47
Views
0
CrossRef citations to date
0
Altmetric
Review

Graphene-based materials as nanoplatforms for antiviral therapy and prophylaxis

, , &
Pages 751-766 | Received 11 Jan 2024, Accepted 03 Jun 2024, Published online: 10 Jun 2024

References

  • Naguib MM, Ellström P, Järhult JD, et al. Towards pandemic preparedness beyond COVID-19. Lancet Microbe. 2020;1(5):e185–e186. doi: 10.1016/S2666-5247(20)30088-4
  • Peck M, Lauring AS, Sullivan CS. Complexities of viral mutation rates. J Virol. 2018;92(14):e01031–17. doi: 10.1128/JVI.01031-17
  • Markov PV, Ghafari M, Beer M, et al. The evolution of SARS-CoV-2. Nat Rev Microbiol. 2023;21(6):361–379. doi: 10.1038/s41579-023-00878-2
  • Baker RE, Mahmud AS, Miller IF, et al. Infectious disease in an era of global change. Nat Rev Microbiol. 2022;20(4):193–205. doi: 10.1038/s41579-021-00639-z
  • Carlson CJ, Albery GF, Merow C, et al. Climate change increases cross-species viral transmission risk. Nature. 2022;607(7919):555–562. doi: 10.1038/s41586-022-04788-w
  • Pardi N, Weissman D. Development of vaccines and antivirals for combating viral pandemics. Nat Biomed Eng. 2020;4(12):1128–1133. doi: 10.1038/s41551-020-00658-w
  • Zwart MP, Kupczok A, Iranzo J. Editorial: Predicting virus evolution: from genome evolution to epidemiological trends. Front Virol. 2023;3:1215709. doi: 10.3389/fviro.2023.1215709
  • Łoczechin L, Séron K, Barras A, et al. Functional carbon quantum dots as medical countermeasures to human coronavirus. ACS Appl Mater Interfaces. 2019;11(46):42964–42974. doi: 10.1021/acsami.9b15032
  • Du T, Liang J, Dong N, et al. Glutathione-capped Ag2S nanoclusters inhibit coronavirus proliferation through blockage of viral RNA synthesis and budding. Mater Interfaces. 2018;10(5):4369–4378. doi: 10.1021/acsami.7b13811
  • Alizadeh F, Khodavandi A. Systematic review and meta-analysis of the efficacy of nanoscale materials against coronaviruses–possible potential antiviral agents for SARS-CoV-2. IEEE Trans NanoBiosci. 2020;19(3):485–497. doi: 10.1109/TNB.2020.2997257
  • Sarkar J, Das S, Aich S, et al. Antiviral potential of nanoparticles for the treatment of coronavirus infections. J Trace Elem Med Biol. 2022;72:126977. doi: 10.1016/j.jtemb.2022.126977
  • Ali MA, Rehman N, Park TJ, et al. Antiviral role of nanomaterials: a material scientist’s perspective. RSC Adv. 2023;13(1):47–79. doi: 10.1039/D2RA06410C
  • Iannazzo D, Pistone A, Galvagno S, et al. Synthesis and anti-HIV activity of carboxylated and drug-conjugated multi-walled carbon nanotubes. Carbon. 2015;82:548–561. doi: 10.1016/j.carbon.2014.11.007
  • Iannazzo D, Pistone A, Ferro S, et al. Graphene Quantum Dots Based Systems as HIV Inhibitors. Bioconjugate Chem. 2018;29:3084–3093. doi: 10.1021/acs.bioconjchem.8b00448
  • Uskoković V. Why have nanotechnologies been underutilized in the global uprising against the coronavirus pandemic? Nanomedicine. 2020;15(17):1719–1734. doi: 10.2217/nnm-2020-0163
  • Farouq MAH, Al Qaraghuli MA, Kubiak-Ossowska K, et al. Biomolecular interactions with nanoparticles: applications for coronavirus disease 2019. Curr Opin Colloid Interface Sci. 2021;54:101461. doi: 10.1016/j.cocis.2021.101461
  • Gupta I, Azizighannad S, Farinas ET, et al. Antiviral properties of select carbon nanostructures and their functionalized analogs. Mater Today Commun. 2021;29:102743. doi: 10.1016/j.mtcomm.2021.102743
  • Innocenzi P, Stagi L. Carbon-based antiviral nanomaterials: graphene, C-dots, and fullerenes. A perspective. Chem Sci. 2020;11(26):6606–6622. doi: 10.1039/D0SC02658A
  • Xu PY, Li XQ, Chen WG, et al. Progress in antiviral fullerene research. Nanomaterials. 2022;12(15):2547. doi: 10.3390/nano12152547
  • Seifi T, Kamali AR. Antiviral performance of graphene-based materials with emphasis on COVID-19: a review. Med Drug Discov. 2021;11:100099. doi: 10.1016/j.medidd.2021.100099
  • Roupcova P, Klouda K, Kleinova S. Graphene Oxide (GO) and its ability to detect and capture bacteria and viruses. Chem Eng Trans. 2023;101:151‒156.
  • Hsieh CT, Gu S, Gandomi YA, et al. Employing functionalized graphene quantum dots to combat coronavirus and enterovirus. J Colloid Interface Sci. 2023;630:1–10. doi: 10.1016/j.jcis.2022.10.082
  • Reina G, Peng S, Jacquemin L, et al. Hard nanomaterials in time of viral pandemics. ACS Nano. 2020;14(8):9364–9388. doi: 10.1021/acsnano.0c04117
  • Goodarzi S, Da Ros T, Conde J, et al. Fullerene: Biomedical Engineers Get to Revisit an Old Friend. Mater Today. 2017;20(8):460–480. doi: 10.1016/j.mattod.2017.03.017
  • Hayrie M, Hatta M, Matmin J, et al. COVID‐19: prevention, detection, and treatment by using carbon nanotubes‐based materials. Chem Sel. 2023;8(7):202204615. doi: 10.1002/slct.202204615
  • Luczkowiak J, Munoz A, Sanchez-Navarro M, et al. Glycofullerenes inhibit viral infection. Biomacromolecules. 2013;14(2):431–437. doi: 10.1021/bm3016658
  • Nierengarten I, Nierengarten JF. Fullerene sugar balls: anew class of biologically active fullerene. Chem Asian J. 2014;9(6):1436–1444. doi: 10.1002/asia.201400133
  • Ramos-Soriano J, Reina JJ, Illescas BM, et al. Synthesis of highly efficient multivalent disaccharide/[60]Fullerene nanoballs for emergent viruses. J Am Chem Soc. 2019;141(38):15403–15412. doi: 10.1021/jacs.9b08003
  • Liu Z, Winters M, Holodniy M, et al. SiRNA delivery into human T cells and primary cells with carbon-nanotube transporters. Angew Chem Int Ed. 2007;46(12):2023–2027. doi: 10.1002/anie.200604295
  • Banerjee I, Douaisi MP, Mondal D, et al. Light-activated nanotube–porphyrin conjugates as effective antiviral agents. Nanotechnology. 2012;23(10):105101. doi: 10.1088/0957-4484/23/10/105101
  • Cheng Y, Li D, Ji B, et al. Structure-based design of carbon nanotubes as HIV-1 protease inhibitors: atomistic and coarse-grained simulations. J Mol Graph Model. 2010;29(2):171–177. doi: 10.1016/j.jmgm.2010.05.009
  • Iannazzo D, Piperno A, Ferlazzo A, et al. Functionalization of multi-walled carbon nanotubes with coumarin derivatives and their biological evaluation. Org Biomol Chem. 2012;10(5):1025‒1031. doi: 10.1039/C1OB06598J
  • Gupta I, Azizighannad S, Farinas ET, et al. Synergistic antiviral effects of metal oxides and carbon nanotubes. Int J Mol Sci. 2022;23(19):11957. doi: 10.3390/ijms231911957
  • De Carvalho Lima EN, Octaviano ALM, Castilho Piqueira JR, et al. Coronavirus and carbon nanotubes: seeking immunological relationships to discover immunotherapeutic possibilities. Int J Nanomed. 2022;17:751–781. doi: 10.2147/IJN.S341890
  • Shareena TPD, McShan D, Dasmahapatra AK, et al. A review on graphene-based nanomaterials in biomedical applications and risks in environment and health. Nanomicro Lett. 2018;10(3):53. doi: 10.1007/s40820-018-0206-4
  • Rhazouani A, Azid K, Gamrani H, et al. Can the application of graphene oxide contribute to the fight against COVID-19? Antiviral activity, diagnosis and prevention. Curr Res Pharmacol Drug Discov. 2021;2:100062. doi: 10.1016/j.crphar.2021.100062
  • Suvarnaphaet P, Pechprasarn S. Graphene-based materials for biosensors: a review. Sensors. 2017;17(10):2161. doi: 10.3390/s17102161
  • Chung C, Kim YK, Shin D, et al. Biomedical applications of graphene and graphene oxide. Acc Chem Res. 2013;46(10):2211–2224. doi: 10.1021/ar300159f
  • Romero MP, Buzza H, Stringasci MD, et al. Graphene oxide theranostic effect: conjugation of photothermal and photodynamic therapies based on an in vivo demonstration. Ijn. 2021;16:1601–1616. doi: 10.2147/IJN.S287415
  • Lagos KJ, Buzzá HH, Bagnato VS, et al. Carbon-based materials in photodynamic and photothermal therapies applied to tumor destruction. Int J Mol Sci. 2021;23:22. doi: 10.3390/ijms23010022
  • Iannazzo D, Celesti C, Espro C. Recent advances on graphene quantum dots as multifunctional nanoplatforms for cancer treatment. Biotechnol J. 2021;16(2):1900422. doi: 10.1002/biot.201900422
  • Gungordu Er S, Edirisinghe M, Tabish TA. Graphene-based nanocomposites as antibacterial, antiviral and antifungal agents. Adv Healthcare Mater. 2023;12(6):2201523. doi: 10.1002/adhm.202201523
  • Wu X, Manickam S, Wu T. Insights into the role of Graphene/Graphene-hybrid nanocomposites in antiviral therapy. ChemBioeng Rev. 2021;8(6):549–563. doi: 10.1002/cben.202100018
  • Iannazzo D, Celesti C, Giofrè SV, et al. Theranostic applications of 2d graphene-based materials for solid tumors treatment. Nanomaterials. 2023;13(16):2380. doi: 10.3390/nano13162380
  • Ye S, Shao K, Li Z, et al. Antiviral activity of graphene oxide: how sharp edged structure and charge matter. ACS Appl Mater Interfaces. 2015;7(38):21571–21579. doi: 10.1021/acsami.5b06876
  • Akhavan O, Choobtashani M, Ghaderi E. Protein degradation and RNA efflux of viruses photocatalyzed by graphene–tungsten oxide composite under visible light irradiation. | J Phys Chem C. 2012;116(17):9653–9659. doi: 10.1021/jp301707m
  • Ziem B, Rahn J, Donskyi I, et al. Polyvalent 2D entry inhibitors for pseudorabies and African swine fever virus. Macromol biosci. 2017;17(6):1600499. doi: 10.1002/mabi.201600499
  • Mettenleiter TC. Aujeszky’s disease (pseudorabies) virus: the virus and molecular pathogenesis – State of the art, June 1999. Vet Res. 2000;31(1):99–115. doi: 10.1051/vetres:2000110
  • Barras A, Pagneux Q, Sane F, et al. High efficiency of functional carbon nanodots as entry inhibitors of herpes simplex virus type 1. ACS Appl Mater Interfaces. 2016;8(14):9004–9013. doi: 10.1021/acsami.6b01681
  • Donskyi IS, Nie C, Ludwig K, et al. Graphene sheets with defined dual functionalities for the strong SARS-CoV-2 interactions. Small. 2021;17(11):2007091. doi: 10.1002/smll.202007091
  • Chung HC, Nguyen VG, Kim CU, et al. Application of nano-graphene oxide as nontoxic disinfectant against alpha and betacoronaviruses. Vet Med Sci. 2021;7(6):2434–2439. doi: 10.1002/vms3.584
  • Unal MA, Bayrakdar F, Nazir H, et al. Graphene oxide nanosheets interact and interfere with SARS-CoV-2 surface proteins and cell receptors to inhibit infectivity. Small. 2021;17(25):2101483. doi: 10.1002/smll.202101483
  • Schultz JV, Zancan Tonel M, Ortiz Martins M, et al. Graphene oxide and flavonoids as potential inhibitors of the spike protein of SARS‑CoV‑2 variants and interaction between ligands: a parallel study of molecular docking and DFT. Struct Chem. 2023;34(5):1857–1867. doi: 10.1007/s11224-023-02135-x
  • Yang XX, Li CM, Li YF, et al. Synergistic antiviral effect of curcumin functionalized graphene oxide against respiratory syncytial virus infection. Nanoscale. 2017;9(41):16086–16092. doi: 10.1039/C7NR06520E
  • Dua X, Xiao R, Fua H, et al. Hypericin-loaded graphene oxide protects ducks against a novel duck reovirus. Mater Sci Eng C. 2019;105:110052. doi: 10.1016/j.msec.2019.110052
  • Kaler J, Hussain A, Patel K, et al. Respiratory syncytial virus: a comprehensive review of transmission, pathophysiology, and manifestation. Cureus. 2023;15(3):e36342. doi: 10.7759/cureus.36342
  • Chen Z, Zhu Y, Li C, et al. Outbreak-associated Novel Duck Reovirus, China, 2011. Emerg Infect Dis. 2012;18(7):1209–1211. doi: 10.3201/eid1807.120190
  • Gunitseva N, Evteeva M, Borisova A, et al. RNA-Dependent RNA targeting by CRISPR-Cas systems: characterizations and applications. Int J Mol Sci. 2023;24(8):6894. doi: 10.3390/ijms24086894
  • Li S, Sun Y, Du M, et al. Graphene oxide nanoparticles combined with CRISPR/Cas9 System Enable Efficient Inhibition of Pseudorabies Virus. Bioconjugate Chem. 2023;34:326–332. doi: 10.1021/acs.bioconjchem.2c00570
  • Najafi S, Tan SC, Aghamiri S, et al. Therapeutic potentials of CRISPR-Cas genome editing technology in human viral infections. Biomed Pharmacother. 2022;148:112743. doi: 10.1016/j.biopha.2022.112743
  • Fahmi MZ, Sukmayani W, Khairunisa SQ, et al. Design of boronic acid-attributed carbon dots on inhibits HIV-1 entry. RSC Adv. 2016;6:92996–93002. doi: 10.1039/C6RA21062G
  • Ortega Pijeira MS, de Menezes AS, Fechine PBA, et al. Folic acid-functionalized graphene quantum dots: Synthesis, characterization, radiolabeling with radium-223 and antiviral effect against Zika virus infection. Eur J Pharm Biopharm. 2022;180:91–100. doi: 10.1016/j.ejpb.2022.09.019
  • Meng C, Zhi X, Li C, et al. Graphene oxides decorated with Carnosine as an adjuvant to modulate innate immune and improve adaptive immunity in vivo. ACS Nano. 2016;10(2):2203–2213. doi: 10.1021/acsnano.5b06750
  • Zhang X, Li H, Yi C, et al. Host immune response triggered by graphene quantum-dot-mediated photodynamic therapy for oral squamous cell carcinoma. Int J Nanomed. 2020;15:9627–9638. doi: 10.2147/IJN.S276153
  • Cao W, He L, Cao W, et al. Recent progress of graphene oxide as a potential vaccine carrier and adjuvant. Acta Biomater. 2020;112:14–28. doi: 10.1016/j.actbio.2020.06.009
  • Qu G, Liu S, Zhang S, et al. Graphene oxide induces toll-like receptor 4 (TLR4)-dependent necrosis in macrophages. ACS Nano. 2013;7(7):5732–5745. doi: 10.1021/nn402330b
  • Tang X, Song F, Zhao W, et al. Intratracheal instillation of graphene oxide decreases anti-virus responses and lipid contents via suppressing toll-like receptor 3 in mouse livers. J Appl Toxicol. 2022;42(11):1822–1831. doi: 10.1002/jat.4359
  • Du T, Lu J, Liu L, et al. Antiviral activity of graphene oxide–silver nanocomposites by preventing viral entry and activation of the antiviral innate immune response. ACS Appl Bio Mater. 2018;1(5):1286–1293. doi: 10.1021/acsabm.8b00154
  • Mukherjee S, Bytesnikova Z, Martin S, et al. Silver nanoparticle-decorated reduced graphene oxide nanomaterials exert membrane stress and induce immune response to inhibit the early phase of HIV-1 Infection Adv. Adv MaterAdv Materials Inter. 2023;10(6):2201996. doi: 10.1002/admi.202201996
  • Sun B, Shuang Y, Dongying Z, et al. Polysaccharides as Vaccine Adjuvants. Vaccine. 2018;36(35):5226–5234. doi: 10.1016/j.vaccine.2018.07.040
  • Murata Y, Shimamura T, Tagami T, et al. The Skewing to Th1 induced by lentinan is directed through the distinctive cytokine production by macrophages with elevated intracellular glutathione content. Int Immunopharmacol. 2002;2(5):673–689. doi: 10.1016/S1567-5769(01)00212-0
  • Liu Z, He J, Zhu T, et al. Lentinan-functionalized graphene oxide Is an effective antigen delivery system that modulates innate immunity and improves adaptive immunity. ACS Appl Mater Interfaces. 2020;12(35):39014–39023. doi: 10.1021/acsami.0c12078
  • Habibi N, Christau S, Ochyl LJ, et al. Engineered ovalbumin nanoparticles for cancer immunotherapy. Adv Therap. 2020;3(10):2000100. doi: 10.1002/adtp.202000100
  • Ye S, Su F, Li J, et al. Enhanced in vivo antiviral activity against pseudorabies virus through transforming gallic acid into graphene quantum dots with stimulation of interferon-related immune responses. J Mater Chem B. 2023;12(1):122–130. doi: 10.1039/D3TB01844J
  • Huang S, Li Y, Zhang S, et al. A self-assembled graphene oxide adjuvant induces both enhanced humoral and cellular immune responses in influenza vaccine. J Control Release. 2024;365:716–728. doi: 10.1016/j.jconrel.2023.11.047
  • Reina G, Iglesias D, Samorì P, et al. Graphene: a disruptive opportunity for COVID-19 and Future Pandemics? Adv Mater. 2021;33(10):2007847. doi: 10.1002/adma.202007847
  • Rakowska PD, Tiddia M, Faruqui N, et al. Antiviral surfaces and coatings and their mechanisms of action. Commun Mater. 2021;2(1):53. doi: 10.1038/s43246-021-00153-y
  • Basak S, Packirisamy G. Nano-based antiviral coatings to combat viral infections. Nano-Struct Nano-Objects. 2020;24:100620. doi: 10.1016/j.nanoso.2020.100620
  • Patial S, Kumar A, Raizada P, et al. Potential of graphene based photocatalyst for antiviral activity with emphasis on COVID-19: a review. J Environ Chem Eng. 2022;10(3):107527. doi: 10.1016/j.jece.2022.107527
  • Lavorato C, Fontananova E. An overview on exploitation of graphene-based membranes: from water treatment to medical industry, including recent fighting against COVID-19. Microorganisms. 2023;11(2):310. doi: 10.3390/microorganisms11020310
  • Goswami M, Yadav AK, Chauhan V, et al. Facile development of graphene-based air filters mounted on a 3D printed mask for COVID-19. J Sci Adv Mater Dev. 2021;6(3):407–414. doi: 10.1016/j.jsamd.2021.05.003
  • Štular D, Van de Velde N, Drinčìc A, et al. Boosting copper biocidal activity by silver decoration and few-layer graphene in coatings on textile fibers. Global Chall. 2023;7(10):2300113. doi: 10.1002/gch2.202300113
  • Das Jana I, Kumbhakar P, Banerjee S, et al. Copper nanoparticle−graphene composite-based transparent surface coating with antiviral activity against influenza virus. ACS Appl Nano Mater. 2021;4(1):352–362. doi: 10.1021/acsanm.0c02713
  • Hurtado A, Cano-Vicent A, Tuñón-Molina A, et al. Engineering alginate hydrogel films with poly (3-hydroxybutyrate-co-3-valerate) and graphene nanoplatelets: Enhancement of antiviral activity, cell adhesion and electroactive properties. Int j biol macromol. 2022;219:694–708. doi: 10.1016/j.ijbiomac.2022.08.039
  • Khedri M, Maleki R, Dahri M, et al. Engineering of 2D nanomaterials to trap and kill SARS CoV 2: a new insight from multi microsecond atomistic simulations. Drug Deliv Transl Res. 2022;12(6):1408–1422. doi: 10.1007/s13346-021-01054-w
  • Passaretti P, Sun Y, Khan I, et al. Multifunctional graphene oxide-bacteriophage based porous three-dimensional micro-nanocomposites. Nanoscale. 2019;11(28):13318. doi: 10.1039/C9NR03670A
  • De Maio F, Palmieri V, Babini G, et al. Graphene nanoplatelet and graphene oxide functionalization of face mask materials inhibits infectivity of trapped SARS-CoV-2. iScience. 2021;24:102788. doi: 10.1016/j.isci.2021.102788
  • Matharu RK, Porwal H, Chen B, et al. Viral filtration using carbon-based materials. Med Devices & Sens. 2020;3(4):e10107. doi: 10.1002/mds3.10107
  • Chen YN, Hsueh YH, Hsieh CT, et al. Antiviral activity of graphene–silver nanocomposites against non-enveloped and enveloped viruses int. J Environ Res Public Health. 2016;13(4):430. doi: 10.3390/ijerph13040430
  • Hemmat MA, Asghari S, Bakhshesh M, et al. Copper iodide decorated graphene oxide as a highly efficient antibacterial and antiviral nanocomposite Inorg. Chem Commun. 2023;156:111214. doi: 10.1016/j.inoche.2023.111214
  • Gungordu Er S, Tabish TA, Edirisinghe M, et al. Antiviral properties of porous graphene, graphene oxide and graphene foam ultrafine fibers against Phi6 bacteriophage. Front Med. 2022;9:1032899. doi: 10.3389/fmed.2022.1032899
  • dos Santos AF, Ortiz Martins M, Lameira J, et al. Evaluation interaction of graphene oxide with heparin for antiviral blockade: a study of ab initio simulations, molecular docking, and experimental analysis. J Mol Model. 2023;29(8):235. doi: 10.1007/s00894-023-05645-x
  • Valentini L, Bittolo Bon S, Giorgi G. Engineering graphene Oxide/Water interface from first principles to experiments for electrostatic protective composites. Polymers. 2020;12(7):1596. doi: 10.3390/polym12071596
  • Fukuda M, Islam MS, Shimizu R, et al. Lethal Interactions of SARS-CoV‑2 with graphene oxide: implications for COVID-19 Treatment. ACS Appl Nano Mater. 2021;4:11881–11887. doi: 10.1021/acsanm.1c02446
  • Parra B, Contreras A, Herminsul Mina J, et al. The entrapment and concentration of SARS-CoV-2 particles with graphene oxide: an in vitro assay. Nanomaterials. 2023;13(2):343. doi: 10.3390/nano13020343
  • Sametband M, Kalt I, Gedanken A, et al. Herpes simplex virus type1 attachment inhibition by functionalized graphene oxide. ACS Appl Mater Interfaces. 2014;6(2):1228–1235. doi: 10.1021/am405040z
  • Wei H, Hu Y, Wang J, et al. Superparamagnetic iron oxide nanoparticles: cytotoxicity, metabolism, and cellular behavior in biomedicine applications. Int J Nanomedicine. 2021;16:6097–6113. doi: 10.2147/IJN.S321984
  • Kohzadi S, Najmoddin N, Baharifar H, et al. Functionalized SPION immobilized on graphene-oxide: anticancer and antiviral study. b Diam Relat Mater. 2022;127:109149. doi: 10.1016/j.diamond.2022.109149
  • Salama AM, Metry ME, Abdelhamid AE, et al. Novel microbicide graphene oxide nanocomposite hydrogel against herpes simplex virus. Mater TodayChem. 2023;33:101676. doi: 10.1016/j.mtchem.2023.101676
  • Galante AJ, Yates KA, Romanowski EG, et al. Coal-derived functionalized nano-graphene oxide for bleach washable, durable antiviral fabric coatings. ACS Appl Nano Mater. 2022;5:718–728. doi: 10.1021/acsanm.1c03448
  • Lagos KJ, García D, Cuadrado CF, et al. Carbon dots: Types, preparation, and their boosted antibacterial activity by photoactivation. Current status and future perspectives. WIREs Nanomed Nanobiotechnol. 2023;15(4):e1887. doi: 10.1002/wnan.1887
  • Zare M, Thomas V, Ramakrishna S. Nanoscience and quantum science-led biocidal and antiviral strategies. J Mater Chem B. 2021;9(36):7328–7346. doi: 10.1039/D0TB02639E
  • Huang L, Gu M, Wang Z, et al. Highly efficient and rapid inactivation of coronavirus on non-metal hydrophobic laser-induced graphene in mild conditions. Adv Funct Mater. 2021;31(24):2101195. doi: 10.1002/adfm.202101195
  • Gu M, Huang L, Wang Z, et al. Molecular engineering of laser-induced graphene for potential-driven broad-spectrum antimicrobial and antiviral applications. Small. 2021;17(51):2102841. doi: 10.1002/smll.202102841
  • Akhavan O, Ghaderi E. Photocatalytic reduction of graphene oxide nanosheets on TiO2 thin film for photoinactivation of bacteria in solar light irradiation. J Phys Chem C. 2009;113(47):20214–20220. doi: 10.1021/jp906325q
  • Gedanken A, Deokar A, Nagvenkar AP, et al. Graphene-based “hot plate” for the capture and destruction of the herpes simplex virus type 1. Bioconjugate Chem. 2017;28(4):1115–1122. doi: 10.1021/acs.bioconjchem.7b00030
  • Iannazzo D, Espro C, Celesti C, et al. Smart biosensors for cancer diagnosis based on graphene quantum dots. Cancers (Basel). 2021;13(13):3194. doi: 10.3390/cancers13133194
  • Bullock CJ, Busy C. Biocompatibility considerations in the design of graphene biomedical materials. Adv Materials Inter. 2019;6(11):1900229. doi: 10.1002/admi.201900229
  • Anselmo AC, Mitragotri S. Nanoparticles in the clinic. Bioeng Transl Med. 2016;1(1):10–29. doi: 10.1002/btm2.10003
  • Bianco A, Kostarelos K, Prato M. Making carbon nanotubes biocompatible and biodegradable. Chem Commun. 2011;47(37):10182–10188. doi: 10.1039/c1cc13011k
  • Chaudhary SK, Chaudhary N, Chaudhary R, et al. Review on benefits, toxicity, challenges, and future of graphene-based face masks in the prevention of COVID-19 pandemic. Peer J Mater Sci. 2022;4:e20. doi: 10.7717/peerj-matsci.20
  • Nasrollahzadeh M, Sajjadi M, Soufi GJ, et al. Nanomaterials and nanotechnology-associated innovations against viral infections with a focus on coronaviruses. Nanomaterials. 2020;10(6):1072. doi: 10.3390/nano10061072

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.