applications. Analyst. 2021;146(3):997–1003. doi: 10.1039/D0AN02027C
  • Wang M, Li L, Zhang X, et al. Magnetic resveratrol liposomes as a new theranostic platform for magnetic resonance imaging guided Parkinson’s disease targeting therapy. ACS Sustain Chem Eng. 2018;6(12):17124–17133. doi: 10.1021/acssuschemeng.8b04507
  • Ji B, Wang M, Gao D, et al. Combining nanoscale magnetic nimodipine liposomes with magnetic resonance image for Parkinson’s disease targeting therapy. Nanomedicine. 2017;12(3):237–253. doi: 10.2217/nnm-2016-0267
  • Lu YJ, Hsu HL, Lan YH, et al. Thermosensitive cationic magnetic liposomes for thermoresponsive delivery of CPT-11 and SLP2 shRNA in glioblastoma treatment. Pharmaceutics. 2023;15(4):1169–1191. doi: 10.3390/pharmaceutics15041169
  • Saiyed ZM, Gandhi NH, Nair MP. Magnetic nanoformulation of azidothymidine 5’-triphosphate for targeted delivery across the blood-brain barrier. Int J Nanomedicine. 2010;5:157–166. doi: 10.2147/IJN.S8905
  • Dickinson PJ, LeCouteur RA, Higgins RJ, et al. Canine model of convection-enhanced delivery of liposomes containing CPT-11 monitored with real-time magnetic resonance imaging: laboratory investigation. J Neurosurg. 2008;108(5):989–998. doi: 10.3171/JNS/2008/108/5/0989
  • Saesoo S, Sathornsumetee S, Anekwiang P, et al. Characterization of liposome-containing SPIONs conjugated with anti-CD20 developed as a novel theranostic agent for central nervous system lymphoma. Colloids Surf B Biointerfaces. 2018 Jan 1;161:497–507. doi: 10.1016/j.colsurfb.2017.11.003
  • Sharifi S, Samani A, Ahmadian E, et al. Oral delivery of proteins and peptides by mucoadhesive nanoparticles. Biointerface Res Appl Chem. 2019;9(2):3849–3852.
  • Maleki Dizaj S, Rad AA, Safaei N, et al. The application of nanomaterials in cardiovascular diseases: a review on drugs and devices. J Pharm Pharm Sci. 2019;22(1):501–515. doi: 10.18433/jpps30456
  • Pashirova TN, Zueva IV, Petrov KA, et al. Mixed cationic liposomes for brain delivery of drugs by the intranasal route: the acetylcholinesterase reactivator 2-PAM as encapsulated drug model. Colloids Surf B Biointerfaces. 2018;171:358–367. doi: 10.1016/j.colsurfb.2018.07.049
  • van der Koog L, Gandek TB, Nagelkerke A. Liposomes and extracellular vesicles as drug delivery systems: a comparison of composition, pharmacokinetics, and functionalization. Adv Healthc Mater. 2022;11(5):2100639. doi: 10.1002/adhm.202100639
  • Al-Jamal WT, Kostarelos K. Liposomes: from a clinically established drug delivery system to a nanoparticle platform for theranostic nanomedicine. Acc Chem Res. 2011 Oct 18;44(10):1094–1104. doi: 10.1021/ar200105p
  • Choi WI, Sahu A, Wurm FR, et al. Magnetoliposomes with size controllable insertion of magnetic nanoparticles for efficient targeting of cancer cells. RSC Adv. 2019;9(26):15053–15060. doi: 10.1039/C9RA02529D
  • Zhao M, Chang J, Fu X, et al. Nano-sized cationic polymeric magnetic liposomes significantly improves drug delivery to the brain in rats. J Drug Target. 2012 Jun;20(5):416–421. doi: 10.3109/1061186X.2011.651726
  • Cifuentes J, Cifuentes-Almanza S, Ruiz Puentes P, et al. Multifunctional magnetoliposomes as drug delivery vehicles for the potential treatment of Parkinson’s disease. Front Bioeng Biotechnol. 2023;11:1–10. doi: 10.3389/fbioe.2023.1181842
  • Jain S, Mishra V, Singh P, et al. RGD-anchored magnetic liposomes for monocytes/neutrophils-mediated brain targeting. Int J Pharm. 2003 Aug 11;261(1–2):43–55. doi: 10.1016/S0378-5173(03)00269-2
  • Zhao M, Hu J, Zhang L, et al. Study of amphotericin B magnetic liposomes for brain targeting. Int J Pharm. 2014 Nov 20;475(1–2):9–16. doi: 10.1016/j.ijpharm.2014.08.035
  • Lu Y-J, Chuang E-Y, Cheng Y-H, et al. Thermosensitive magnetic liposomes for alternating magnetic field-inducible drug delivery in dual targeted brain tumor chemotherapy. Chem Eng J. 2019;373:720–733. doi: 10.1016/j.cej.2019.05.055
  • Marie H, Lemaire L, Franconi F, et al. Superparamagnetic liposomes for MRI monitoring and external magnetic field‐induced selective targeting of malignant brain tumors. Adv Funct Mater. 2015;25(8):1258–1269. doi: 10.1002/adfm.201402289
  • Rivière C, Martina MS, Tomita Y, et al. Magnetic targeting of nanometric magnetic fluid loaded liposomes to specific brain intravascular areas: a dynamic imaging study in mice. Radiology. 2007 Aug;244(2):439–448. doi: 10.1148/radiol.2442060912
  • Ding H, Sagar V, Agudelo M, et al. Enhanced blood-brain barrier transmigration using a novel transferrin embedded fluorescent magneto-liposome nanoformulation. Nanotechnology. 2014 Feb 7;25(5):055101. doi: 10.1088/0957-4484/25/5/055101
  • Thomsen LB, Linemann T, Birkelund S, et al. Evaluation of targeted delivery to the brain using magnetic immunoliposomes and magnetic force. Materials. 2019 Oct 31;12(21):1–19. doi: 10.3390/ma12213576
  • Chen W, Xu Y, Yang D, et al. Preparation of liposomes coated superparamagnetic iron oxide nanoparticles for targeting and imaging brain glioma. Nano Biomed Eng. 2022;14(1):71–80. doi: 10.5101/nbe.v14i1.p71-80
  • Shi D, Mi G, Shen Y, et al. Glioma-targeted dual functionalized thermosensitive Ferri-liposomes for drug delivery through an in vitro blood–brain barrier. Nanoscale. 2019;11(32):15057–15071. doi: 10.1039/C9NR03931G
  • Xu HL, Yang JJ, ZhuGe DL, et al. Glioma-targeted delivery of a theranostic Liposome Integrated with quantum dots, superparamagnetic iron oxide, and cilengitide for dual-imaging guiding cancer surgery. Adv Healthc Mater. 2018 May;7(9):e1701130. doi: 10.1002/adhm.201701130
  • Liu Y, Wang CY, Kong XH, et al. Novel multifunctional polyethylene glycol-transactivating-transduction protein-modified liposomes cross the blood-spinal cord barrier after spinal cord injury. J Drug Target. 2010 Jul;18(6):420–429. doi: 10.3109/10611860903434001
  • Scarpa E, Bailey JL, Janeczek AA, et al. Quantification of intracellular payload release from polymersome nanoparticles. Sci Rep. 2016;6(1):29460. doi: 10.1038/srep29460
  • He C, Zhang Z, Ding Y, et al. LRP1-mediated pH-sensitive polymersomes facilitate combination therapy of glioblastoma in vitro and in vivo. J Nanobiotechnol. 2021;19(1):29. doi: 10.1186/s12951-020-00751-x
  • Kotha R, Kara DD, Roychowdhury R, et al. Polymersomes based versatile nanoplatforms for controlled drug delivery and imaging. Adv Pharm Bull. 2023;13(2):218. doi: 10.34172/apb.2023.028
  • Duan X, Lu L, Wang Y, et al. The long-term fate of mesenchymal stem cells labeled with magnetic resonance imaging-visible polymersomes in cerebral ischemia. Int J Nanomedicine. 2017;12:6705–6719. doi: 10.2147/IJN.S146742
  • Duan X, Wang Y, Zhang F, et al. Superparamagnetic iron oxide-loaded cationic polymersomes for cellular MR imaging of therapeutic stem cells in stroke. J Biomed Nanotechnol. 2016 Dec;12(12):2112–2124. doi: 10.1166/jbn.2016.2321
  • Carvalho SM, Leonel AG, Mansur AAP, et al. Bifunctional magnetopolymersomes of iron oxide nanoparticles and carboxymethylcellulose conjugated with doxorubicin for hyperthermo-chemotherapy of brain cancer cells. Biomater Sci. 2019 Apr 23;7(5):2102–2122. doi: 10.1039/C8BM01528G
  • DB G, VL P. Recent advances of non-ionic surfactant-based nano-vesicles (niosomes and proniosomes): a brief review of these in enhancing transdermal delivery of drug. Future J Pharm Sci. 2020;6(1):1–18. doi: 10.1186/s43094-020-00117-y
  • Ge X, Wei M, He S, et al. Advances of non-ionic surfactant vesicles (niosomes) and their application in drug delivery. Pharmaceutics. 2019 Jan 29;11(2):55–64. doi: 10.3390/pharmaceutics11020055
  • Ansari M, Eslami H. Preparation and study of the inhibitory effect of nano-niosomes containing essential oil from artemisia absinthium on amyloid fibril formation. Studies. 2020;12:21–25. doi: 10.22038/nmj.2020.07.0009
  • Khallaf RA, Aboud HM, Sayed OM. Surface modified niosomes of olanzapine for brain targeting via nasal route; preparation, optimization, and in vivo evaluation. J Liposome Res. 2020;30(2):163–173. doi: 10.1080/08982104.2019.1610435
  • Al Qtaish N, Gallego I, Paredes AJ, et al. Nanodiamond Integration into Niosomes as an emerging and efficient gene therapy nanoplatform for central nervous system diseases. ACS Appl Mater Interfaces. 2022;14(11):13665–13677. doi: 10.1021/acsami.2c02182
  • Sita VG, Jadhav D, Vavia P. Niosomes for nose-to-brain delivery of bromocriptine: formulation development, efficacy evaluation and toxicity profiling. J Drug Deliv Sci Technol. 2020;58:101791. doi: 10.1016/j.jddst.2020.101791
  • Ag Seleci D, Maurer V, Barlas FB, et al. Transferrin-decorated niosomes with integrated InP/ZnS quantum dots and magnetic iron oxide nanoparticles: dual targeting and imaging of glioma. Int J Mol Sci. 2021;22(9):4556. doi: 10.3390/ijms22094556
  • Lee C-S, Lee M, Na K, et al. Stem cell-derived extracellular vesicles for cancer therapy and tissue engineering applications. Mol Pharm. 2023;20(11):5278–5311. doi: 10.1021/acs.molpharmaceut.3c00376
  • Gangadaran P, Rajendran RL, Kwack MH, et al. Application of cell-derived extracellular vesicles and engineered nanovesicles for hair growth: from mechanisms to therapeutics. Front Cell Dev Biol. 2022;10:963278. doi: 10.3389/fcell.2022.963278
  • Kenari AN, Kastaniegaard K, Greening DW, et al. Exosome-mimetic nanovesicles contain distinct proteome and post-translational modified protein cargo, in comparison to exosomes. Proteomics. 2019;19(8):1800161. doi: 10.1002/pmic.201800161
  • Sharma P, Ludwig S, Muller L, et al. Immunoaffinity-based isolation of melanoma cell-derived exosomes from plasma of patients with melanoma. J Extracell Vesicles. 2018;7(1):1435138. doi: 10.1080/20013078.2018.1435138
  • Li W-J, Chen H, Tong M-L, et al. Comparison of the yield and purity of plasma exosomes extracted by ultracentrifugation, precipitation, and membrane-based approaches. Open Chem. 2022;20(1):182–191. doi: 10.1515/chem-2022-0139
  • Coughlan C, Bruce KD, Burgy O, et al. Exosome isolation by ultracentrifugation and precipitation and techniques for downstream analyses. Curr Protoc Cell Biol. 2020 Sep;88(1):e110. doi: 10.1002/cpcb.110
  • Kim HY, Kim TJ, Kang L, et al. Mesenchymal stem cell-derived magnetic extracellular nanovesicles for targeting and treatment of ischemic stroke. Biomaterials. 2020;243:119942. doi: 10.1016/j.biomaterials.2020.119942
  • Wang J, Zhu X, Li C, et al. Efficient exosome extraction through the conjugation of superparamagnetic iron oxide nanoparticles for the targeted delivery in rat brain. Mater Today Chem. 2022;23:100637. doi: 10.1016/j.mtchem.2021.100637
  • Jia G, Han Y, An Y, et al. NRP-1 targeted and cargo-loaded exosomes facilitate simultaneous imaging and therapy of glioma in vitro and in vivo. Biomaterials. 2018 Sep;178:302–316. doi: 10.1016/j.biomaterials.2018.06.029
  • Li B, Chen X, Qiu W, et al. Synchronous disintegration of ferroptosis defense axis via engineered exosome‐conjugated magnetic nanoparticles for glioblastoma therapy. Adv Sci. 2022;9(17):2105451. doi: 10.1002/advs.202105451
  • Altanerova U, Babincova M, Babinec P, et al. Human mesenchymal stem cell-derived iron oxide exosomes allow targeted ablation of tumor cells via magnetic hyperthermia. Int J Nanomedicine. 2017;12:7923–7936. doi: 10.2147/IJN.S145096
  • Kutchy NA, Ma R, Liu Y, et al. Extracellular vesicle-mediated delivery of ultrasmall superparamagnetic iron oxide nanoparticles to mice brain [brief research report]. Front Pharmacol. 2022 Apr 07;13:13. doi: 10.1002/jev2.12185
  • Kim HY, Kumar H, Jo M-J, et al. Therapeutic efficacy-potentiated and diseased organ-targeting nanovesicles derived from mesenchymal stem cells for spinal cord injury treatment. Nano Lett. 2018;18(8):4965–4975. doi: 10.1021/acs.nanolett.8b01816
  • Vendel E, Rottschäfer V, De Lange CME, et al. A 3D brain unit model to further improve prediction of local drug distribution within the brain. PLoS One. 2020;15(9):e0238397. doi: 10.1371/journal.pone.0238397
  • Meng Q, Meng H, Pan Y, et al. Influence of nanoparticle size on blood–brain barrier penetration and the accumulation of anti-seizure medicines in the brain. J Mater Chem. 2022;10(2):271–281. doi: 10.1039/D1TB02015C
  • Chaulagain B, Gothwal A, Lante Lamptey RN, et al. Experimental models of in vitro blood–brain barrier for CNS drug delivery: an evolutionary perspective. Int J Mol Sci. 2023;24(3):2710. doi: 10.3390/ijms24032710
  • Chien C-Y, Xu L, Pacia CP, et al. Blood–brain barrier opening in a large animal model using closed-loop microbubble cavitation-based feedback control of focused ultrasound sonication. Sci Rep. 2022;12:16147. doi: 10.1038/s41598-022-20568-y
  • Zhang B, Yan W, Zhu Y, et al. Nanomaterials in neural‐stem‐cell‐mediated regenerative medicine: imaging and treatment of neurological diseases. Adv Mater. 2018;30(17):1705694. doi: 10.1002/adma.201705694
  • Gogoi M, Sarma HD, Bahadur D, et al. Biphasic magnetic nanoparticles–nanovesicle hybrids for chemotherapy and self-controlled hyperthermia. Nanomedicine. 2014;9(7):955–970. doi: 10.2217/nnm.13.90

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.