271
Views
13
CrossRef citations to date
0
Altmetric
Review

Pharmacogenomics of genes involved in antifolate drug response and toxicity in osteosarcoma

, , , , &
Pages 245-257 | Received 13 May 2016, Accepted 05 Oct 2016, Published online: 19 Oct 2016

References

  • Ferrari S, Serra M. An update on chemotherapy for osteosarcoma. Expert Opin Pharmacother. 2015:2727–2736. Epub 2015 Oct 29.
  • Hattinger CM, Fanelli M, Tavanti E, et al. Advances in emerging drugs for osteosarcoma. Expert Opin Emerg Drugs. 2015;20:495–514. Epub 2015 May 28.
  • Gonen N, Assaraf YG. Antifolates in cancer therapy: structure, activity and mechanisms of drug resistance. Drug Resist Updat. 2012;15:183–210. Epub 2012 Aug 28.
  • Matherly LH, Wilson MR, Hou Z. The major facilitative folate transporters solute carrier 19A1 and solute carrier 46A1: biology and role in antifolate chemotherapy of cancer. Drug Metab Dispos. 2014;42:632–649. Epub 2014 Jan 8.
  • Bleyer WA. The clinical pharmacology of methotrexate: new applications of an old drug. Cancer. 1978;41:36–51. Epub 1978 Jan 1.
  • Farber S, Diamond LK. Temporary remissions in acute leukemia in children produced by folic acid antagonist, 4-aminopteroyl-glutamic acid. N Engl J Med. 1948;238:787–793. Epub 1948 Jun 3.
  • Jaffe N. Recent advances in the chemotherapy of metastatic osteogenic sarcoma. Cancer. 1972;30:1627–1631. Epub 1972 Dec 1.
  • Jaffe N, Paed D, Farber S, et al. Favorable response of metastatic osteogenic sarcoma to pulse high-dose methotrexate with citrovorum rescue and radiation therapy. Cancer. 1973;31:1367–1373. Epub 1973 Jun 1.
  • Rosen G, Suwansirikul S, Kwon C, et al. High-dose methotrexate with citrovorum factor rescue and adriamycin in childhood osteogenic sarcoma. Cancer. 1974;33:1151–1163. Epub 1974 Apr 1.
  • Assaraf YG. Molecular basis of antifolate resistance. Cancer Metastasis Rev. 2007;26:153–181. Epub 2007 Mar 3.
  • Hagner N, Joerger M. Cancer chemotherapy: targeting folic acid synthesis. Cancer Manag Res. 2010;2:293–301. Epub 2011 Feb 9.
  • Mikkelsen TS, Thorn CF, Yang JJ, et al. PharmGKB summary: methotrexate pathway. Pharmacogenet Genomics. 2011;21:679–686; Epub 2011 Feb 15.
  • El-Sheikh AAK, van den Heuvel JJMW, Koenderink JB, et al. Interaction of nonsteroidal anti-inflammatory drugs with multidrug resistance protein (MRP) 2/ABCC2- and MRP4/ABCC4-mediated methotrexate transport. J Pharmacol Exp Ther. 2007;320:229–235. Epub 2006 Sep 29.
  • Qiu A, Jansen M, Sakaris A, et al. Identification of an intestinal folate transporter and the molecular basis for hereditary folate malabsorption. Cell. 2006;127:917–928. Epub 2006 Nov 30.
  • Uwai Y, Taniguchi R, Motohashi H, et al. Methotrexate-loxoprofen interaction: involvement of human organic anion transporters hOAT1 and hOAT3. Drug Metab Pharmacokinet. 2004;19:369–374. Epub 2004 Nov 19.
  • VanWert AL, Sweet DH. Impaired clearance of methotrexate in organic anion transporter 3 (Slc22a8) knockout mice: a gender specific impact of reduced folates. Pharm Res. 2008;25:453–462. Epub 2007 Jul 31.
  • Belkov VM, Krynetski EY, Schuetz JD, et al. Reduced folate carrier expression in acute lymphoblastic leukemia: a mechanism for ploidy but not lineage differences in methotrexate accumulation. Blood. 1999;93:1643–1650. Epub 1999 Feb 25.
  • Zhang L, Taub JW, Williamson M, et al. Reduced folate carrier gene expression in childhood acute lymphoblastic leukemia: relationship to immunophenotype and ploidy. Clin Cancer Res. 1998;4:2169–2177. Epub 1998 Sep 25.
  • Whirl-Carrillo M, McDonagh EM, Hebert JM, et al. Pharmacogenomics knowledge for personalized medicine. Clin Pharmacol Ther. 2012;92:414–417. Epub 2012 Sep 21.
  • Holmboe L, Andersen AM, Mørkrid L, et al. High dose methotrexate chemotherapy: pharmacokinetics, folate and toxicity in osteosarcoma patients. Br J Clin Pharmacol. 2012;73:106–114. Epub 2011 Jun 29.
  • Schmiegelow K. Advances in individual prediction of methotrexate toxicity: a review. Br J Haematol. 2009;146:489–503. Epub 2009 Jun 23.
  • Widemann BC, Adamson PC. Understanding and managing methotrexate nephrotoxicity. Oncologist. 2006;11:694–703. Epub 2006 Jun 24.
  • Zhao R, Goldman ID. Resistance to antifolates. Oncogene. 2003;22:7431–7457. Epub 2003 Oct 25.
  • Guo W, Healey JH, Meyers PA, et al. Mechanisms of methotrexate resistance in osteosarcoma. Clin Cancer Res. 1999;5:621–627. Epub 1999 Apr 1.
  • Hattinger CM, Reverter-Branchat G, Remondini D, et al. Genomic imbalances associated with methotrexate resistance in human osteosarcoma cell lines detected by comparative genomic hybridization-based techniques. Eur J Cell Biol. 2003;82:483–493.
  • Hattinger CM, Stoico G, Michelacci F, et al. Mechanisms of gene amplification and evidence of coamplification in drug-resistant human osteosarcoma cell lines. Gene Chromosome Canc. 2009;48:289–309.
  • Ifergan I, Meller I, Issakov J, et al. Reduced folate carrier protein expression in osteosarcoma: implications for the prediction of tumor chemosensitivity. Cancer. 2003;98:1958–1966. Epub 2003 Oct 30.
  • Scionti I, Michelacci F, Pasello M, et al. Clinical impact of the methotrexate resistance-associated genes C-MYC and dihydrofolate reductase (DHFR) in high-grade osteosarcoma. Ann Oncol. 2008;19:1500–1508. Epub 2008 Apr 4.
  • Serra M, Reverter-Branchat G, Maurici D, et al. Analysis of dihydrofolate reductase and reduced folate carrier gene status in relation to methotrexate resistance in osteosarcoma cells. Ann Oncol. 2004;15:151–160. Epub 2003 Dec 18.
  • O’Day K, Gorlick R. Novel therapeutic agents for osteosarcoma. Expert Rev Anticancer Ther. 2009;9:511–523. Epub 2009 Apr 21.
  • Zhao R, Qiu A, Tsai E, et al. The proton-coupled folate transporter: impact on pemetrexed transport and on antifolates activities compared with the reduced folate carrier. Mol Pharmacol. 2008;74:854–862. Epub 2008 Jun 6.
  • Duffaud F, Egerer G, Ferrari S, et al. A phase II trial of second-line pemetrexed in adults with advanced/metastatic osteosarcoma. Eur J Cancer. 2012;48:564–570. Epub 2012 Jan 17.
  • Warwick AB, Malempati S, Krailo M, et al. Phase 2 trial of pemetrexed in children and adolescents with refractory solid tumors: a Children’s Oncology Group study. Pediatr Blood Cancer. 2013;60:237–241. Epub 2012 Jun 30.
  • Poos K, Smida J, Nathrath M, et al. Structuring osteosarcoma knowledge: an osteosarcoma-gene association database based on literature mining and manual annotation. Database (Oxford). 2014;2014:bau042. Epub 2014 May 29.
  • Sowers R, Toguchida J, Qin J, et al. mRNA expression levels of E2F transcription factors correlate with dihydrofolate reductase, reduced folate carrier, and thymidylate synthase mRNA expression in osteosarcoma. Mol Cancer Ther. 2003;2:535–541. Epub 2003 Jun 19.
  • Hattinger CM, Biason P, Iacoboni E, et al. 2016. Candidate germline polymorphisms of genes belonging to the pathways of four drugs used in osteosarcoma standard chemotherapy associated with risk, survival and toxicity in non-metastatic high-grade osteosarcoma. Oncotarget. Epub 2016 Aug 22.
  • Jabeen S, Holmboe L, Alnaes GI, et al. Impact of genetic variants of RFC1, DHFR and MTHFR in osteosarcoma patients treated with high-dose methotrexate. Pharmacogenomics J. 2015;15:385–390. Epub 2015 Mar 18.
  • Windsor RE, Strauss SJ, Kallis C, et al. Germline genetic polymorphisms may influence chemotherapy response and disease outcome in osteosarcoma: a pilot study. Cancer. 2012;118:1856–1867. Epub 2011 Sep 3.
  • Patiño-García A, Zalacaín M, Marrodán L, et al. Methotrexate in pediatric osteosarcoma: response and toxicity in relation to genetic polymorphisms and dihydrofolate reductase and reduced folate carrier 1 expression. J Pediatr. 2009;154:688–693. Epub 2009 Jan 23.
  • Hagleitner MM, Coenen MJ, Aplenc R, et al. The role of the MTHFR 677C>T polymorphism in methotrexate-induced liver toxicity: a meta-analysis in patients with cancer. Pharmacogenomics J. 2014;14:115–119; Epub 2013 May 8.
  • Müller J, Kralovánszky J, Adleff V, et al. Toxic encephalopathy and delayed MTX clearance after high-dose methotrexate therapy in a child homozygous for the MTHFR C677T polymorphism. Anticancer Res. 2008;28:3051–3054. Epub 2008 Nov 27.
  • Frosst P, Blom HJ, Milos R, et al. A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet. 1995;10:111–113; Epub 1995 May 1.
  • Dogan M, Karabulut HG, Tukun A, et al. Relationship between antimetabolite toxicity and pharmacogenetics in Turkish cancer patients. Asian Pac J Cancer Prev. 2012;13:1553–1556. Epub 2012 Jul 18.
  • Yang R, Sowers R, Mazza B, et al. Sequence alterations in the reduced folate carrier are observed in osteosarcoma tumor samples. Clin Cancer Res. 2003;9:837–844; Epub 2003 Feb 11.
  • Yang R, Qin J, Hoang BH, et al. Polymorphisms and methylation of the reduced folate carrier in osteosarcoma. Clin Orthop Relat Res. 2008;466:2046–2051. Epub 2008 Jun 6.
  • Flintoff WF, Sadlish H, Gorlick R, et al. Functional analysis of altered reduced folate carrier sequence changes identified in osteosarcomas. Biochim Biophys Acta. 2004;1690:110–117. Epub 2004 Oct 8.
  • Whetstine JR, Gifford AJ, Witt T, et al. Single nucleotide polymorphisms in the human reduced folate carrier: characterization of a high-frequency G/A variant at position 80 and transport properties of the His(27) and Arg(27) carriers. Clin Cancer Res. 2001;7:3416–3422. Epub 2001 Nov 14.
  • Goričar K, Kovač V, Jazbec J, et al. Influence of the folate pathway and transporter polymorphisms on methotrexate treatment outcome in osteosarcoma. Pharmacogenet Genomics. 2014;24:514–521. Epub 2014 Aug 8.
  • Ramsey LB, Bruun GH, Yang W, et al. Rare versus common variants in pharmacogenetics: SLCO1B1 variation and methotrexate disposition. Genome Res. 2012;22:1–8. Epub 2011 Dec 8.
  • Ramsey LB, Panetta JC, Smith C, et al. Genome-wide study of methotrexate clearance replicates SLCO1B1. Blood. 2013;121:898–904; Epub 2012 Dec 13.
  • Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat Rev Genet. 2002;3:415–428. Epub 2002 Jun 4.
  • Paska AV, Hudler P. Aberrant methylation patterns in cancer: a clinical view. Biochem Med (Zagreb). 2015;25:161–176. Epub 2015 Jun 26.
  • Ferreri AJM, Dell’Oro S, Capello D, et al. Aberrant methylation in the promoter region of the reduced folate carrier gene is a potential mechanism of resistance to methotrexate in primary central nervous system lymphomas. Br J Haematol. 2004;126:657–664. Epub 2004 Aug 26.
  • Yang R, Li WW, Hoang BH, et al. Quantitative correlation between promoter methylation and messenger RNA levels of the reduced folate carrier. BMC Cancer. 2008;8:124. Epub 2008 May 3.
  • Sramek M, Neradil J, Sterba J, et al. Non-DHFR-mediated effects of methotrexate in osteosarcoma cell lines: epigenetic alterations and enhanced cell differentiation. Cancer Cell Int. 2016;16:14. Epub 2016 Mar 2.
  • Serra M, Hattinger CM. The pharmacogenomics of osteosarcoma. Pharmacogenomics J. 2016. Epub 2016 Jun 1.
  • Isakoff MS, Bielack SS, Meltzer P, et al. Osteosarcoma: current treatment and a collaborative pathway to success. J Clin Oncol. 2015;33:3029–3035. Epub 2015 Aug 26.
  • Choi G, Piao H, Alothman ZA, et al. Anionic clay as the drug delivery vehicle: tumor targeting function of layered double hydroxide-methotrexate nanohybrid in C33A orthotopic cervical cancer model. Int J Nanomedicine. 2016;11:337–348. Epub 2016 Feb 9.
  • Wong PT, Choi SK. Mechanisms and implications of dual-acting methotrexate in folate-targeted nanotherapeutic delivery. Int J Mol Sci. 2015;16:1772–1790. Epub 2015 Jan 16.
  • Deis SM, Doshi A, Hou Z, et al. Structural and enzymatic analysis of tumor-targeted antifolates that inhibit glycinamide ribonucleotide formyltransferase. Biochemistry. 2016;55:4574–4582. Epub 2016 Jul 22.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.