37
Views
0
CrossRef citations to date
0
Altmetric
Review

Essential considerations towards development of effective nasal antibiotic formulation: features, strategies, and future directions

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 611-625 | Received 17 Jul 2023, Accepted 05 Apr 2024, Published online: 10 Apr 2024

References

  • Emad NA, Ahmed B, Alhalmi A, et al. Recent progress in nanocarriers for direct nose to brain drug delivery. J Drug Deliv Sci Technol. 2021;64:1–11. doi: 10.1016/j.jddst.2021.102642
  • Kakad S, Kshirsagar S. Nose to brain delivery of Efavirenz nanosuspension for effective neuro AIDS therapy: in-vitro, in-vivo and pharmacokinetic assessment. Heliyon. 2021;7(11):e08368. doi: 10.1016/j.heliyon.2021.e08368
  • Crowe TP, Hsu WH. Evaluation of recent intranasal drug delivery systems to the central nervous system. Pharmaceutics. 2022;14(3):1–26. doi: 10.3390/pharmaceutics14030629
  • Carlton DA, Beahm DD, Chiu AG. Topical antibiotic therapy in chronic rhinosinusitis: an update. Int Forum Allergy Rhinol. 2019;9(S1):S27–S31. doi: 10.1002/alr.22338
  • Volpe V, Giacomodonato MN, Sordelli DO, et al. Ciprofloxacin loaded o/w microemulsion against Staphylococcus aureus. Analytical and biological studies for topical and intranasal administration. J Drug Deliv Sci Technol. 2020;57:1–9. doi: 10.1016/j.jddst.2020.101705
  • Sousa J, Alves G, Oliveira P, et al. Intranasal delivery of ciprofloxacin to rats: A topical approach using a thermoreversible in situ gel. Eur J Pharm Sci. 2017;97:30–37. doi: 10.1016/j.ejps.2016.10.033
  • Gizurarson S. Anatomical and histological factors affecting intranasal drug and vaccine delivery. Curr Drug Deliv. 2012;9(6):566–582. doi: 10.2174/156720112803529828
  • Bourganis V, Kammona O, Alexopoulos A, et al. Recent advances in carrier mediated nose-to-brain delivery of pharmaceutics. Eur J Pharm Biopharm. 2018;128:337–362. doi: 10.1016/j.ejpb.2018.05.009
  • Abouhussein DMN, Khattab A, Bayoumi NA, et al. Brain targeted rivastigmine mucoadhesive thermosensitive in situ gel: Optimization, in vitro evaluation, radiolabeling, in vivo pharmacokinetics and biodistribution. J Drug Deliv Sci Technol. 2018;43:129–140. doi: 10.1016/j.jddst.2017.09.021
  • Tan MSA, Parekh HS, Pandey P, et al. Nose-to-brain delivery of antipsychotics using nanotechnology: a review. Expert Opin Drug Deliv. 2020;17(6):839–853. doi: 10.1080/17425247.2020.1762563
  • Thornhill MH, Dayer MJ, Durkin MJ, et al. Risk of adverse reactions to oral antibiotics prescribed by dentists. J Dent Res. 2019;98(10):1081–1087. doi: 10.1177/0022034519863645
  • Liang EH, Chen LH, Macy E. Adverse reactions associated with penicillins, carbapenems, monobactams, and Clindamycin: a retrospective population-based study. J Allergy Clin Immunol Pract. 2020;8(4):1302–1313.e2. doi: 10.1016/j.jaip.2019.11.035
  • Tai J, Lee K, Kim TH. Current perspective on nasal delivery systems for chronic rhinosinusitis. Pharmaceutics. 2021;13(2):1–21. doi: 10.3390/pharmaceutics13020246
  • Miyake MM, Bleier BS. Future topical medications in chronic rhinosinusitis. Int Forum Allergy Rhinol. 2019;9(S1):S32–S46. doi: 10.1002/alr.22341
  • Johnston A, Holt DW. Substandard drugs: a potential crisis for public health. Br J Clin Pharmacol. 2014;78(2):218–243. doi: 10.1111/bcp.12298
  • World Health Organization. Substandard and falsified medical products. Geneva: WHO; 2018 [cited 2022 Dec 17]. Available from: https://www.who.int/news-room/fact-sheets/detail/substandard-and-falsified-medical-products.
  • World Health Organization. WHO Global surveillance and monitoring system for substandard and falsified medical products. Geneva: WHO. 2017;1–65.
  • Kelesidis T, Falagas ME. Substandard/Counterfeit antimicrobial drugs. Clin Microbiol Rev. 2015;28(2):443–464. doi: 10.1128/CMR.00072-14
  • Jean-Baptiste T, Carpenter JF, Dahl K, et al. Substandard quality of the antimicrobials sold in the street markets in haiti. Antibiotics. 2020;9(7):407–408. doi: 10.3390/antibiotics9070407
  • Zabala GA, Bellingham K, Vidhamaly V, et al. Substandard and falsified antibiotics: neglected drivers of antimicrobial resistance? BMJ Glob Heal. 2022;7(8):1–12. doi: 10.1136/bmjgh-2022-008587
  • Schäfermann S, Hauk C, Wemakor E, et al. Substandard and falsified antibiotics and medicines against noncommunicable diseases in western Cameroon and northeastern democratic Republic of Congo. Am J Trop Med Hyg. 2020;103(2):894–908. doi: 10.4269/ajtmh.20-0184
  • Khuluza F, Kigera S, Heide L. Low prevalence of substandard and falsified antimalarial and antibiotic medicines in public and faith-based health facilities of Southern Malawi. Am J Trop Med Hyg. 2017;96:1124–1135. doi: 10.4269/ajtmh.16-1008
  • Pan H, Luo H, Chen S, et al. Pharmacopoeial quality of antimicrobial drugs in southern China. Lancet Glob Health. 2016;4(5):e300–e302. doi: 10.1016/S2214-109X(16)00049-8
  • Ke W-R, Yoon Kyung Chang R, Chan H-K. Engineering the right formulation for enhanced drug delivery. Adv Drug Deliv Rev. 2022;191:114561.
  • Friedman ND, Temkin E, Carmeli Y. The negative impact of antibiotic resistance. Clin Microbiol Infect. 2016;22(5):416–422. doi: 10.1016/j.cmi.2015.12.002
  • Kays MB, Smith DW, Wack MF, et al. Levofloxacin treatment failure in a patient with fluoroquinolone-resistant Streptococcus pneumoniae pneumonia. Pharmacotherapy. 2002;22(3):395–399. doi: 10.1592/phco.22.5.395.33185
  • Davidson R, Rodrigo C, Brunton JL, et al. Resistance to Levofloxacin and failure of treatment of pneumococcal pneumonia. N Eng J Med. 2002;346(10):747–750. doi: 10.1056/NEJMoa012122
  • Laffleur F, Bauer B. Progress in nasal drug delivery systems. Int J Pharm. 2021;607:120994. doi: 10.1016/j.ijpharm.2021.120994
  • Izadi E, Afshan G, Patel RP, et al. Levofloxacin: Insights into antibiotic resistance and product quality. Front Pharmacol. 2019;10:1–7. doi: 10.3389/fphar.2019.00881
  • Gnamey J, Gambogou B, Dossou M, et al. Contribution of storage conditions of antibiotics in pharmacies on efficacy loss of Amoxicillin and Tetracycline against strains of Escherichia coli and Staphylococcus aureus in the city of Lome. Am J Physiol Biochem Pharmacol. 2019;9(3):52. doi: 10.5455/ajpbp.20190323032932
  • Weinstein ZB, Zaman H. Evolution of Rifampin Resistance in Escherichia coli and Mycobacterium smegmatis Due to Substandard Drugs. Antimicrob Agents Chemother. 2019;63(1):e01243–18.
  • Crowe TP, Greenlee MHW, Kanthasamy AG, et al. Mechanism of intranasal drug delivery directly to the brain. Life Sci. 2018;195:44–52. doi: 10.1016/j.lfs.2017.12.025
  • Whyte A, Boeddinghaus R. The maxillary sinus: physiology, development and imaging anatomy. Dentomaxillofac Radiol. 2019;48(8):20190205–20190215. doi: 10.1259/dmfr.20190205
  • Lochhead JJ, Thorne RG. Intranasal delivery of biologics to the central nervous system. Adv Drug Deliv Rev. 2012;64(7):614–628. doi: 10.1016/j.addr.2011.11.002
  • Costa CP, Moreira JN, Sousa Lobo JM, et al. Intranasal delivery of nanostructured lipid carriers, solid lipid nanoparticles and nanoemulsions: a current overview of in vivo studies. Acta Pharm Sin B. 2021;11(4):925–940. doi: 10.1016/j.apsb.2021.02.012
  • Frieri M, Kumar K, Boutin A. Antibiotic resistance. J Infect Public Health. 2017;10(4):369–378. doi: 10.1016/j.jiph.2016.08.007
  • Kumar A, Schweizer HP. Bacterial resistance to antibiotics: active efflux and reduced uptake. Adv Drug Deliv Rev. 2005;57(10):1486–1513. doi: 10.1016/j.addr.2005.04.004
  • Baddour LM, Dayer MJ, Thornhill MH. Adverse drug reactions due to oral antibiotics prescribed in the community setting–England. Infect Dis (Auckl). 2019;51(11–12):866–869. doi: 10.1080/23744235.2019.1663918
  • Lynch T, Price A. The effect of cytochrome P450 metabolism on drug response, interactions, and adverse effects. Am Fam Physician. 2007;76(3):391–396.
  • Chhabra R, Gupta R, Gupta LK. Intranasal midazolam versus intravenous/rectal benzodiazepines for acute seizure control in children: A systematic review and meta-analysis. Epilepsy Behav. 2021;125:108390. doi: 10.1016/j.yebeh.2021.108390
  • Manda P, Hargett JK, Vaka SR, et al. Delivery of cefotaxime to the brain via intranasal administration. Drug Dev Ind Pharm. 2011;37(11):1306–1310. doi: 10.3109/03639045.2011.571696
  • Umeda T, Tanaka A, Sakai A, et al. Intranasal rifampicin for Alzheimer’s disease prevention. Alzheimer’s Dement Transl Res Clin Interv. 2018;4(1):304–313. doi: 10.1016/j.trci.2018.06.012
  • Formica ML, Real DA, Picchio ML, et al. On a highway to the brain: A review on nose-to-brain drug delivery using nanoparticles. Appl Mater Today. 2022;29:101631. doi: 10.1016/j.apmt.2022.101631
  • Scherließ R. Nasal formulations for drug administration and characterization of nasal preparations in drug delivery. Ther Deliv. 2020;11(3):183–191. doi: 10.4155/tde-2019-0086
  • Fasiolo LT, Manniello MD, Tratta E, et al. Opportunity and challenges of nasal powders: Drug formulation and delivery. Eur J Pharm Sci. 2018;113:2–17. doi: 10.1016/j.ejps.2017.09.027
  • Hasçiçek C, Gönül N, Erk N. Mucoadhesive microspheres containing gentamicin sulfate for nasal administration: preparation and in vitro characterization. Il Farmaco. 2003;58(1):11–16. doi: 10.1016/S0014-827X(02)00004-6
  • Lim ST, Forbes B, Berry DJ, et al. In vivo evaluation of novel hyaluronan/chitosan microparticulate delivery systems for the nasal delivery of gentamicin in rabbits. Int J Pharm. 2002;231(1):73–82. doi: 10.1016/S0378-5173(01)00873-0
  • Djupesland PG. Nasal drug delivery devices: characteristics and performance in a clinical perspective—a review. Drug Deliv Transl Res. 2013;3(1):42–62. doi: 10.1007/s13346-012-0108-9
  • World Health Organization. The Top 10 Causes of Death Globally. WHO. 2020 [cited 2022 Dec 17]. Available from: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death.
  • Ullah H, Ali S. Classification of anti‐bacterial agents and their functions. Antibact Agents (InTech). 2017;1–16. doi: 10.5772/intechopen.68695
  • Hutchings M, Truman A, Wilkinson B. Antibiotics: past, present and future. Curr Opin Microbiol. 2019;51:72–80. doi: 10.1016/j.mib.2019.10.008
  • Murugaiyan J, Anand Kumar P, Rao GS, et al. Progress in alternative strategies to combat antimicrobial resistance: focus on antibiotics. Antibiotics. 2022;11(2):200–237. doi: 10.3390/antibiotics11020200
  • Mardikasari SA, Sipos B, Csóka I, et al. Nasal route for antibiotics delivery: Advances, challenges and future opportunities applying the quality by design concepts. J Drug Deliv Sci Technol. 2022;77:1–18. doi: 10.1016/j.jddst.2022.103887
  • Lee VS, Pottinger PS, Davis GE. Tolerability and effectiveness of povidone-iodine or mupirocin versus saline sinus irrigations for chronic rhinosinusitis. Am J Otolaryngol - Head Neck Med Surg. 2020;41(5):102604–102608. doi: 10.1016/j.amjoto.2020.102604
  • Seiberling KA, Aruni W, Kim S, et al. The effect of intraoperative mupirocin irrigation on Staphylococcus aureus within the maxillary sinus. Int Forum Allergy Rhinol. 2013;3(2):94–98. doi: 10.1002/alr.21076
  • Kamijyo A, Matsuzaki Z, Kikushima K, et al. Fosfomycin nebulizer therapy to chronic sinusitis. Auris Nasus Larynx. 2001;28(3):227–232. doi: 10.1016/S0385-8146(01)00049-9
  • Gameiro dos Santos J, Figueirinhas R, Liberal JP, et al. On ciprofloxacin concentration in chronic rhinosinusitis. Acta Otorrinolaringológica Española. 2018;69(1):35–41. doi: 10.1016/j.otorri.2017.06.008
  • Jahanshahi J, Yazdani J, Hashemian F, et al. The effect of topical vancomycin on the recurrent postoperative sinonasal polyposis: a triple-blinded randomized controlled trial. Egypt J Otolaryngol. 2017;33(1):15–19. doi: 10.4103/1012-5574.199411
  • Tran DH, Sugamata R, Hirose T, et al. Azithromycin, a 15-membered macrolide antibiotic, inhibits influenza A(H1N1)pdm09 virus infection by interfering with virus internalization process. J Antibiot (Tokyo). 2019;72(10):759–768. doi: 10.1038/s41429-019-0204-x
  • Antunes MB, Feldman MD, Cohen NA, et al. Dose-dependent effects of topical tobramycin in an animal model of pseudomonas sinusitis. Am J Rhinol. 2007;21(4):423–427. doi: 10.2500/ajr.2007.21.3046
  • Chiu AG, Antunes MB, Palmer JN, et al. Evaluation of the in vivo efficacy of topical tobramycin against pseudomonas sinonasal biofilms. J Antimicrob Chemother. 2007;59(6):1130–1134. doi: 10.1093/jac/dkm087
  • Avincsal MO, Ozbal S, Ikiz AO, et al. Effects of topical intranasal doxycycline treatment in the rat allergic rhinitis model. Clin Exp Otorhinolaryngol. 2014;7(2):106–111. doi: 10.3342/ceo.2014.7.2.106
  • Kumar M, Kakkar V, Mishra AK, et al. Intranasal delivery of streptomycin sulfate (STRS) loaded solid lipid nanoparticles to brain and blood. Int J Pharm. 2014;461(1–2):223–233. doi: 10.1016/j.ijpharm.2013.11.038
  • Umeda T, Sakai A, Shigemori K, et al. Oligomer-targeting prevention of neurodegenerative dementia by intranasal rifampicin and resveratrol combination – a preclinical study in model mice. Front Neurosci. 2021;15:1–13. doi: 10.3389/fnins.2021.763476
  • Umeda T, Uekado R, Shigemori K, et al. Nasal Rifampicin halts the progression of tauopathy by inhibiting tau oligomer propagation in Alzheimer brain extract-injected mice. Biomedicines. 2022;10(2):10. doi: 10.3390/biomedicines10020297
  • Wong JP, Yang H, Blasetti KL, et al. Liposome delivery of ciprofloxacin against intracellular Francisella tularensis infection. J Control Release. 2003;92(3):265–273. doi: 10.1016/S0168-3659(03)00358-4
  • Norville IH, Hatch GJ, Bewley KR, et al. Efficacy of liposome-encapsulated ciprofloxacin in a murine model of Q fever. Antimicrob Agents Chemother. 2014;58(9):5510–5518. doi: 10.1128/AAC.03443-14
  • Di Ninno V, Cherwanogrodzky J, Wong JP. Liposome-encapsulated ciprofloxacin is effective in the protection and treatment of BALB/c mice against Francisella tularensis. J Infect Dis. 1993;168(3):793–794.
  • Mardikasari SA, Katona G, Budai-Szűcs M, et al. Quality by design-based optimization of in situ ionic-sensitive gels of amoxicillin-loaded bovine serum albumin nanoparticles for enhanced local nasal delivery. Int J Pharm. 2023;645. doi: 10.1016/j.ijpharm.2023.123435
  • Mardikasari SA, Budai-Szűcs M, Orosz L, et al. Development of thermoresponsive-gel-matrix-embedded amoxicillin trihydrate-loaded bovine serum albumin nanoparticles for local intranasal therapy. Gels. 2022;8(11):750. doi: 10.3390/gels8110750
  • Vigasova D, Nemergut M, Liskova B, et al. Multi-pathogen infections and Alzheimer’s disease. Microb Cell Fact. 2021;20(1):1–13. doi: 10.1186/s12934-021-01520-7
  • Gao L, Shuai Y, Wen L, et al. Benefit and safety of antibiotics for Alzheimer’s disease: protocol for a systematic review and meta-analysis. Med (United States). 2022;101(47):E31637. doi: 10.1097/MD.0000000000031637
  • Iqbal UH, Zeng E, Pasinetti GM. The use of antimicrobial and antiviral drugs in alzheimer’s disease. Int J Mol Sci. 2020;21(14):1–19. doi: 10.3390/ijms21144920
  • Ashraf GM, Tarasov VV, Makhmutovа A, et al. The possibility of an infectious etiology of Alzheimer disease. Mol Neurobiol. 2019;56:4479–4491. doi: 10.1007/s12035-018-1388-y
  • Itzhaki RF, Lathe R, Balin BJ, et al. Microbes and Alzheimer’s Disease. J Alzheimer’s Dis. 2016;51(4):979–984. doi: 10.3233/JAD-160152
  • Emery DC, Shoemark DK, Batstone TE, et al. 16S rRNA next generation sequencing analysis shows bacteria in Alzheimer’s post-mortem brain. Front Aging Neurosci. 2017;9:1–13. doi: 10.3389/fnagi.2017.00195
  • Hathout RM, Abdelhamid SG, El-Housseiny GS, et al. Hathout, 2020 - Comparing cefotaxime and ceftriaxone in combating meningitis through nose to brain delivery using biochemoinformatics tools.Pdf.
  • Nair A, Jacob S. A simple practice guide for dose conversion between animals and human. J Basic Clin Pharm. 2016;7(2):27. doi: 10.4103/0976-0105.177703
  • Ahmed TA, Badr-Eldin SM, Ahmed OAA, et al. Intranasal optimized solid lipid nanoparticles loaded in situ gel for enhancing trans-mucosal delivery of simvastatin. J Drug Deliv Sci Technol. 2018;48:499–508. Available from. doi: 10.1016/j.jddst.2018.10.027
  • Yu YS, AboulFotouh K, Xu H, et al. Feasibility of intranasal delivery of thin-film freeze-dried, mucoadhesive vaccine powders. Int J Pharm. 2023;640:122990. doi: 10.1016/j.ijpharm.2023.122990
  • Hamblin KA, Armstrong SJ, Barnes KB, et al. Liposome encapsulation of ciprofloxacin improves protection against highly virulent francisella tularensis strain schu s4. Antimicrob Agents Chemother. 2014;58(6):3053–3059. doi: 10.1128/AAC.02555-13
  • Thambavita D, Galappatthy P, Mannapperuma U, et al. Biowaiver monograph for immediate-release solid oral dosage forms: amoxicillin trihydrate. J Pharm Sci. 2017;106(10):2930–2945. doi: 10.1016/j.xphs.2017.04.068
  • Singh SS, Thakur TS. New crystalline salt forms of levofloxacin: conformational analysis and attempts towards the crystal structure prediction of the anhydrous form. Cryst Eng Comm. 2014;16(20):4215–4230. doi: 10.1039/c4ce00263f
  • Hickey MB, Peterson ML, Manas ES, et al. Hydrates and solid-state reactivity: a survey of β-lactam antibiotics. J Pharm Sci. 2007;96(5):1090–1099. doi: 10.1002/jps.20919
  • Pandey M, Rani P, Adhikari L, et al. Preparation and characterization of cyclodextrin complexes of doxycycline hyclate for improved photostability in aqueous solution. J Incl Phenom Macrocyclic Chem. 2022;102(3–4):271–278. doi: 10.1007/s10847-021-01116-z
  • Grepioni F, Braga D, Chelazzi L, et al. Improving solubility and storage stability of rifaximin via solid-state solvation with Transcutol®. Cryst Eng Comm. 2019;21(35):5278–5283. doi: 10.1039/C9CE00567F
  • Turos E, Reddy GSK, Greenhalgh K, et al. Penicillin-bound polyacrylate nanoparticles: restoring the activity of β-lactam antibiotics against MRSA. Bioorg Med Chem Lett. 2007;17(12):3468–3472. doi: 10.1016/j.bmcl.2007.03.077
  • Cyphert EL, Wallat JD, Pokorski JK, et al. Erythromycin modification that improves its acidic stability while optimizing it for local drug delivery. Antibiotics. 2017;6(2):11–15. doi: 10.3390/antibiotics6020011
  • Vukomanovic M, Gazvoda L, Kurtjak M, et al. Development of a ternary cyclodextrin–arginine–ciprofloxacin antimicrobial complex with enhanced stability. Commun Biol. 2022;5(1):1–13. doi: 10.1038/s42003-022-04197-9
  • Thakur A, Jain S, Pant A, et al. Cyclodextrin derivative enhances the ophthalmic delivery of poorly soluble azithromycin. ACS Omega. 2022;7(27):23050–23060. doi: 10.1021/acsomega.1c07218
  • Ding Y, Pang Y, Vara Prasad CVNS, et al. Formation of inclusion complex of enrofloxacin with 2-hydroxypropyl-β-cyclodextrin. Drug Deliv. 2020;27(1):334–343. doi: 10.1080/10717544.2020.1724210
  • Shetty N, Ahn P, Park H, et al. Improved physical stability and aerosolization of inhalable amorphous ciprofloxacin powder formulations by incorporating synergistic colistin. Mol Pharm. 2018;15(9):4004–4020. doi: 10.1021/acs.molpharmaceut.8b00445
  • Hao X, Li J, Wang C, et al. Profoundly improved photostability of dimetronidazole by cocrystallization. Environ Sci Atmos. 2022;24(35):6165–6171. doi: 10.1039/D2CE00597B
  • Tran LTC, Gueutin C, Frebourg G, et al. Erythromycin encapsulation in nanoemulsion-based delivery systems for treatment of Helicobacter pylori infection: protection and synergy. Biochem Biophys Res Commun. 2017;493(1):146–151. doi: 10.1016/j.bbrc.2017.09.060
  • Nugrahani I, Sulaiman MR, Eda C, et al. Stability and antibiotic potency improvement of levofloxacin by producing new salts with 2, 6- and 3, 5-dihydroxybenzoic acid and their comprehensive structural study. Pharmaceutics. 2023;15(1):1–23. doi: 10.3390/pharmaceutics15010124
  • Lin Y, Yoon Kyung Chang R, Britton WJ, et al. Storage stability of phage-ciprofloxacin combination powders against Pseudomonas aeruginosa respiratory infections. Int J Pharm. 2020;591:119952. doi: 10.1016/j.ijpharm.2020.119952
  • Ustariz-Peyret C, Coudane J, Vert M, et al. Labile conjugation of a hydrophilic drug to PLA oligomers to modify a drug delivery system: Cephradin in a PLAGA matrix. J Microencapsul. 2000;17(5):615–624. doi: 10.1080/026520400417667
  • Coessens V, Schacht EH, Domurado D. Synthesis and in vitro stability of macromolecular prodrugs of norfloxacin. J Control Release. 1997;47(3):283–291. doi: 10.1016/S0168-3659(97)01655-6
  • Dyab AKF, Mohamed MA, Meligi NM, et al. Encapsulation of erythromycin and bacitracin antibiotics into natural sporopollenin microcapsules: antibacterial, cytotoxicity, in vitro and in vivo release studies for enhanced bioavailability. RSC Adv. 2018;8(58):33432–33444. doi: 10.1039/C8RA05499A
  • Kaur A, Kumar R. Enhanced bactericidal efficacy of polymer stabilized silver nanoparticles in conjugation with different classes of antibiotics. RSC Adv. 2019;9(2):1095–1105. doi: 10.1039/C8RA07980C
  • Pereira JM, Mejia-Ariza R, Ilevbare GA, et al. Interplay of degradation, dissolution and stabilization of clarithromycin and its amorphous solid dispersions. Mol Pharm. 2013;10(12):4640–4653. doi: 10.1021/mp400441d
  • Park JB, Park YJ, Kang CY, et al. Modulation of microenvironmental pH and utilization of alkalizers in crystalline solid dispersion for enhanced solubility and stability of clarithromicin. Arch Pharm Res. 2015;38(5):839–848. doi: 10.1007/s12272-014-0471-9
  • Changsan N, Chan H-K, Separovic F, et al. Physicochemical Characterization and Stability of Rifampicin Liposome dry powder formulations for inhalation. J Pharm Sci. 2009;98(2):628–639. doi: 10.1002/jps.21441
  • Bhattacharya D, Saha B, Mukherjee A, et al. Gold nanoparticles conjugated antibiotics: stability and functional evaluation. Nanosci Nanotechnol. 2012;2(2):14–21. doi: 10.5923/j.nn.20120202.04
  • Mendes C, Buttchevitz A, Barison A, et al. Investigation of β-cyclodextrin–norfloxacin inclusion complexes. Part 2. Inclusion mode and stability studies. Expert Rev Anti Infect Ther. 2015;13(1):131–140. doi: 10.1586/14787210.2015.982092
  • Popielec A, Agnes M, Yannakopoulou K, et al. Self-assembled cyclodextrin-based nanoparticles for meropenem stabilization. J Drug Deliv Sci Technol. 2018;45:20–27. doi: 10.1016/j.jddst.2018.02.018
  • Garnero C, Chattah AK, Aloisio C, et al. Improving the stability and the Pharmaceutical Properties of Norfloxacin Form C Through Binary Complexes with β-cyclodextrin. AAPS Pharm Sci Tech. 2018;19(5):2255–2263. doi: 10.1208/s12249-018-1033-0
  • Shinozaki T, Ono M, Higashi K, et al. A novel drug-drug cocrystal of levofloxacin and Metacetamol: reduced hygroscopicity and improved photostability of levofloxacin. J Pharm Sci. 2019;108(7):2383–2390. doi: 10.1016/j.xphs.2019.02.014
  • Watcharadulyarat N, Rattanatayarom M, Ruangsawasdi N, et al. PEG–PLGA nanoparticles for encapsulating ciprofloxacin. Sci Rep. 2023;13(1):1–11. doi: 10.1038/s41598-023-27500-y
  • Mwila C, Walker RB. Improved stability of rifampicin in the presence of gastric‐resistant isoniazid microspheres in acidic media. Pharmaceutics. 2020;12(3):1–28.
  • Potdar SB, Landge VK, Barkade SS, et al. Flavor encapsulation and release studies in food. In:Sonawane SH, Bhanvase BA, Sivakumar M, editors. Encapsulation Act Mol Their Deliv Syst INC. 2020. p. 293–321. doi: 10.1016/B978-0-12-819363-1.00016-8
  • Ng LH, Ling JKU, Hadinoto K. Formulation strategies to improve the stability and handling of oral solid dosage forms of highly hygroscopic pharmaceuticals and nutraceuticals. Pharmaceutics. 2022;14(10):14. doi: 10.3390/pharmaceutics14102015
  • Aguilar-Toala JE, Quintanar-Guerrero D, Liceaga AM, et al. Encapsulation of bioactive peptides: a strategy to improve the stability, protect the nutraceutical bioactivity and support their food applications. RSC Adv. 2022;12(11):6449–6458. doi: 10.1039/D1RA08590E
  • Corsini F, Griffini G. Recent progress in encapsulation strategies to enhance the stability of organometal halide perovskite solar cells. JPhys Energy. 2020;2(3):031002. doi: 10.1088/2515-7655/ab8774
  • Sonawane SH, Bhanvase BA, Sivakumar M, et al., editors. Current overview of encapsulation. Encapsulation Act Mol Their Deliv Syst INC. 2020. p. 1–8. doi: 10.1016/B978-0-12-819363-1.00001-6
  • Santos AM, Júnior CCS, Júnior JACN, et al. Antibacterial drugs and cyclodextrin inclusion complexes: a patent review. Expert Opin Drug Deliv. 2023;20(3):349–366. doi: 10.1080/17425247.2023.2175815
  • Boczar D, Michalska K. Cyclodextrin inclusion complexes with antibiotics and antibacterial agents as drug-delivery systems—a pharmaceutical perspective. Pharmaceutics. 2022;14(7):14. doi: 10.3390/pharmaceutics14071389
  • Popielec A, Loftsson T. Effects of cyclodextrins on the chemical stability of drugs. Int J Pharm. 2017;531(2):532–542. doi: 10.1016/j.ijpharm.2017.06.009
  • Zoppi A, Garnero C, Linck YG, et al. Enalapril: β-CD complex: Stability enhancement in solid state. Carbohydr Polym. 2011;86(2):716–721. doi: 10.1016/j.carbpol.2011.05.008
  • Guo M, Sun X, Chen J, et al. Pharmaceutical cocrystals: a review of preparations, physicochemical properties and applications. Acta Pharm Sin B. 2021;11(8):2537–2564. doi: 10.1016/j.apsb.2021.03.030
  • Salem A, Khanfar E, Nagy S, et al. Cocrystals of tuberculosis antibiotics: Challenges and missed opportunities. Int J Pharm. 2022;623:121924. doi: 10.1016/j.ijpharm.2022.121924
  • Bashimam M, El-Zein H. Pharmaceutical cocrystal of antibiotic drugs: A comprehensive review. Heliyon. 2022;8(12):e11872. doi: 10.1016/j.heliyon.2022.e11872
  • Napiórkowska A, Kurek M. Coacervation as a novel method of microencapsulation of essential oils—a review. Molecules. 2022;27(16):5142. doi: 10.3390/molecules27165142
  • Moulik SP, Rakshit AK, Pan A, et al. An overview of coacervates: the special disperse state of amphiphilic and polymeric materials in solution. Colloids and Interfaces. 2022;6(3):45. doi: 10.3390/colloids6030045
  • Liu YH, Kuo SC, Yao BY, et al. Colistin nanoparticle assembly by coacervate complexation with polyanionic peptides for treating drug-resistant gram-negative bacteria. Acta Biomater. 2018;82:133–142. doi: 10.1016/j.actbio.2018.10.013
  • Emami F, Vatanara A, Park EJ, et al. Drying technologies for the stability and bioavailability of biopharmaceuticals. Pharmaceutics. 2018;10(3):1–22. doi: 10.3390/pharmaceutics10030131
  • Luo WC, O’Reilly Beringhs A, Kim R, et al. Impact of formulation on the quality and stability of freeze-dried nanoparticles. Eur J Pharm Biopharm. 2021;169:256–267. doi: 10.1016/j.ejpb.2021.10.014
  • Duralliu A, Matejtschuk P, Stickings P, et al. The influence of moisture content and temperature on the long-term storage stability of freeze-dried high concentration immunoglobulin G (IgG). Pharmaceutics. 2020;12(4):303–316. doi: 10.3390/pharmaceutics12040303
  • Henriques P, Fortuna A, Doktorovová S. Spray dried powders for nasal delivery: Process and formulation considerations. Eur J Pharm Biopharm. 2022;176:1–20. doi: 10.1016/j.ejpb.2022.05.002
  • Adali MB, Barresi AA, Boccardo G, et al. Spray freeze-drying as a solution to continuous manufacturing of pharmaceutical products in bulk. Processes. 2020;8(6):709–727. doi: 10.3390/pr8060709
  • Adeli E. The use of spray freeze drying for dissolution and oral bioavailability improvement of Azithromycin. Powder Technol. 2017;319:323–331. doi: 10.1016/j.powtec.2017.06.043
  • Wu ZL, Zhao J, Xu R. Recent advances in oral nano-antibiotics for bacterial infection therapy. Int J Nanomedicine. 2020;15:9587–9610. 10.2147/IJN.S279652. ;():.
  • Shaaban MI, Shaker MA, Mady FM. Imipenem/Cilastatin encapsulated polymeric nanoparticles for destroying carbapenem-resistant bacterial isolates. J Nanobiotechnology. 2017;15(1):1–12. doi: 10.1186/s12951-017-0262-9
  • Pezron I, Tirucherai GS, Duvvuri S, et al. Prodrug strategies in nasal drug delivery. Expert Opin Ther Pat. 2002;12(3):331–340. doi: 10.1517/13543776.12.3.331
  • Krishnamoorthy R, Mitra AK. Prodrugs for nasal drug delivery. Adv Drug Deliv Rev. 1998;29(1–2):135–146. doi: 10.1016/S0169-409X(97)00065-3
  • Pires PC, Fazendeiro AC, Rodrigues M, et al. European Journal of Pharmaceutical Sciences Nose-to-brain delivery of phenytoin and its hydrophilic prodrug fosphenytoin combined in a microemulsion - formulation development and in vivo pharmacokinetics. Eur J Pharm Sci. 2021;164:164. doi: 10.1016/j.ejps.2021.105918
  • Rautiola D, Maglalang PD, Cheryala N, et al. Special section on drug delivery technologies intranasal coadministration of a diazepam prodrug with a converting enzyme results in rapid absorption of diazepam in rats s. J Pharmacol Exp Ther. 2019;370(3):796–805. doi: 10.1124/jpet.118.255943
  • Markovic M, Ben-Shabat S, Dahan A. Prodrugs for improved drug delivery: lessons learned from recently developed and marketed products. Pharmaceutics. 2020;12(11):12. doi: 10.3390/pharmaceutics12111031
  • Jubeh B, Breijyeh Z, Karaman R. Antibacterial Prodrugs to Overcome Bacterial Resistance. Molecules. 2020;25(7):1–16. doi: 10.3390/molecules25071543
  • Botti G, Dalpiaz A, Pavan B. Targeting systems to the brain obtained by merging prodrugs, nanoparticles, and nasal administration. Pharmaceutics. 2021 13;13(8):1144. doi: 10.3390/pharmaceutics13081144.
  • Stebbins ND, Ouimet MA, Uhrich KE. Antibiotic-containing polymers for localized, sustained drug delivery. Adv Drug Deliv Rev. 2014;78:77–87. doi: 10.1016/j.addr.2014.04.006
  • Pati R, Sahu R, Panda J, et al. Encapsulation of zinc-rifampicin complex into transferrin-conjugated silver quantum-dots improves its antimycobacterial activity and stability and facilitates drug delivery into macrophages. Sci Rep. 2016;6(1):1–14. doi: 10.1038/srep24184
  • Cal PMSD, Matos MJ, Bernardes GJL. Trends in therapeutic drug conjugates for bacterial diseases: a patent review. Expert Opin Ther Pat. 2017;27(2):179–189. doi: 10.1080/13543776.2017.1259411
  • Wang S, Gao Y, Jin Q, et al. Emerging antibacterial nanomedicine for enhanced antibiotic therapy. Biomater Sci. 2020;8(24):6825–6839. doi: 10.1039/D0BM00974A
  • Zazo H, Colino CI, Lanao JM. Current applications of nanoparticles in infectious diseases. J Control Release. 2016;224:86–102. doi: 10.1016/j.jconrel.2016.01.008
  • Yeh YC, Huang TH, Yang SC, et al. Nano-based drug delivery or targeting to eradicate bacteria for infection mitigation: a review of recent advances. Front Chem. 2020;8:1–22. doi: 10.3389/fchem.2020.00286
  • Zhang L, Jiang Y, Ding Y, et al. Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). J Nanopart Res. 2007;9(3):479–489. doi: 10.1007/s11051-006-9150-1
  • Aruguete DM, Hochella MF. Bacteria-nanoparticle interactions and their environmental implications. Environ Chem. 2010;7(1):3–9. doi: 10.1071/EN09115
  • Tang J, Ouyang Q, Li Y, et al. Nanomaterials for delivering antibiotics in the therapy of pneumonia. Int J Mol Sci. 2022;23(24):23. doi: 10.3390/ijms232415738
  • Le H, Karakasyan C, Jouenne T, et al. Application of polymeric nanocarriers for enhancing the bioavailability of antibiotics at the target site and overcoming antimicrobial resistance. Appl Sci. 2021;11(22):11. doi: 10.3390/app112210695
  • Alexander A, Agrawal M, Bhupal Chougule M, et al. Nose-to-brain drug delivery: An alternative approach for effective brain drug targeting. An alternative approach for effective brain drug targeting. In:Shegokar R, editor. Nanopharmaceuticals Vol 1 Expect Realities Multifunct Drug Deliv Syst. Elsevier Inc; 2020. p. 175–200. doi: 10.1016/B978-0-12-817778-5.00009-9
  • Liu L, Pan M, Li Y, et al. Efficacy of nasal irrigation with hypertonic saline on chronic rhinosinusitis: systematic review and meta-analysis. Braz J Otorhinolaryngol. 2020;86:639–646. Available from. doi: 10.1016/j.bjorl.2020.03.008
  • Rabago D, Pasic T, Zgierska A, et al. The efficacy of hypertonic saline nasal irrigation for chronic sinonasal symptoms. Otolaryngol--Head Neck Surg. 2005;133(1):3–8. doi: 10.1016/j.otohns.2005.03.002
  • Culig J, Leppée M, Vceva A, et al. Efficiency of hypertonic and isotonic seawater solutions in chronic rhinosinusitis. Med Glas (Zenica). 2010;7(2):116–123.
  • Bastier PL, Lechot A, Bordenave L, et al. Nasal irrigation: from empiricism to evidence-based medicine. A review. Eur Ann Otorhinolaryngol Head Neck Dis. 2015;132(5):281–285. doi: 10.1016/j.anorl.2015.08.001
  • Washington N, Steele RJC, Jackson SJ, et al. Determination of baseline human nasal pH and the effect of intranasally administered buffers. Int J Pharm. 2000;198(2):139–146. doi: 10.1016/S0378-5173(99)00442-1
  • Kim BG, Kim JH, Kim SW, et al. Nasal pH in patients with chronic rhinosinusitis before and after endoscopic sinus surgery. Am J Otolaryngol - Head Neck Med Surg. 2013;34:505–507.
  • Gizurarson S. The effect of cilia and the mucociliary clearance on successful drug delivery. Biol Pharm Bull. 2015;38(4):497–506. doi: 10.1248/bpb.b14-00398
  • Jiao J, Zhang L. Influence of intranasal drugs on human nasal mucociliary clearance and ciliary beat frequency. Allergy Asthma Immunol Res. 2019;11(3):306–319. doi: 10.4168/aair.2019.11.3.306
  • Mallants R, Jorissen M, Augustijns P. Beneficial effect of antibiotics on ciliary beat frequency of human nasal epithelial cells exposed to bacterial toxins. J Pharm Pharmacol. 2010;60(4):437–443. doi: 10.1211/jpp.60.4.0005
  • Gosepath J, Grebneva N, Mossikhin S, et al. Topical antibiotic, antifungal, and antiseptic solutions decrease ciliary activity in nasal respiratory cells. Am J Rhinol. 2002;16(1):25–31. doi: 10.1177/194589240201600105
  • Workman AD, Cohen NA. The effect of drugs and other compounds on the ciliary beat frequency of human respiratory epithelium. Am j rhinol allergy. 2014;28(6):454–464. doi: 10.2500/ajra.2014.28.4092
  • Pham QD, Nöjd S, Edman M, et al. Mucoadhesion: mucin-polymer molecular interactions. Int J Pharm. 2021;610:610. doi: 10.1016/j.ijpharm.2021.121245
  • Zahir-Jouzdani F, Wolf JD, Atyabi F, et al. In situ gelling and mucoadhesive polymers: why do they need each other? Expert Opin Drug Deliv. 2018;15(10):1007–1019. doi: 10.1080/17425247.2018.1517741
  • Nazir F, Tabish TA, Tariq F, et al. Stimuli-sensitive drug delivery systems for site-specific antibiotic release. Drug Discov Today. 2022;27(6):1698–1705. doi: 10.1016/j.drudis.2022.02.014
  • Sousa J, Alves G, Fortuna A, et al. Intranasal delivery of topically-acting levofloxacin to rats: a proof-of-concept pharmacokinetic study. Pharm Res. 2017;34(11):2260–2269. doi: 10.1007/s11095-017-2232-1
  • Agrawal M, Saraf S, Saraf S, et al. Stimuli-responsive In situ gelling system for nose-to-brain drug delivery. J Control Release. 2020;327:235–265. doi: 10.1016/j.jconrel.2020.07.044
  • Karavasili C, Fatouros DG. Smart materials: in situ gel-forming systems for nasal delivery. Drug Discov Today. 2016;21(1):157–166. doi: 10.1016/j.drudis.2015.10.016
  • Piazzini V, Landucci E, D’Ambrosio M, et al. Chitosan coated human serum albumin nanoparticles: a promising strategy for nose-to-brain drug delivery. Int J Biol Macromol. 2019;129:267–280. doi: 10.1016/j.ijbiomac.2019.02.005
  • Ferreira NN, de Oliveira Junior E, Granja S, et al. Nose-to-brain co-delivery of drugs for glioblastoma treatment using nanostructured system. Int J Pharm. 2021;603:1–13. doi: 10.1016/j.ijpharm.2021.120714
  • Kaur G, Goyal J, Behera PK, et al. Unraveling the role of chitosan for nasal drug delivery systems: a review. Carbohydr Polym Technol Appl. 2023;5:100316. doi: 10.1016/j.carpta.2023.100316
  • Jelkmann M, Leichner C, Zaichik S, et al. A gellan gum derivative as in-situ gelling cationic polymer for nasal drug delivery. Int J Biol Macromol. 2020;158:1037–1046. doi: 10.1016/j.ijbiomac.2020.04.114
  • Huang G, Xie J, Shuai S, et al. Nose-to-brain delivery of drug nanocrystals by using Ca2+ responsive deacetylated gellan gum based in situ-nanogel. Int J Pharm. 2021;594:120182. doi: 10.1016/j.ijpharm.2020.120182
  • Wang M, Ma X, Zong S, et al. The prescription design and key properties of nasal gel for CNS drug delivery: a review. Eur J Pharm Sci. 2024;192:106623. doi: 10.1016/j.ejps.2023.106623
  • Preston KB, Randolph TW. Stability of lyophilized and spray dried vaccine formulations. Adv Drug Deliv Rev. 2021;171:50–61. doi: 10.1016/j.addr.2021.01.016

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.